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Abstract .  Static Single Assignment (SSA) intermediate representations have 
become quite popular in compiler development. One advantage of the SSA 
form is that each variable corresponds to exactly one definition, and thus two 
references of the same SSA variable must denote the same value. To date, 
most SSA forms concentrate on scalar variables, and it is difficult to extend 
these intermediate representations to languages with multi-level pointers like 
C. 
In this paper we introduce a Extended SSA Numbering, a simple analysis 
that concentrates on the "same name, same value" property of SSA form. 
The analysis handles aI1 variable references, including those via pointer in- 
directions. For each scalar variable, Extended SSA Numbering associates a 
primary SSA number, whereas for each pointer variable, it associates both 
a primary and secondary SSA number. Extended SSA Numbering can be 
easily implemented in any compiler that supports pointer analysis and side- 
effect analysis. There is no need to change the intermediate form used in the 
compiler since SSA numbers can be captured as dataflow attributes. 
In this paper we present our implementation of the technique in the McCAT 
optimizing/paraUelizing C compiler. Further, we demonstrate the usefulness 
of Extended SSA Numbers by describing several typical applications. 

1 Introduction 
In modern compiler technology the role of analyses and intermediate representa- 
tions has become very important.  Powerful analyses facilitate effective optimiz- 
ing transformations and well-designed intermediate representations ease the design 
and implementation of these analyses. Static Single Assignment (SSA) form is one 
such intermediate representation. A program in SSA form has some key proper- 
ties that make this intermediate representation favorable. Each variable has only 
one static definition point and can therefore be used to provide factored use-def 
and def-use chains. The SSA form and its properties have been widely discussed. 
[SG95, CFR+89, CFR+91, AWZ88, RWZ88, BM94] 

Although, SSA form neatly handles scalar variables, there is no natural way 
to handle multi-level pointers and explicit pointer dereferences like those present 
in C. We propose a new flow analysis technique, called Extended SSA Numbering, 
that provides the property "same name - same value s', for both scalar and pointer 
variables. However, Extended SSA Numbering does not include any notion of e- 
nodes, and thus it sacrifices the idea of exactly one static definition point. The 
technique is simple to implement, simple to use, and can be easily implemented in 
any compiler that supports pointer analysis and side-effect analysis. 
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To motivate the introduction of SSA Numbering instead of SSA form let's con- 
sider an example and the process of transforming a program into SSA form. Putting 
a program into SSA form requires two basic steps. The first, inserts ¢-nodes that  
join two possible values from different flow of control paths, and the other renames 
variables such that  each name has exactly one definition. It is the first step the 
causes most difficulty in the presence of pointers. We propose to concentrate on the 
second step, renaming variables by appending numbers. 

Consider the code fragment example in Figure 1. Figure l(a) contains the original 
program, Figure l(b) contains the program in SSA form and Figure l(c) contains 
the program with SSA Numbers.  Notice several key differences, between the original 
program and the program in SSA form. First, all variables are renamed and some 
variables, such as a that  had several static definition points became several vari- 
ables, (a_l, a_2, a_3, a_4) one for each definition point. Note that separate memory 
locations are associated with these variables. Second, a new statement is introduced, 
labeled $2. This statement,  known as q~node or join node, ensures that data  cor- 
rectly flows when two flow of control paths join. Depending from which branch flow 
of control came to the C-node the corresponding value is returned. 

int main() i nt  
{ { 

int a,b,c; 

a = l ;  
b = 2 ;  
if(a < 10) { 

a-- - -a  q- 1; 
} else { 

a = a ÷ b; SI: 
} 

S~: 
c - - a ' b ;  

} } 
(a) 

main() 

int a_l,b_l,c_l; 
|n t  a_2,a_3,a_4; 
a_l ---- 1; 
b l = 2; 
if(a_1 < 10) { 

a_2 = a_l + 1; 
} e l ~  { 

a.3 = a_l + b_l', 
} 
a_4 = ~(a_2,a_3); 
c_1 = a_4 * b_l; 

