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Abstrac t .  Graph coloring is the dominant paradigm for global register 
allocation [8, 7, 4]. Coloring allocators use an interference graph, Z, to 
model conflicts that  prevent two values from sharing a register. Nodes in 
2: represent live ranges. An edge between two nodes indicates that  they 
are simultaneously live azld, thus, cannot share a register. The allocator 
tries to construct a k-coloring of 2:, for k equal to the number of registers 
on the target machine. If it succeeds, it maps the colors onto the machine 
registers to produce an allocation. Unfortunately, it may not discover a 
k-coloring. In that case, it sp///s some live ranges by saving their values 
to memory. Early coloring allocators spilled live ranges completely - at 
each definition and use. This approach often introduces more spill code 
than necessary. This paper presents a global approach that avoids some 
spill code by splitting the live range, breaking it into smaller pieces. 

We are not the first to study this problem. Bergner et M. describe a 
heuristic called interference region spilling that reduces the amount of 
code needed to spill a live range [1]. Briggs experimented with an aggres- 
sive form of live range splitting; he saw mixed results [3, see Chapter 6]. 
This paper presents a passive form of live range splitting that  uses split- 
ting as an alternative to spilling. The allocator finds regions where split- 
ting breaks the interferences that cause a spill; it uses estimated costs to 
choose between splitting the live range and spilling it. We present experi- 
mental evidence that  this technique is effective. We have seen reductions 
in the amount of dynamic spill overhead as high as 78% for non-trivial 
routines. Our technique can easily be coupled with Bergner's to create an 
allocator that  makes a cost-based choice between splitting, interference 
region spilling, and spilling completely for each spilled live range. 

1 I n t r o d u c t i o n  

Chai t in  et  M. first used graph coloring as a p a r a d i g m  for register a l locat ion and 
ass ignment  in a compiler  [8, 7]. Coloring al locators  approach the problem by 
bui ld ing  a g raph  tha t  models  when two live ranges cannot  reside in the  same 
locat ion;  we call the graph an interference graph (Z) because the live ranges 
would interfere wi th  each other  if they  shared a register.  The  a l locator  a t t e m p t s  

* This work was supported by DARPA through contract DABT63-95-C-0115 and by 
the Trilogy Development Group. 
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to discover a k-coloring of I ;  that is, an assignment of k colors to the nodes of 
Z in such a way that, no adjacent nodes have the same color. If it can find a 
k-coloring, for k equal to the number of registers on the target machine, it can 
map the colors into registers and its task is done. If, however, it cannot discover 
such a coloring, it selects one or more live ranges to store in memory, or spill. 
It inserts code to spill those live ranges and tries to color the interference graph 
for the resulting, modified procedure. 

Chaitin's basic scheme has been improved by other authors. Briggs e t a / .  
describe variations on the coloring heuristic that increase the number of live 
ranges that can be colored [4, 5]. Bernstein et al. showed that different heuristics 
for choosing spill candidates can improve the results [2]. These modifications 
have reduced the cost of spilling, but they have not eliminated it. The remaining 
problem is not a poor coloring heuristic; these routines have regions where they 
need more registers than the hardware provides. 

Once it chooses a live range to spill, Chaitin's allocator spills that value 
everywhere. It places a STORE instruction after each definition of the value and 
a L O A D  instruction before each use of the value. Local heuristics can reduce 
the number of spill instructions inserted into a single basic block [7, 2]. These 
methods eliminate some redundant spill instructions in a block that contains 
several references to the spilled value. They do nothing for problems that arise 
across multiple blocks. 

Bergner et al. introduced a global technique for reducing spill code that they 
called interference region spilling [1]. Rather than spill the live range everywhere, 
their method chooses a color for it and only spills it in areas where that color is 
unavailable. The allocator picks a color for the spilled live range by estimating 
the costs that would be incurred for each color; it selects the color with the 
smallest estimated cost. 

In this paper, we present another global method for reducing spill code, called 
live range splitting. Chaitin-style allocators use maximal-length live ranges as 
the basic unit of allocation. It has long been recognized that breaking a live 
range into smaller pieces may allow some, or all, of the resulting pieces to be 
colored [13, 9]. Chow used this observation in his priority-based coloring scheme; 
when his allocator encountered a live range that could not be kept in a register, 
it broke it into smaller pieces. Briggs experimented with an aggressive form of 
live range splitting in his Chaitin-style allocator [3, Chapter 6]. His algorithm 
aggressive split many long live ranges before it tried to color the graph; he added 
several mechanisms to the allocator that could recombine the smaller pieces when 
doing so would not cause a spill. The method produced both large gains and large 
losses; sometimes, it aggressively inserted splits that were both unneeded and 
beyond its power to remove. 

