
Live Range Splitting in a
Graph Coloring Register Allocator*

Kei th D. Cooper 1 and L. Taylor Simpson 2

1 Rice University, Houston, Texas, USA
2 Trilogy Development Group, Austin, Texas, USA

Abstrac t . Graph coloring is the dominant paradigm for global register
allocation [8, 7, 4]. Coloring allocators use an interference graph, Z, to
model conflicts that prevent two values from sharing a register. Nodes in
2: represent live ranges. An edge between two nodes indicates that they
are simultaneously live azld, thus, cannot share a register. The allocator
tries to construct a k-coloring of 2:, for k equal to the number of registers
on the target machine. If it succeeds, it maps the colors onto the machine
registers to produce an allocation. Unfortunately, it may not discover a
k-coloring. In that case, it sp///s some live ranges by saving their values
to memory. Early coloring allocators spilled live ranges completely - at
each definition and use. This approach often introduces more spill code
than necessary. This paper presents a global approach that avoids some
spill code by splitting the live range, breaking it into smaller pieces.

We are not the first to study this problem. Bergner et M. describe a
heuristic called interference region spilling that reduces the amount of
code needed to spill a live range [1]. Briggs experimented with an aggres-
sive form of live range splitting; he saw mixed results [3, see Chapter 6].
This paper presents a passive form of live range splitting that uses split-
ting as an alternative to spilling. The allocator finds regions where split-
ting breaks the interferences that cause a spill; it uses estimated costs to
choose between splitting the live range and spilling it. We present experi-
mental evidence that this technique is effective. We have seen reductions
in the amount of dynamic spill overhead as high as 78% for non-trivial
routines. Our technique can easily be coupled with Bergner's to create an
allocator that makes a cost-based choice between splitting, interference
region spilling, and spilling completely for each spilled live range.

1 I n t r o d u c t i o n

Chai t in et M. first used graph coloring as a p a r a d i g m for register a l locat ion and
ass ignment in a compiler [8, 7]. Coloring al locators approach the problem by
bui ld ing a g raph tha t models when two live ranges cannot reside in the same
locat ion; we call the graph an interference graph (Z) because the live ranges
would interfere wi th each other if they shared a register. The a l locator a t t e m p t s

* This work was supported by DARPA through contract DABT63-95-C-0115 and by
the Trilogy Development Group.

175

to discover a k-coloring of I ; that is, an assignment of k colors to the nodes of
Z in such a way that, no adjacent nodes have the same color. If it can find a
k-coloring, for k equal to the number of registers on the target machine, it can
map the colors into registers and its task is done. If, however, it cannot discover
such a coloring, it selects one or more live ranges to store in memory, or spill.
It inserts code to spill those live ranges and tries to color the interference graph
for the resulting, modified procedure.

Chaitin's basic scheme has been improved by other authors. Briggs e t a / .
describe variations on the coloring heuristic that increase the number of live
ranges that can be colored [4, 5]. Bernstein et al. showed that different heuristics
for choosing spill candidates can improve the results [2]. These modifications
have reduced the cost of spilling, but they have not eliminated it. The remaining
problem is not a poor coloring heuristic; these routines have regions where they
need more registers than the hardware provides.

Once it chooses a live range to spill, Chaitin's allocator spills that value
everywhere. It places a STORE instruction after each definition of the value and
a L O A D instruction before each use of the value. Local heuristics can reduce
the number of spill instructions inserted into a single basic block [7, 2]. These
methods eliminate some redundant spill instructions in a block that contains
several references to the spilled value. They do nothing for problems that arise
across multiple blocks.

Bergner et al. introduced a global technique for reducing spill code that they
called interference region spilling [1]. Rather than spill the live range everywhere,
their method chooses a color for it and only spills it in areas where that color is
unavailable. The allocator picks a color for the spilled live range by estimating
the costs that would be incurred for each color; it selects the color with the
smallest estimated cost.