(b) 

Fig. 1. Example of SSA form vs. SSA Numbering 

ifit mainO 

int a,b,c; 

al -- 1; 
bl -- 2; 
if(~ < 1o) ( 

a2 = al -k 1; 
} else { 

= al + bl; 
} 

Cl = a4 * bl; 

(c) 

Now let us compare SSA form to our proposed SSA Numbering in Figure 1(c). 
Notice that the SSA Numbered program does not add new variables. In the example, 
there is only one location for the variable a where as in SSA form there were four. 
Also, the SSA Numbered program does not have C-nodes. With the exception of 
subscripts on all variables, the program looks exactly like the original. The subscripts 
are the same numbers as the ones appended to variables in the SSA form program 
(Figure l(b)). For example, in statement $3 and its counterpart $I we see that the 
left hand sides are a_3 and a3. Similarly, on the right hand side we have a_l vs. al 
and b_1 vs. bl.  These subscript numbers are not part of the variable, rather they 
are just stored as attributes for each variable reference. 
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1.1 Dif f icul t ies  w i t h  p o i n t e r s  

Given the differences between SSA form and SSA Numbering it is clear that the 
SSA Numbering intermediate representation supports fewer properties than the SSA 
form. SSA Numbering still has the property that two variable references with the 
same SSA number must denote the same value. However, unlike SSA form, SSA 
numbers do not provide single definition point for each use. Why do we then propose 
SSA Numbering? The answer lies in three major problems which are easily solved 
in SSA Numbering, two of which are illustrated in Figure 2. 

int a; 

a = l ;  
ff(a < 10) { 

a = 2 ;  
:S~: p = &a; 

} 
(a) 
/ *  assume p points to"a or b ~/ 

c = a + b ;  
$7: *p = 5; 

d = a + b ;  
(d) 

55: 

int a_l,a_2,...; 

a_l = i; 
if(~ i < 10) { 

a 2 = 2 ;  
p-2 =- &a_?; 

} 
(b) 

c_l = a 1 + b_l; 
$8: * p l  = 5; 

q ? ?  

$9: d_l -= a 1 4- b_l; 
(e) 

int a; 

al = 1; 
if(at < 10) { 

ai ---- 2; 
$6: p2 = &a; 

} 
(c) 

c1 = al + b~; 
*pl = 5; 

SlO:dl = at + b2; 
(f) 

Fig. 2. Difficulties with pointer for SSA form shown in original program, SSA form and 
SSA Numbered program 

First consider the problem of taking the address of variables. This problem is 
illustrated in parts (a), (b), and (c) of Figure 2. Specifically, consider statement $4 
which takes the address of the variable a. In SSA form the variable a is represented 
by several memory locations, one for each static definition. Which location is being 
asked for? tn the corresponding statement in the SSA form, $5, do we take address 
of a_l, a_2 or even maybe something else? In the SSA Numbered program, statement 
$6 does not have this problem because the variable a remains represented by only a 
single location. 

Next consider the problem of an assignment via a pointer, illustrated in parts 
(d), (e), and (f) of Figure 2. The original statement is labeled SZ For the purpose 
of the example let us assume that the pointer p can point to either a or b. As we 
attempt to put the program segment into SSA form we see that statement $8 has an 
implicit write to either a or b. We don' t  know which until run time. For the program 
to be in SSA form it is necessary to somehow expose this implicit write. Cytron and 
Gershbein [CG93] have done some work to correctly model this such that statement 
$9 uses the correct variables with the correct values; however, as it can be seen in 
Figure 2(f), such a construct is easily modeled in SSA Numbering. The SSA number 
of a and b after statement $10 are different to reflect that they have a new possible 
static definition point. 