Our approach overcomes this difficulty by being passive. It only considers 
splitting a live range l after l has been selected for spilling. To spht l, it looks 
for a color where splitting will succeed - that is, either all live ranges of that 
color can be split around l, or 1 can be split around all live ranges of that color. 
If such a color exists, and the estimated cost of splitting is less than the cost 
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of spilling l, our method will split rather than spill. Because it compares the 
estimated cost of splitting and spilling, this method can easily be combined with 
Bergner's method. The resulting allocator would use cost estimates to choose 
between live range splitting, interference region spilling, and complete spilling 
for each live range that must be spilled. 

1.1 E x a m p l e  

To understand the benefits of live range splitting, consider the code on the left 
side of Figure 1. If only one register is available, then the allocator must spill one 
of/1 or 12. The "spill everywhere" method would place spill code inside one of 
the loops. Assume that the spilling heuristic chose 12; the middle column shows 
the result of spilling 12 entirely. Notice that a LOAD instruction gets inserted into 
the loop. A second problem with this choice is that the two small live ranges 
that result from spilling still interfere with ll. The next round of spilling will still 
need to address the underlying problem; in a spill-everywhere scheme, 1i will be 
spilled. Splitting 11 across 12, shown in the right column, produces a much better 
result. All the spills occur outside the loop. To split 11 across 12, we insert a 
STORE for 11 before each definition of 12, and a LOAD of ll after each death of 12. 

Normally, a live range dies after its last use. The exception occurs in the 
presence of control-flow - the flow may branch to one path where a value is live 
and to another path where the value is dead. Intuitively, the death occurs along 
the second edge. In our example, l~ dies along the edge that exits the first loop, 
so we insert a LOAD for  11 in the successor block. 

Splitting in this way lets us allocate ll and 12 to the same register, without 
inserting spill code inside the loop. In the example, ll is split across 12 because 

def I1 t 
def 12 ,, USI  
use ll 1 

1, ] 
Orig ina l  

Fig. t .  Example of live range spfitting 

def It ] 
def I2 

STORI~ 12 

l 

Spill  12 e n t i r e l y  

def 11 ] STORB l 1 clef 12 

: li, 1 

Split/1 across 12 
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Fig. 2. Briggs' allocator 

11 completely contains t2. To let the allocator detect this situation, we introduce 
a new data structure, the containment graph. Section 3 describes this graph in 
detail. Section 4 explains how to insert the code that splits a live range. Sec- 
tions 5 and 6 put the algorithm together. Section 7 presents some experimental 
results showing the efficacy of splitting. 

2 B r i g g s '  A l l o c a t o r  

Because our live range splitting procedure extends a Briggs-style allocator, we 
will begin with an overview of that allocator. Figure 2 shows a flow chart of a 
Briggs-style allocator [4]. It is composed of seven major phases: 

R e n u m b e r  The symbolic, or virtual, registers in the routine are renamed to 
create live ranges. A live range is a collection of definitions that reach a 
common use. Briggs accomplishes this by converting the routine to pruned 
static single assignment form [12] and then combining all names mentioned 
in each C-node. 

B u i l d  The interference graph, Z, contains a node for each live range and an edge 
between each pair of live ranges that are simultaneously live. Z is represented 
by both a triangular bit matrix and a collection of adjacency lists. We build 
Z by traversing the instructions in the routine; at each definition, we add an 
edge between the defined name and all live ranges that are currently live. 

Coa lesce  If the source and destination of a copy do not otherwise interfere, 
the two live ranges can be assigned the same register, and the copy can be 
removed. When two live ranges are coalesced, we add an edge between the 
new live range and each neighbor of the two live ranges. This approach may 
be overly conservative, so we repeat the build and coalesce phases until no 
more coalescing is possible. 

Spil l  costs  We estimate the cost of spilling each live range by counting the in- 
structions (weighted by instruction cost and by loop nesting depth) required 
to spill that live range. The effect of any local heuristic to reduce the number 
of LOADs is included in the estimated spill cost for each live range. 