In this paper, we present another global method for reducing spill code, called
live range splitting. Chaitin-style allocators use maximal-length live ranges as
the basic unit of allocation. It has long been recognized that breaking a live
range into smaller pieces may allow some, or all, of the resulting pieces to be
colored [13, 9]. Chow used this observation in his priority-based coloring scheme;
when his allocator encountered a live range that could not be kept in a register,
it broke it into smaller pieces. Briggs experimented with an aggressive form of
live range splitting in his Chaitin-style allocator [3, Chapter 6]. His algorithm
aggressive split many long live ranges before it tried to color the graph; he added
several mechanisms to the allocator that could recombine the smaller pieces when
doing so would not cause a spill. The method produced both large gains and large
losses; sometimes, it aggressively inserted splits that were both unneeded and
beyond its power to remove.

Our approach overcomes this difficulty by being passive. It only considers
splitting a live range l after l has been selected for spilling. To spht l, it looks
for a color where splitting will succeed - that is, either all live ranges of that
color can be split around l, or 1 can be split around all live ranges of that color.
If such a color exists, and the estimated cost of splitting is less than the cost

176

of spilling l, our method will split rather than spill. Because it compares the
estimated cost of splitting and spilling, this method can easily be combined with
Bergner's method. The resulting allocator would use cost estimates to choose
between live range splitting, interference region spilling, and complete spilling
for each live range that must be spilled.

1.1 E x a m p l e

To understand the benefits of live range splitting, consider the code on the left
side of Figure 1. If only one register is available, then the allocator must spill one
of/1 or 12. The "spill everywhere" method would place spill code inside one of
the loops. Assume that the spilling heuristic chose 12; the middle column shows
the result of spilling 12 entirely. Notice that a LOAD instruction gets inserted into
the loop. A second problem with this choice is that the two small live ranges
that result from spilling still interfere with ll. The next round of spilling will still
need to address the underlying problem; in a spill-everywhere scheme, 1i will be
spilled. Splitting 11 across 12, shown in the right column, produces a much better
result. All the spills occur outside the loop. To split 11 across 12, we insert a
STORE for 11 before each definition of 12, and a LOAD of ll after each death of 12.

Normally, a live range dies after its last use. The exception occurs in the
presence of control-flow - the flow may branch to one path where a value is live
and to another path where the value is dead. Intuitively, the death occurs along
the second edge. In our example, l~ dies along the edge that exits the first loop,
so we insert a LOAD for 11 in the successor block.

Splitting in this way lets us allocate ll and 12 to the same register, without
inserting spill code inside the loop. In the example, ll is split across 12 because

def I1 t
def 12 ,, USI
use ll 1

1,]
Orig ina l

Fig. t . Example of live range spfitting

def It]
def I2

STORI~ 12

l

Spill 12 e n t i r e l y

def 11] STORB l 1 clef 12

: li, 1

Split/1 across 12

177

Fig. 2. Briggs' allocator

11 completely contains t2. To let the allocator detect this situation, we introduce
a new data structure, the containment graph. Section 3 describes this graph in
detail. Section 4 explains how to insert the code that splits a live range. Sec-
tions 5 and 6 put the algorithm together. Section 7 presents some experimental
results showing the efficacy of splitting.

2 B r i g g s ' A l l o c a t o r

Because our live range splitting procedure extends a Briggs-style allocator, we
will begin with an overview of that allocator. Figure 2 shows a flow chart of a
Briggs-style allocator [4]. It is composed of seven major phases:

R e n u m b e r The symbolic, or virtual, registers in the routine are renamed to
create live ranges. A live range is a collection of definitions that reach a
common use. Briggs accomplishes this by converting the routine to pruned
static single assignment form [12] and then combining all names mentioned
in each C-node.

B u i l d The interference graph, Z, contains a node for each live range and an edge
between each pair of live ranges that are simultaneously live. Z is represented
by both a triangular bit matrix and a collection of adjacency lists. We build
Z by traversing the instructions in the routine; at each definition, we add an
edge between the defined name and all live ranges that are currently live.

Coa lesce If the source and destination of a copy do not otherwise interfere,
the two live ranges can be assigned the same register, and the copy can be
removed. When two live ranges are coalesced, we add an edge between the
new live range and each neighbor of the two live ranges. This approach may
be overly conservative, so we repeat the build and coalesce phases until no
more coalescing is possible.