The third problem is the lack of information about the value represented by *p. 
For two scalar references with the same name we are able to say that they share 
the same static definition; however, for two references of *p we can only say that 
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they share the same static definition of p, we cannot infer anything about the value 
returnedby *p. Extended SSA Numbering solves this problem by providing a second 
number to represent the value pointed to by p. 

The remainder of this paper is divided in the following way. Section 2 describes 
the compiler in which we implemented Extended SSA Numbering. Section 3 presents 
the Extended SSA Numbering algorithm. Section 4 defines the properties of Ex- 
tended SSA Numbering as compared to the properties of SSA form. Section 5 de- 
scribes some of the uses of Extended SSA Numbering. Section 6 relates our work to 
that done by others and section 7 presents our conclusions. 

2 C o m p i l e r  F r a m e w o r k  

We have implemented Extended SSA Numbering in McCAT paralletizing/optimizing 
compiler which provides many analyses and an intermediate representation called 
SIMPLE[HDE+92]. The structure of McCAT is illustrated in Figure 3. McCAT ac- 
cepts standard C programs in one or more files. For the purpose of interprocedural 
analyses, all the input C files are first symbolically linked into one, parsed and sim- 
plified to a simplified C called SIMPLE-C. High-level transformations and analyses 
are then performed at the SIMPLE level which is shown in Figure 3 as a box list- 
ing several of the analyses. Extended SSA Numbering is one of these analyses. The 
transformed SIMPLE-C program can be used to produce a new C program, or it can 
be used as input for the lower-level representation, analyses and code generation. 

The SIMPLE intermediate representation is an Abstract Syntax Tree that rep- 
resents a simplified C. Some key properties of SIMPLE are: 

- Complex expressions are simplified to a series of assignments to temporaries 
reducing all assignment statements to at most 3 address form. 

- All multi-level indirect references are simplified into several single-level indirect 
references. 

- Program structuring removes all unstructured control flow branches [EH94, Ero95]. 

Simplifying multi-level indirections is crucial for Extended SSA Numbering. Program 
structuring is not necessary, but it allows us to develop simple and efficient structure- 
based algorithms. Figure 4 shows an example of a program and its corresponding 
SIMPLE intermediate representation. 

In addition to the SIMPLE intermediate representation, Extended SSA Number- 
ing requires two other analyses: 

Po in t s - to  ana lys i s  [EGH94] :  identifies for each point in the program, which named 
locations a pointer points to. Figure 5(a) shows points-to relationships for each 
program point for the SIMPLE-C program in Figure 4(b). Each points-to rela- 
tionship is shown as a pair (p,v) of pointer p and variable v to indicate that p 
can point to v. For example, at statement $13 we introduce a new relationship 
namely that q points to h. This relationship shows up in the table starting at 
statement $1~. Also, possible points to relationships are marked with a question 
mark following the pair. 

R e a d / W r i t e  sets (also k n o w n  as M o d / R e f  sets):  summarizes at each state- 
ment which variables are read and written by this statement. This information 
is propagated in a hierarchical fashion such that compound statements that con- 
tain blocks of statements (eg. loops) describe which variables are read and which 
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Fig. 3. Structure of McCAT compiler 

variables are written by the whole compound statement. Figure 5(b) shows the 
Read and Write sets that are associated with each statement for the SIMPLE- 
C program in Figure 4(b). Notice that the Read set for the i f  statement ($16) 
contains all the variables read by the condition and the body of the i f  statement. 

3 D e f i n i t i o n  a n d  I m p l e m e n t a t i o n  o f  E x t e n d e d  SSA 

N u m b e r i n g  

We now describe the Extended SSA Numbering analysis by first defining the ba- 
sic idea behind Extended SSA Numbering and then presenting our algorithm for 
computing it. 