S imp l i fy  Coloring is a two step process. During the first phase, we repeatedly 
remove a node with degree less than k from Z, and push it onto the coloring 
stack. If the process reaches a point where no such node exists, a live range 
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is chosen heuristically to be a spill candidate. Simplify pushes the spill can- 
didate onto the stack, and optimistically hopes that it can receive a color 
during the select phase. 3 

Se lec t  We repeatedly pop a live range from the coloring stack, insert it back 
into the interference graph, and assign it a color different from those of its 
neighbors. If no color is available, the live range is left uncolored and marked 
for spilling. An uncolored live range is always one of the spill candidates 
chosen by simplify [4, 5]. If  we are able to assign a color to every live range, 
this corresponds to a valid allocation, and the algorithm terminates. 

Spi l l  code  If select marked any live ranges for spilling, we must update the code 
to keep these values in memory and repeat the entire allocation process. This 
phase traverses the instructions in the same manner as spill costs, inserting 
the actual LOADs and STOREs for spilled live ranges. 

3 T h e  C o n t a i n m e n t  G r a p h  

Chaitin first observed that  spilling a live range does not break all its interferences; 
this is one reason that  the allocator must repeat the coloring process after spill 
code is inserted. Spilling merely breaks a live range into multiple tiny live ranges. 
These tiny live ranges still interfere with values that are live across them. The 
middle column of Figure 1 shows this situation. The allocator has spilled I2 
entirely, producing two short live ranges - one at 12's definition and one at its 
use. Both these live ranges still interfere with 11, because I1 is live across each 
of them. 4 If, as shown in the right column of Figure 1, the allocator spills 11 
instead of 12, the new live ranges do not interfere with 12 because 12 is not live 
across either of them. Spilling 11 breaks the interference between ll and 12, where 
spilling 12 does not. 

In general, spilling a live range l~ does not break its interference with any 
live range lj that  is live at either a definition of a use ofl~. If, on the other hand, 
li and lj interfere, but tj is not live at any definition or use of li, then spilling 
li breaks the interference between them. In this case, we say that  l~ contains Ij. 
The allocator can use this knowledge to sp]it li around lj by storing I~ before 
definitions of lj and restoring it after lj dies. Splitting Ii in this manner eliminates 
the interference with lj. 

To capture this knowledge, we introduce the containment graph (C), a di- 
rected analog of the interference graph (2:). Nodes in C represent live ranges. An 
edge from lj to l~ in C indicates that  li is live at a definition or use of lj. We 
represent C with a square bit matrix.  It is twice as large as the triangular bit 
matr ix  used to represent E; our method does not need adjacency lists for C. 

Figure 3 shows some examples that illustrate the utility of the containment 
graph. The left column depicts the situation from Figure 1; 12 is not live at either 

3 Chaitin's algorithm always spilled the candidate live range. Briggs' method lets select 
see if a color is available. 

4 In fact, since both live ranges created for 12 interfere with 11, spilling 12 actually 
increases ll 's degree in ~. 
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Fig. 3. Examples of the containment graph 

12 
def 

def def 

12 
11 l~ I 11 12 

u s e  USe u s e  

l l  
def 

12 
l l  12 

the definition or the use of I1, so (12,11) E g. In the middle column, 11 and 12 
overlap, so both (/1,12) E g and (12,11) E C. The right column is similar to the 
left column except that there is a use of 11 while 12 is live. This additional use 
adds the edge (11,12) to g. 

These examples illustrate how we can use g for live range splitting. Given 
two live ranges li and lj, with (li ,lj) • Z, one of the three cases must occur: 

Edges in C Impact on spilling 
(1~, li) Spilling li leaves the interference with lj. Splitting 

lj around li eliminates the interference. 
(/j, l~) Spilling tj leaves the interference with li. Splitting 

li around lj eliminates the interference. 
(li,lj) & (lj,li) Spilling either li or Ij leaves the interference be- 

tween them. Splitting does not help. 

The fourth case, where (li, lj) ~ C and (lj, l~) ~ C, would imply that (l~, lj) ¢ Z, 
which contradicts our premise. 

Figure 4 shows the algorithm for building C; it is similar to the algorithm 
for building the interference graph. For clarity, we describe the algorithm as if 
it must build both graphs separately and at different times. The implementor 
might elect to build just the bit-matrix for C; the allocator could consult C twice 
to infer the entry in E. 

The primary drawback to using C is the space required to hold the bit-matrix. 
Two different facts should moderate this problem. 

1. g contains all the information found in 27. Thus, we do not need the lower- 
triangular bit-matrix form of Z. If the edge (li, tj) • 27, then one or both of 
(li, b)  and (lj, li) must be in C. 