Spil l costs We estimate the cost of spilling each live range by counting the in-
structions (weighted by instruction cost and by loop nesting depth) required
to spill that live range. The effect of any local heuristic to reduce the number
of LOADs is included in the estimated spill cost for each live range.

S imp l i fy Coloring is a two step process. During the first phase, we repeatedly
remove a node with degree less than k from Z, and push it onto the coloring
stack. If the process reaches a point where no such node exists, a live range

178

is chosen heuristically to be a spill candidate. Simplify pushes the spill can-
didate onto the stack, and optimistically hopes that it can receive a color
during the select phase. 3

Se lec t We repeatedly pop a live range from the coloring stack, insert it back
into the interference graph, and assign it a color different from those of its
neighbors. If no color is available, the live range is left uncolored and marked
for spilling. An uncolored live range is always one of the spill candidates
chosen by simplify [4, 5]. If we are able to assign a color to every live range,
this corresponds to a valid allocation, and the algorithm terminates.

Spi l l code If select marked any live ranges for spilling, we must update the code
to keep these values in memory and repeat the entire allocation process. This
phase traverses the instructions in the same manner as spill costs, inserting
the actual LOADs and STOREs for spilled live ranges.

3 T h e C o n t a i n m e n t G r a p h

Chaitin first observed that spilling a live range does not break all its interferences;
this is one reason that the allocator must repeat the coloring process after spill
code is inserted. Spilling merely breaks a live range into multiple tiny live ranges.
These tiny live ranges still interfere with values that are live across them. The
middle column of Figure 1 shows this situation. The allocator has spilled I2
entirely, producing two short live ranges - one at 12's definition and one at its
use. Both these live ranges still interfere with 11, because I1 is live across each
of them. 4 If, as shown in the right column of Figure 1, the allocator spills 11
instead of 12, the new live ranges do not interfere with 12 because 12 is not live
across either of them. Spilling 11 breaks the interference between ll and 12, where
spilling 12 does not.

In general, spilling a live range l~ does not break its interference with any
live range lj that is live at either a definition of a use ofl~. If, on the other hand,
li and lj interfere, but tj is not live at any definition or use of li, then spilling
li breaks the interference between them. In this case, we say that l~ contains Ij.
The allocator can use this knowledge to sp]it li around lj by storing I~ before
definitions of lj and restoring it after lj dies. Splitting Ii in this manner eliminates
the interference with lj.

To capture this knowledge, we introduce the containment graph (C), a di-
rected analog of the interference graph (2:). Nodes in C represent live ranges. An
edge from lj to l~ in C indicates that li is live at a definition or use of lj. We
represent C with a square bit matrix. It is twice as large as the triangular bit
matr ix used to represent E; our method does not need adjacency lists for C.

Figure 3 shows some examples that illustrate the utility of the containment
graph. The left column depicts the situation from Figure 1; 12 is not live at either

3 Chaitin's algorithm always spilled the candidate live range. Briggs' method lets select
see if a color is available.

4 In fact, since both live ranges created for 12 interfere with 11, spilling 12 actually
increases ll 's degree in ~.

179

Fig. 3. Examples of the containment graph

12
def

def def

12
11 l~ I 11 12

u s e USe u s e

l l
def

12
l l 12

the definition or the use of I1, so (12,11) E g. In the middle column, 11 and 12
overlap, so both (/1,12) E g and (12,11) E C. The right column is similar to the
left column except that there is a use of 11 while 12 is live. This additional use
adds the edge (11,12) to g.

These examples illustrate how we can use g for live range splitting. Given
two live ranges li and lj, with (li ,lj) • Z, one of the three cases must occur:

Edges in C Impact on spilling
(1~, li) Spilling li leaves the interference with lj. Splitting

lj around li eliminates the interference.
(/j, l~) Spilling tj leaves the interference with li. Splitting

li around lj eliminates the interference.
(li,lj) & (lj,li) Spilling either li or Ij leaves the interference be-

tween them. Splitting does not help.

The fourth case, where (li, lj) ~ C and (lj, l~) ~ C, would imply that (l~, lj) ¢ Z,
which contradicts our premise.