The goal of SSA Numbering analysis is to: 
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int" g,h,**p,,q,,r; 
int main() 

h =  2; 
q = &h; 
r = &zg; 
p = & r ;  
if(h < 10) { 

g = (h+2)'5; 
p = &:q; 

} 

h = 2*g + **p; 

(a) 

int  g,h,**p,,q,*r; 
Sl l.~nt main() 

{ 
int  tmp_l,t mp_0,,t mp._3,t mp.fl; 

S12: h = 2; 
S13: q = &h; 
$14: r = &g; 
$15: p = &r; 
$16: if(h < 10) { 
$17: trap_0 = h + 2; 
$18: g = tmp_O * 5; 
$19: p = &q; 

} 
$20: tmp_l  = 2 * g; 
$21: trap._3 = ,p; 
$22:trap_2 = ,trap._3; 
$23: h = tmp_l+tmp_2; 

} 

(b) 

Fig. 4. Example of SIMPLE intermediate representation 

Strut Foints-'ib Relations Stmt 
SII 
S12 
S13 
514 
$15 
$16 
$17 
$18 
$19 
S~O 
S~1 
S~2 
$23 

(%h) 
(q,h) (r,g) 
q,h) (r,g) (p,r) 
q,h) (r,g)/p,rt  
q,h) (r,g) (p,r) 
q,h) (r,g) q p,q) 
q,h) (r,g) tp,r)? (p,q)? 
q,h) (r,g) !p,r)? (p,q)? 
q,h) (r,g) ip,r)? (p,q)? ( tmp~,g)? (tmp_3,h)? 
q,h) (r,g)4p,r)? (p,q)? (tmp_3,g)? (tmp_3,h)? 

( t Points-to Pairs 

Read Set 
SII h, g, p, q, r 
S12 
$18 

815 
S16 h, tmp_0 
$17 h 
$18 trap_0 
$19 
S~O g 
$21 p , q , r  
$22 trap_3, g, h 
$23 trap_l, tmp2  

Write Set 
h, g, p, q, r 
h 
q 
r 

P 
tmp_O, g, p 
tmp_O 

P 
tmp_l 
tmp_3 
trap_2 
h 

(b) Read/Write Sets 

Fig. 5. Points-to Pairs and Read/Write sets for the SIMPLE program in Figure 4(b) 

Associate with each variable reference a number such that if the numbers 
were used as a renaming method the program would be in SSA form with 
all the C-nodes removed. 

Note that the major  differences in generating SSA Numbering and SSA form are 

- No 0-nodes are inserted for SSA Numbering where as in SSA form C-nodes are 
a crucial part  of  the intermediate representation. 

- When performing the renaming, in SSA Numbering, numbers are associated with 
variable references bu t  no variables are actually renamed or created. 

Let's take a closer look at what pointer variables represent and what data  can be 
reached via a pointer. For example if we have a pointer p we can use it directly (q 
= p;)  or we can dereference it (x = *p;) .  Figure 6 shows how" we commonly draw 
pointers. It points out that  there are two values accessible via the pointer, p and *p. 
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P *P 

I 

Fig. 6. Data accessible via a pointer. 

Since pointers represent two memory  locations, modeling their behavior with one 
number is not sufficient. We therefore introduce a second SSA number for pointer 
variables. We call the two numbers primary and secondary SSA numbers. Recall from 
section 2 that one of the properties of  SIMPLE is that  multi-level pointer references 
are simplified to several single-level dereferences. Thanks to this simplification we 
do not require any more SSA numbers to handle multi-level pointers. 

We use the primary SSA number to represent the address the pointer holds (data 
labeled p in Figure 6) and the secondary SSA number is associated with the data 
the pointer points to (data labeled *p in Figure 6). Therefore, if we define the value 
of the pointer we generate a new pr imary SSA number, and if we encounter an 
assignment via *p or via a variable v that  p points to we generate a new secondary 
SSA number for p. 