2. A bit matrix may be space inefficient for C. A recent study of techniques for 
building interference graphs showed that a closed hash table implementa- 
tion can use less space for sufficiently large graphs [11]. C should reach that 
threshold in half the time. 

These suggestions should reduce the space impact of building C rather than 27. 
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Fig. 4, Building the containment graph 

buildContainmentGraph () 
Allocate the square bit matrix 
For each block b 

live 4- liveOutb 
For each instruction, i, in b in reverse order 

For each live range, l, defined in i 
For each m E//re  

Add edge (l, rn) to g 
Update the/Ne set 
For each live range, l, used in i 

For each m E/Jve 
Add edge (l, m) to g 

4 Computing Split Costs and Inserting Split Code 

The containment  graph tells the allocator when it is possible to split one live 
range across another. The next step is to determine when this splitting is prof- 
itable. Est imat ing the cost of splitting is similar to est imating spill costs. We 
compute  the number  of LOAD and STORE instructions required to split across 
each live range. Spilling a live range requires a STOrtg before each definition and 
a LOAD after each death. Definitions are easy to identify; deaths require a bit 
more effort. We can traverse the instructions in each block in reverse order and 
follow the effect tha t  each instruction has on the live set. Initially, the live set 
is the liveOut set for the block. At each instruction, we remove any defined live 
ranges and add any used live ranges. When a live range, l, is added to the set for 
the first time, we have identified a death of  l. Deaths can also occur at branch 
points in the control-flow graph. The example in Figure 5 illustrates how this 
can happen.  The live range is defined in block B1 and used in B3. Clearly, the 
use in B3 is a death, but  the value also dies if flow of control transfers from 
B1 to B2. In this situation, we think of the death as occurring along the edge. 
Formally, the set of live ranges that  die along an edge (i, j )  is liveOuti - l iveInj .  

Fig. 5. Death along an edge in the CFG 
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The  a lgor i thm is shown in Figure 6. The  range array keeps an es t imate  of 
the number  of LOADs and STOREs required to split around each live range. The  
es t imates  are weighted by nesting depth.  When  we choose a color to split  a round 
the live range, we mult ip ly  these es t imates  by the cost of each instruction. 

Once we have selected which live ranges to split (see Section 5), we mus t  
insert the necessary LOAD and STORE instructions. The  routine to insert the 
split code follows exact ly the same logic as the cost calculation, except tha t  it 
inserts the code for any live ranges marked  for splitting. Whenever  we encounter 
a death  of  a live range, l, we insert a LOAD for any live range tha t  is split a round 
I. Similarly, when we encounter  a definition of  l, we insert a STOaE instruct ion 
for any live range tha t  is split around 1. 

5 F i n d i n g  a Color 

The  previous sections explained how we determine if one live range can be split 
a round another  and how we es t imate  the cost of  spli t t ing around each live range. 
When  a live range, l, is chosen for spilling during the select phase, we a t t e m p t  
to split one or more  live ranges across 1. The  goal is to find a color which can 
be made  available to hold t. We group all the neighbors of I by color and look 
for a color such tha t  all the neighbors can be split across 1. We total  the cost of 
spl i t t ing each neighbor. 5 We also check for a color where l can be split across 
all those neighbors. If  a color is found whose split cost is less than  the cost of  
spilling 1 entirely, we assign I tha t  color and record which live ranges will be split 
around 1 (or which live ranges to split l around).  

Figure 7 shows the a lgor i thm used to find a color. The  findColor routine will 
be called f rom select whenever a live range, l, is chosen for spilling. We look for 
a color to assign 1 by split t ing. First we t ry  to split the color around I, then we 
t ry  to split 1 around the color. At each point ,  we keep t rack of the color with 
the smallest  es t imated  cost. I f  a color is found for l, we assign it to colors[l] so 
tha t  other neighbors of l colored later will not receive tha t  color. 

To see how this process works, consider the example  in Figure 1. First,  assume 
tha t  11 is removed f rom the s tack and assigned a color, c. When  t2 is removed 
f rom the stack, it cannot  receive a color, so we search for a color to split around 
12. The  color c is assigned to neighbor 11, and there is no edge (11,12) E C, so 
spl i t t ing is possible. Since the cost of  the split is less than  the cost of  spilling 12 
entirely, we choose color c for 12. 

In the al ternat ive scenario, 12 is removed from the stack before 11. When  11 
is removed f rom the stack, it cannot  receive a color so we search for color to  
split  a round 11 and  for a color to  split 11 around.  We will discover tha t  ll can be 
split around the color of 12. In other words, our a lgor i thm will split 11 around 12 
regardless of  which live range is assigned a color first. 