Figure 4 shows the algorithm for building C; it is similar to the algorithm
for building the interference graph. For clarity, we describe the algorithm as if
it must build both graphs separately and at different times. The implementor
might elect to build just the bit-matrix for C; the allocator could consult C twice
to infer the entry in E.

The primary drawback to using C is the space required to hold the bit-matrix.
Two different facts should moderate this problem.

1. g contains all the information found in 27. Thus, we do not need the lower-
triangular bit-matrix form of Z. If the edge (li, tj) • 27, then one or both of
(li, b) and (lj, li) must be in C.

2. A bit matrix may be space inefficient for C. A recent study of techniques for
building interference graphs showed that a closed hash table implementa-
tion can use less space for sufficiently large graphs [11]. C should reach that
threshold in half the time.

These suggestions should reduce the space impact of building C rather than 27.

180

Fig. 4, Building the containment graph

buildContainmentGraph ()
Allocate the square bit matrix
For each block b

live 4- liveOutb
For each instruction, i, in b in reverse order

For each live range, l, defined in i
For each m E//re

Add edge (l, rn) to g
Update the/Ne set
For each live range, l, used in i

For each m E/Jve
Add edge (l, m) to g

4 Computing Split Costs and Inserting Split Code

The containment graph tells the allocator when it is possible to split one live
range across another. The next step is to determine when this splitting is prof-
itable. Est imat ing the cost of splitting is similar to est imating spill costs. We
compute the number of LOAD and STORE instructions required to split across
each live range. Spilling a live range requires a STOrtg before each definition and
a LOAD after each death. Definitions are easy to identify; deaths require a bit
more effort. We can traverse the instructions in each block in reverse order and
follow the effect tha t each instruction has on the live set. Initially, the live set
is the liveOut set for the block. At each instruction, we remove any defined live
ranges and add any used live ranges. When a live range, l, is added to the set for
the first time, we have identified a death of l. Deaths can also occur at branch
points in the control-flow graph. The example in Figure 5 illustrates how this
can happen. The live range is defined in block B1 and used in B3. Clearly, the
use in B3 is a death, but the value also dies if flow of control transfers from
B1 to B2. In this situation, we think of the death as occurring along the edge.
Formally, the set of live ranges that die along an edge (i, j) is liveOuti - l iveInj .

Fig. 5. Death along an edge in the CFG

181

The a lgor i thm is shown in Figure 6. The range array keeps an es t imate of
the number of LOADs and STOREs required to split around each live range. The
es t imates are weighted by nesting depth. When we choose a color to split a round
the live range, we mult ip ly these es t imates by the cost of each instruction.

Once we have selected which live ranges to split (see Section 5), we mus t
insert the necessary LOAD and STORE instructions. The routine to insert the
split code follows exact ly the same logic as the cost calculation, except tha t it
inserts the code for any live ranges marked for splitting. Whenever we encounter
a death of a live range, l, we insert a LOAD for any live range tha t is split a round
I. Similarly, when we encounter a definition of l, we insert a STOaE instruct ion
for any live range tha t is split around 1.

5 F i n d i n g a Color

The previous sections explained how we determine if one live range can be split
a round another and how we es t imate the cost of spli t t ing around each live range.
When a live range, l, is chosen for spilling during the select phase, we a t t e m p t
to split one or more live ranges across 1. The goal is to find a color which can
be made available to hold t. We group all the neighbors of I by color and look
for a color such tha t all the neighbors can be split across 1. We total the cost of
spl i t t ing each neighbor. 5 We also check for a color where l can be split across
all those neighbors. If a color is found whose split cost is less than the cost of
spilling 1 entirely, we assign I tha t color and record which live ranges will be split
around 1 (or which live ranges to split l around).

Figure 7 shows the a lgor i thm used to find a color. The findColor routine will
be called f rom select whenever a live range, l, is chosen for spilling. We look for
a color to assign 1 by split t ing. First we t ry to split the color around I, then we
t ry to split 1 around the color. At each point , we keep t rack of the color with
the smallest es t imated cost. I f a color is found for l, we assign it to colors[l] so
tha t other neighbors of l colored later will not receive tha t color.