For an example of how secondary SSA numbers work consider Figure 7. In this 
example the statements of the form x = *p + n; (statements 524, $25, $27, $28, 
$30, $3I) are used to illustrate the pr imary and secondary numbers of p. Take for 
example statements $25 and $27. Both of these statements reference *p. The primary 
numbers in both references of*p  are the same because they both have the same static 
definition for p. On the other hand because there is a write to n at statement $26 
and p points to a the use of *p at s ta tement  $27 has a different static definition 
point from that of statement $25 thus producing a new secondary SSA number. 
Statement $29 has a similar affect on references of *p in statements $28 and $30. In 
addition to assignment statements we must also perform correct merging of control 
flow paths. Statement $31 shows the new primary and secondary SSA numbers for 
p after a merge in control flow paths. We can imagine that there exists a ¢-node just 
after the i f  statement which would look like *P!,4 = ¢(*Pl i ,*PI ,3) .  

3.1 I m p l e m e n t a t i o n  

With the goal of Extended SSA Numbering analysis in mind we now describe our 
implementation of this analysis. To correctly SSA number all variable references we 
must know where ¢-nodes would have to be inserted if we were putting the input 
program into SSA form. As noted in section 2, McCAT has a restructuring phase 
which guarantees the input program wilt be well structured (ie. no goto's). With 
this in mind we refer the reader to the paper by Brandis and Mhssenbhck [BM94] 
for a description of the placement of  o-nodes in structured programs for SSA form. 

Figure 8 shows the steps that  are taken for handling some of the key types of 
assignment statements, if statement, for loops, while loop~ do-while loops, and 
function calls. 

TO assign SSA Numbers to variable references we maintain a look-up table con- 
raining the pairs (v, n) where v is a variable and n is the current SSA Number 
assigned to the variable v. The table is indexed by v. Each time an assignment to a 
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i n t  main() 

{ int a,x,n,,p; 
Pl,1 = &n; 

$24: al = *Pl.1 + nl; 
if (al <=  9) { 

$25: xl = *p1,1 + nl; 
$26: n 2  --'-- X l ;  

[$27: x2 = *pl.2 + n2; 
} else { 

x3  -.-~ h i ;  

$28: x4 = *pt,t + nl; 
$29: *Pl.3 = ~ ;  
:$30: xs = *pi,3 + n4; 

} 
$31: x6 = *Pl,4 + ns; 

Fig. 7. Sample program with Extended SSA Numbers. 

variable v is encountered or a &node for v is expected, the pair (v, n) is replaced by 
(v, a t) where n' is an SSA number that has never been used by the variable v. Select- 
ing n ~ is easily accomplished by having a separate master table and each time a new 
number is needed for v, its SSA number is incremented by one in the master table. 
The function new -~SA(v,l;) generates a new primary SSA number for the variable 
v and records that new number in the table t.  For pointer variables we manage 
secondary numbers similarly using the function new_$e¢ondary_$SA(v,t). We use 
the function Store_SSA(v,~,s)  to took up the primary and secondary numbers of 
v in table t and store them in the reference of v at the statement s. 

The algorithm makes use of a procedure update_~r±t~en() defined in Figure 8. 
This procedure handles the generation of new SSA numbers for those variables that 
need it. For example, a simple assignment into a wilt increment the primary SSA 
number of a (a is in the write set) and it also increments the secondary SSA numbers 
of all pointers that can point to a. For an assignment into *a, the write set contains all 
the variables that a can point to, call this set S. Thus, update_m:it~en() generates 
new primary SSA numbers for all variables in S. In addition, new secondary SSA 
numbers must be generated for all pointers that can point to any pointer in S (which 
of course includes a). 

Note that even in the case of loops, the analysis is single-pass. This is possible 
thanks to the availability of Write Sets. Similarly, because Read/Write sets is an 
interprocedural analysis we can use write sets to accurately model the effect of 
function calls to SSA numbers. 

Also, notice in the algorithm that when processing conditionals we must make a 
copy of ±n_table. At the end of processing both sides of the conditional the copy 
can be discarded. Instead of merging the two tables we can use the Write Set to 
know which variables would have to be merged and we generate new SSA numbers 
for them. 