For normal live ranges, this is the cost of a STORE instruction before each definition 
and a LOAD instruction after each death. However, if a live range is rematerializ- 
able [5], we need only restore its value after each death. 
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F i g .  6. Computing split costs and inserting split code 

split Cos ts ( ) 
buildContainm ent Graph () 
For each block b 

weight ~- 10 depth(b) 

live ~- liveOutb 
For each successor, s, of b 

deaths ~- liveOutb -- liveIns 
For each rn E deaths 

range[m].loads ~- range[m].loads + 10 depth(~) 
For each instruction, i, in b in reverse order 

For each live range, l, defined in i 
range[l].stores ~- range[l].stores + weight 

For each live range, l, used in i 
if t ~ / / v e  

range[/].loads e-  range[/],loads + weight 
Update  the live set 

sp~tCodeO 
For each block b 

live +- liveOutb 
For each successor, s, of b 

deaths ~- liveOutb - liveIn.~ 
For each 'm ~ deaths 

For each live range, I, split around m 
if rematerializable( l) 

Insert a LOAD-IMMEDIATE fo r  l 

else 
Insert a LOAD for 1 

For each instruction, i, in b in reverse order 
For each live range, l, defined in i 

For each live range, s, split around 1 
if  -.rematerializable( s) 

Insert a STORE s 
For each live range, I, used in i 

if I ~ / / v e  
For each live range, s, split around 1 

if rematerializabte( s ) 
Insert a LOAD-IMMEDIATE fo r  s 

else 
Insert a LOAD for s 

Update  the live set 
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F i g .  7. Finding a color for splitting 

findColor( l ) 

bestCost +- range[1].cost 

splitFound 6- FALSE 

For each color c 
/* Try to split c around 1 */  
spl i tOK e- TRUE 

cost 6- 0 

For each neighbor, n, of I with colors[n] = c 
if (n , l )  6 g 

spl i tOK +- FALSE 
else if rematerializable( n ) 

cost 6- cost + range[l].loads x rematCost  
else 

cost 6- cost + range[1].stores × storeCost + 
range[l].loads × loadCost 

if spl i tOK and cost < bestCost 

bestCost 6- cost 
bestColor 6- c 
splitDir 6- splitAroundBame 
splitFound +-- TRUE 

/* Try to split l around c */ 
spf i tOK +- TRUE 
cost 6- 0 

For each neighbor, n, of 1 with colors[n] = c 

if (/, n) 6 C 
spl i tOK +-- FALSE 

else if rematerializable(1) 

cost 6- cost + range[n].loads × rematCost 

else 
cost 6- cost + range[hi.stores × storeCost + 

range[n].loais × loadCost 
if spl i tOK and cost < bestCost 

bestCost ~-- cost 

bestColor 6- c 
splitDir +- s p l i t A r o u n d C o l o r  
splltFound ~ TRUE 

if splitFound 
colors[l] ~- bestColor 
if splitDir = splitAroundName 

For each neighbor, n, of t with colors[n] ---- bestCoIor 
Mark n to be split around 1 

else /* sptitDir ---- splitAroundColor */ 
For each neighbor, n, of l with colors[n] = bestColor 

Mark I to split a round n 



Fig. 8. Splitting allocator 
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6 Putting It Together 

Figure 8 shows a flow chart for our new splitting allocator. Three new phases 
are added to the Briggs-style allocator. 

Sp l i t  cos ts  We estimate the cost of splitting around each live range by counting 
a STORE instruction before each definition and a LOAD instruction after each 
death. This computation could easily be folded into the spill costs phase of 
the Briggs-style allocator, but we show it as a separate phase for clarity. Our 
implementation builds the containment graph in split costs. 6 

F i n d  co lo r  When a live range, l, is chosen for spilling during the select phase, it 
calls the ~dCo lor  routine. This phase selects a color for the live range based 
on either the cost of splitting that color across I or the cost of splitting 1 across 
that  color. If a color is found, l is assigned that color and the appropriate 
live ranges are marked for splitting. 

Split code  We must insert the LOAD and STORE instructions according to the 
selections made by the tindColor routine. This process could easily be folded 
into the spin code phase of the Briggs-style allocator, but we show it as a 
separate phase for clarity. 