To see how this process works, consider the example in Figure 1. First, assume
tha t 11 is removed f rom the s tack and assigned a color, c. When t2 is removed
f rom the stack, it cannot receive a color, so we search for a color to split around
12. The color c is assigned to neighbor 11, and there is no edge (11,12) E C, so
spl i t t ing is possible. Since the cost of the split is less than the cost of spilling 12
entirely, we choose color c for 12.

In the al ternat ive scenario, 12 is removed from the stack before 11. When 11
is removed f rom the stack, it cannot receive a color so we search for color to
split a round 11 and for a color to split 11 around. We will discover tha t ll can be
split around the color of 12. In other words, our a lgor i thm will split 11 around 12
regardless of which live range is assigned a color first.

For normal live ranges, this is the cost of a STORE instruction before each definition
and a LOAD instruction after each death. However, if a live range is rematerializ-
able [5], we need only restore its value after each death.

t82

F i g . 6. Computing split costs and inserting split code

split Cos ts ()
buildContainm ent Graph ()
For each block b

weight ~- 10 depth(b)

live ~- liveOutb
For each successor, s, of b

deaths ~- liveOutb -- liveIns
For each rn E deaths

range[m].loads ~- range[m].loads + 10 depth(~)
For each instruction, i, in b in reverse order

For each live range, l, defined in i
range[l].stores ~- range[l].stores + weight

For each live range, l, used in i
if t ~ / / v e

range[/].loads e- range[/],loads + weight
Update the live set

sp~tCodeO
For each block b

live +- liveOutb
For each successor, s, of b

deaths ~- liveOutb - liveIn.~
For each 'm ~ deaths

For each live range, I, split around m
if rematerializable(l)

Insert a LOAD-IMMEDIATE fo r l

else
Insert a LOAD for 1

For each instruction, i, in b in reverse order
For each live range, l, defined in i

For each live range, s, split around 1
if -.rematerializable(s)

Insert a STORE s
For each live range, I, used in i

if I ~ / / v e
For each live range, s, split around 1

if rematerializabte(s)
Insert a LOAD-IMMEDIATE fo r s

else
Insert a LOAD for s

Update the live set

183

F i g . 7. Finding a color for splitting

findColor(l)

bestCost +- range[1].cost

splitFound 6- FALSE

For each color c
/* Try to split c around 1 */
spl i tOK e- TRUE

cost 6- 0

For each neighbor, n, of I with colors[n] = c
if (n , l) 6 g

spl i tOK +- FALSE
else if rematerializable(n)

cost 6- cost + range[l].loads x rematCost
else

cost 6- cost + range[1].stores × storeCost +
range[l].loads × loadCost

if spl i tOK and cost < bestCost

bestCost 6- cost
bestColor 6- c
splitDir 6- splitAroundBame
splitFound +-- TRUE

/* Try to split l around c */
spf i tOK +- TRUE
cost 6- 0

For each neighbor, n, of 1 with colors[n] = c

if (/, n) 6 C
spl i tOK +-- FALSE

else if rematerializable(1)

cost 6- cost + range[n].loads × rematCost

else
cost 6- cost + range[hi.stores × storeCost +

range[n].loais × loadCost
if spl i tOK and cost < bestCost

bestCost ~-- cost

bestColor 6- c
splitDir +- s p l i t A r o u n d C o l o r
splltFound ~ TRUE

if splitFound
colors[l] ~- bestColor
if splitDir = splitAroundName

For each neighbor, n, of t with colors[n] ---- bestCoIor
Mark n to be split around 1

else /* sptitDir ---- splitAroundColor */
For each neighbor, n, of l with colors[n] = bestColor

Mark I to split a round n

Fig. 8. Splitting allocator

184

6 Putting It Together

Figure 8 shows a flow chart for our new splitting allocator. Three new phases
are added to the Briggs-style allocator.

Sp l i t cos ts We estimate the cost of splitting around each live range by counting
a STORE instruction before each definition and a LOAD instruction after each
death. This computation could easily be folded into the spill costs phase of
the Briggs-style allocator, but we show it as a separate phase for clarity. Our
implementation builds the containment graph in split costs. 6

F i n d co lo r When a live range, l, is chosen for spilling during the select phase, it
calls the ~dCo lor routine. This phase selects a color for the live range based
on either the cost of splitting that color across I or the cost of splitting 1 across
that color. If a color is found, l is assigned that color and the appropriate
live ranges are marked for splitting.