Details on implementing Extended SSA Numbering in the presence of break and 
cont inue statements are found in the technical memo version of this paper [LH96]. 



fun update_wrkten(stm%in_table) 
{ 

foreach v in WriteSet(stmt) 
new.SSA(v,in_table) 
foreach pointer p 

if(at stm% p points to v) 
} new.secondary_SSA (p,in_table) 

f un  process.statement (stmt,in_table) 

switch(stmt) 
< a = b o p c >  

Store.SSA(b,in_table,stmt ) 
Store.SSA(c,in_table,stmt ) 
update_written(stmt,in_table) 
Store.SSA(a,in_table,stmt) 

< a = * b >  
Store_SSA(b,in_table,stmt ) 
update_written(stmt,in_table) 
Store.SSA(a,in_table,stmt ) 

< * a = b >  
Store.SSA(b,in_table,stmt ) 
update_written(strut,in_table) 
Store.SSA(a,in_table,stmt ) 

< if(a op b) { Tblo~k } else { ~ l o c k  }> 
Store.SSA(a,in_table,st mt) 
Store_SSA(b,in_table,stmt ) 
in_table2 = duplicate(in_table) 
process.statement (Tblock,in_table) 
process_statement ( Fblock,in_t able2 ) 
update_written(stmt,in_tabte) 

< for(INIT;a op b;INC) { body } > 
process_statement (INIT,in_table) 
update_written(strut,in_table) 
Store_SSA(a,in_table,stmt) 
Store_SSA(b,in_table,stmt ) 
process_statement (body,in_table) 
process_statement(INC,in_table) 
update_written(strut,in_table) 

< wh[le(a op b) { body } > 
update_written(strut,in.table) 
Store_SSA(a, in_table,stmt ) 
Store_SSA (b,in_table,stmt) 
process_statement (body,in.table) 
update_writ ten(strut,in_table) 

< do ( body } while(a op b) > 
update_writ ten(strut ,in_table) 
process_stat ement (body,in_table) 
Store_SSA(a,in_table,stmQ 
Store_SSA(b,in_table,stmt) 

< f(a,b,...) > 
foreach function argument v 

Store_SSA(v,in.table,stmt) 
update_writ ten(stm~,in_table) 

process_statement (NEXT(st rot),in_table) 

Fig. 8. Partial algorithm for SSA Numbering analysis 

H a n d l i n g  A r r a y s  Extended SSA Number ing  treats each array as one entity. A 
write or read from different elements of  the array need not be distinguished, since 
array dependence testers perform this task. However, Extended SSA Numbers can be 
used to determine when two names denote  the same array. Such methods are common 
(see [CFR+91, pages 460-46t]) for handling arrays in SSA form as well as other data- 
flow analyses. Each update of an array element and each access or an array element 
are modeled using A = u p d a t e ( A , e l e m u m , v a l ) ;  and x = a c c e s s ( A , e l e . m m ) ;  
functions. These functions hide part ial  access or update of the array and treat the 
array as one entity. 

H a n d l i n g  S t r u c t u r e s  There are two approaches for assigning SSA Numbers to 
structures. 

M e t h o d  1: Only scalar and array s t ructure  fields (ie. [ear fields) are assigned SSA 
numbers. In the case of s t ructure copy assignments new SSA numbers must be 
generated for all such fields. For example,  a field reference may 10ok like x = 
a . b . c . d s ;  assuming tha t  the field d is not of structure type. 
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M e t h o d  2: SSA numbers are associated with all the fields as well as with the 
structure itselfi Assignment to a field deals with the SSA number associated 
with the field and a structure copy assignment changes only the SSA number 
associated with the structure as a whole. For example a field reference may look 
like x = al .  bl.  c2. d5 ;. In this case the meaning of two references to having the 
same Extended SSA Numbers means that each corresponding structure/field 
have matching Extended SSA Numbers. 