7 Experiments 

To assess the impact of our technique, we have implemented it in our experi- 
mental  Fortran compiler. The compiler is centered around our intermediate lan- 
guage, called ILOC (pronounced "eye-lock" ). ILOC is a pseudo-assembly language 
for a RIsc  machine with an arbitrary number of symbolic registers. LOAD and 
STOaE operations are provided to access memory, and all computations operate 
on symbolic registers. The front end translates Fortran into ILOC. The optimizer 
transforms the ILOC and hands the results to the register allocator. The back end 
produces code instrumented to count the number of spill instructions executed. 

Our initial interest in this problem arose from several studies in which we 
examined code that  resulted from automatic application of aggressive program 

G It could be built earlier. We build it here to avoid the extra space overhead during 
the build~coalesce loop. Since coalescing shrinks the interference graph, this reduces 
the space requirements for the containment graph. 
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Table 1. Allocating for 32 integer + 32 float registers (dynamic spill operations) 

Br/ggs Splits % Bergner 
field 191,870 174,725 8.94 186,191 
smooth 52,260 51,338 1.76 38,499 
init 50,301 50,107 0.39 50,303 
vslvlp 28,121 5 ,980 78.73 23,035 
parmvr 3,456 1 ,108 67.94 3,378 
radY4 382 372 2.62 297 
radb4 382 376 1.57 301 
energy 296 295 0.34 292 
radb2 172 146 15.12 114 
radf2 163 143 12.27 108 
f f t b  128 128 0.00 128 
fftf 128 128 0.00 128 
radf5 123 132 -7.32 96 
radb5 123 118 4.07 82 
putb 43 44 -2.33 38 
getb 26 22 15.38 20 
r f f t i l  24 19 20.83 20 
slv2xy 11 9 18.18 11 
pdiag 6 0 100.00 6 

transformations [10, 6, 14]. As these techniques become more widely applied, 
compilers will need to deal with their consequences. For this study, we focused 
on routines from the program wave5 in the SPEC95 benchmark suite. These 
routines had been transformed by the insertion of advisory prefetch instructions 
intended to improve cache behavior [14]. The transformations increased register 
pressure to the point where spilling was a recognizable performance problem, 
even on a machine with thirty-two integer and thirty-two floating-point registers. 

Table 1 shows t he  results of our experiment. The Briggs column shows the 
number of spill instructions executed when the code is allocated using the Briggs- 
style allocator. Our version of the Briggs-style allocator includes optimistic col- 
oring, rematerialization, and biased coloring [4, 5]. The Splits column shows the 
spill code executed using our splitting allocator. The Bergner column shows how 
Bergner et a/.'s interference region spilling performs on the same code. 

In some cases, splitting produces a drastic reduction in the number of op- 
erations introduced for spilling. We reduced the spill overhead of v s l v l p  and 
parmvr by 78.73% and 67.94%, respectively. The improvement in field is the 
largest in absolute terms. For the pdiag routine, we reduced the dynamic spill 
overhead by 100%. This does not mean that we removed all the spill code from 
the routine; we simply placed the spill code on paths that were not exercised by 
this set of input data. 

Unfortunately, we did see an increase in the amount of spill code for two rou- 
tines. Two situations can produce this problem. First, the estimated spill costs 
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may not accurately reflect the true cost at run time. This is the case for both the 
r ad f5  and putb  routines in our test. Second, spill decisions change the problem 
seen by subsequent passes of the allocator. This can produce significantly differ- 
ent allocations. In other words, when we cycle around the main loop in Figure 2 
or 8, we insert different spill code. Therefore, the next attempt at coloring will 
have a different interference graph. 

Comparing splitting against interference region spilling, it is clear that each 
technique has its strengths. Splitting outperforms IR spilling on f i e l d  and 
v s lv lp ,  while Ia spilling wins on smooth. We believe that the two techniques 
are complimentary; an allocator that trades off the cost of splitting against the 
cost of IR spilling should produce the better code for each example, moderated, 
of course, by the fact that the comparison is based on estimated costs rather 
than actual costs. 

8 S u m m a r y  a n d  C o n c l u s i o n s  

Global techniques for the reduction of spill code can reduce the number of mem- 
ory operations introduced by the register allocator. The potential for live range 
splitting to reduce spill code has long been recognized; the details of how to im- 
plement it in a Chaitin-style register allocator have not. In this paper, we showed 
that a relatively passive approach to splitting can produce dramatic positive re- 
sults. The technique is easy to add to an existing Briggs-style allocator. Because 
our splitting algorithm chooses between splitting and spilling on the basis of 
costs, it can be combined with Bergner's interference region spilling to create an 
allocator that captures the improvements of both techniques. 
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