Split code We must insert the LOAD and STORE instructions according to the
selections made by the tindColor routine. This process could easily be folded
into the spin code phase of the Briggs-style allocator, but we show it as a
separate phase for clarity.

7 Experiments

To assess the impact of our technique, we have implemented it in our experi-
mental Fortran compiler. The compiler is centered around our intermediate lan-
guage, called ILOC (pronounced "eye-lock"). ILOC is a pseudo-assembly language
for a RIsc machine with an arbitrary number of symbolic registers. LOAD and
STOaE operations are provided to access memory, and all computations operate
on symbolic registers. The front end translates Fortran into ILOC. The optimizer
transforms the ILOC and hands the results to the register allocator. The back end
produces code instrumented to count the number of spill instructions executed.

Our initial interest in this problem arose from several studies in which we
examined code that resulted from automatic application of aggressive program

G It could be built earlier. We build it here to avoid the extra space overhead during
the build~coalesce loop. Since coalescing shrinks the interference graph, this reduces
the space requirements for the containment graph.

185

Table 1. Allocating for 32 integer + 32 float registers (dynamic spill operations)

Br/ggs Splits % Bergner
field 191,870 174,725 8.94 186,191
smooth 52,260 51,338 1.76 38,499
init 50,301 50,107 0.39 50,303
vslvlp 28,121 5 ,980 78.73 23,035
parmvr 3,456 1 ,108 67.94 3,378
radY4 382 372 2.62 297
radb4 382 376 1.57 301
energy 296 295 0.34 292
radb2 172 146 15.12 114
radf2 163 143 12.27 108
f f t b 128 128 0.00 128
fftf 128 128 0.00 128
radf5 123 132 -7.32 96
radb5 123 118 4.07 82
putb 43 44 -2.33 38
getb 26 22 15.38 20
r f f t i l 24 19 20.83 20
slv2xy 11 9 18.18 11
pdiag 6 0 100.00 6

transformations [10, 6, 14]. As these techniques become more widely applied,
compilers will need to deal with their consequences. For this study, we focused
on routines from the program wave5 in the SPEC95 benchmark suite. These
routines had been transformed by the insertion of advisory prefetch instructions
intended to improve cache behavior [14]. The transformations increased register
pressure to the point where spilling was a recognizable performance problem,
even on a machine with thirty-two integer and thirty-two floating-point registers.

Table 1 shows t he results of our experiment. The Briggs column shows the
number of spill instructions executed when the code is allocated using the Briggs-
style allocator. Our version of the Briggs-style allocator includes optimistic col-
oring, rematerialization, and biased coloring [4, 5]. The Splits column shows the
spill code executed using our splitting allocator. The Bergner column shows how
Bergner et a/.'s interference region spilling performs on the same code.

In some cases, splitting produces a drastic reduction in the number of op-
erations introduced for spilling. We reduced the spill overhead of v s l v l p and
parmvr by 78.73% and 67.94%, respectively. The improvement in field is the
largest in absolute terms. For the pdiag routine, we reduced the dynamic spill
overhead by 100%. This does not mean that we removed all the spill code from
the routine; we simply placed the spill code on paths that were not exercised by
this set of input data.

Unfortunately, we did see an increase in the amount of spill code for two rou-
tines. Two situations can produce this problem. First, the estimated spill costs

186

may not accurately reflect the true cost at run time. This is the case for both the
r ad f5 and putb routines in our test. Second, spill decisions change the problem
seen by subsequent passes of the allocator. This can produce significantly differ-
ent allocations. In other words, when we cycle around the main loop in Figure 2
or 8, we insert different spill code. Therefore, the next attempt at coloring will
have a different interference graph.

Comparing splitting against interference region spilling, it is clear that each
technique has its strengths. Splitting outperforms IR spilling on f i e l d and
v s lv lp , while Ia spilling wins on smooth. We believe that the two techniques
are complimentary; an allocator that trades off the cost of splitting against the
cost of IR spilling should produce the better code for each example, moderated,
of course, by the fact that the comparison is based on estimated costs rather
than actual costs.

8 S u m m a r y a n d C o n c l u s i o n s

Global techniques for the reduction of spill code can reduce the number of mem-
ory operations introduced by the register allocator. The potential for live range
splitting to reduce spill code has long been recognized; the details of how to im-
plement it in a Chaitin-style register allocator have not. In this paper, we showed
that a relatively passive approach to splitting can produce dramatic positive re-
sults. The technique is easy to add to an existing Briggs-style allocator. Because
our splitting algorithm chooses between splitting and spilling on the basis of
costs, it can be combined with Bergner's interference region spilling to create an
allocator that captures the improvements of both techniques.

9 A c k n o w l e d g m e n t s

This work was supported by DAFtPA through Army contract DABT63-95-C-0115
and by the Trilogy Development Group. The work described in this paper has
been done as part of the Massively Scalar Compiler Project at Rice University.
The many people who have contributed to that project deserve our gratitude.
Preston Briggs of Tera Computer Company has acted as a sounding board for
many of our ideas in this area. Tim Harvey contributed substantially to the
development of this work with his ideas and his implementations; without his
patient support, this work would not have been done. Nat McIntosh transformed
wave5 for prefetching, generating the version that we used in this experiment.
Peter Bergner of The University of Minnesota deserves our gratitude for helping
us understand the details of his work on interference region spilling.

R e f e r e n c e s

1. Peter Bergner, Peter Dab_l, David Engebretsen, a~ld Matthew O'Keefe. Spill code
minimization via interference region spilfing. SIGPLAN Notices, 32(6):287-295,
June 1997. Proceedings of the ACM SIGPLAN '97 Con]erenee on Programming
Language Design and Implementation.

187

2. David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay
Mansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimization techniques
for optimizing compilers. SIGPLAN Notices, 24(7):258-263, July 1989. Proceed-
ings of the ACM SIGPLAN '89 Conference on Programming Language Design and
Implementation.

3. Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Univer-
sity, April 1992.

4. Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring
heuristics for register allocation. SIGPLAN Notices, 24(7):275-284, July 1989.
Proceedings of the A CM SIGPLAN '89 Conference on Programming Language De-
sign and Implementation.

5. Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. StG-
PLAN Notices, 27(7):311-321, July 1992. Proceedings of the A CM SIGPLAN '92
Conference on Programming Language Design and Implementation.

6. Steve Car l Memory-Hierarchy Management. PhD thesis, Rice University, De-
partment of Computer Science, September 1992.

7. Gregory J. Chaitin. Reg~ter allocation and spilling via graph coloring. SIGPLAN
Notices, 17(6):98-105, June 1982. Proceedings of the ACM SIGPLAN '82 Sympo-
sium on Compiler Construction.

8. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Mar-
tin E. Hopkins, and Peter W. Markstein. Register allocation via coloring. Com-
puter Languages, 6(1):47-57, January 1981.

9. Fred C. Chow and John L. Hennessy. Register allocation by priority-based col-
oring. SIGPLAN Notices, 19(6):222-232, June 1984. Proceedings of the ACM
SIGPLAN '84 Symposium on Compiler Construction.

10. Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline
substitution. Software - Practice and Experience, 21(6):581-601, June 1991.

11. Keith D. Cooper, Timothy J. Harvey, and Linda Torczon. How to build an inter-
ference graph. Software-Practice and Experience (to appear), 1998. Available on
the web at h t tp : / / sof t l ib . r ice .edu/MSCP/publ ica t ions .h tml .

12. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. An efficient method of computing static single assignment form. In Con-
ference Record of the Sixteenth Annual A CM Symposium on Principles of Program-
ming Languages, pages 25-35, Austin, Texas, January 1989.

13. Janet Fabri. Automatic storage optimization. SIGPLAN Notices, 14(8):83-91,
August 1979. Proceedings of the ACM SIGPLAN '79 Symposium on Compiler
Construction.

14. Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of
a compiler algorithm for prefetching. SIGPLAN Notices, 27(9):62-75, September
1992. In Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems.