We chose to implement method 2. Method 2 is more cumbersome but for us it is 
important to have the primary SSA number for pointer varialJles to structures (eg. 
x = (* pl,z).b4;)- We need this information to support further pointer analysis. 
Figure 9 shows a sample program manipulating points with SSA numbers assigned 
to structures for both methods. In method 1 at statement S.~O new SSA numbers 
for both fields x and y were generated. In method 2 at statement $41 only the 
SSA number for the structure a was generated and the SSA numbers for its fields 
remained the same. 

$40: 

s t ruct  { 
int x,y; 

} a,b; 
mt  v; 

a.xl = 0; 
a.yl = 0; 
b.Xl = 1; 
b.yl = 1; 
a - - - b ;  
vl = a.x2 q- a.y21 

(Method 1) 

$41: 

struct {' 
int x,y; 

} a,b; 
mt v; 

al.xl = 0; 
al.yl = 0; 
bt.xl = 1; 
bl.yl = 1; 
a = b ;  
vl = a2.xl q- a2.yl; 

(Method 2) 

Fig. 9. Example program showing SSA numbers for structures using both methods 

4 P r o p e r t i e s  o f  E x t e n d e d  S S A  N u m b e r i n g  

As mentioned in section 1 Extended SSA Numbering is not SSA form and does 
not have all the properties of SSA form. Some properties were lost and some new 
properties for pointer variables have been introduced. Let us consider more closely 
the properties of Extended SSA Numbering. 

4.1 Fac to red  u se -de f  a n d  defouse chains  

First, because Extended SSA Numbering has no C-nodes we can not use it to get 
use-def and def-use chains. For this reason we need reaching definitions as a sepa- 
rate analysis. The McCAT compiler is equipped with this analysis where for each 
definition point a set of statements is stored indicating all the statements where this 
newly generated value may possibly be  used. Also, for all variable references a set 
of statements listing the possible definitions points that may reach the reference is 
stored at the reference point. 
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It is commonly pointed out that using SSA form to provide use-def and def-use 
chains is space efficient, where as the space requirement for storing sets of possible 
uses and sets of possible definitions can grow very quickly. In theory, this is very 
true; however, we have tested a significant number of benchmarks and on average 
programs do not require more then two or three elements per set. Considering that 
in SSA form one requires to insert 6-nodes, we feel the cost to be not significant. 
We refer the reader to the longer version of this paper as a technical memo[LH96] 
for some empiriCal data. 

4.2 ~Same N a m e  - Same Va lue"  P r o p e r t i e s  

Even though SSA Numbers does not support factored use-def and def-use changes, 
we can state the following important properties. 

P r o p e r t y  1 Two references of variable v at statement S and statement T will pro. 
duce the same value i f  SSA#(v ,S )  = S S A # ( v , T )  1 

Note that SSA~(v,S) returns the primary SSA number ofv  at statement S. Similarly 
for indirect references 

P r o p e r t y  2 Two indirect references of a pointer *p at statement S and statement 
T will produce the same value if  SSA#(p ,S )  = SSA#(p ,T )  and ExtSSA#(p,S) = 
ExtSZA #(p,T) I 

Note that ExtSSA#(v,S) returns the secondary SSA number of v at statement S. 
Further, using Extended SSA numbers as part of the name we can derive two more 
properties. 

P r o p e r t y  3 Two references of variable v at statement S and statement T will have 
identical sets of possible definition points If SSA#(v ,S )  = SSA #(v ,T}  

P r o p e r t y  4 Two indirect references of a pointer *p at statement S and statement 
T will have identical sets of possible definition points if SS'A#(p,S) = SSA#(p ,T)  
and ExtSSA#(p,S)  = ExtSSA#(p ,T) .  

5 A p p l i c a t i o n s  o f  E x t e n d e d  S S A  N u m b e r i n g  

Based on the properties presented in the previous section, we can use Extended SSA 
Numbering in many subsequent analyses and transformations. In this section we 
outline some of the uses that have been implemented in the McCAT compiler. 

5.1 Symbol ic  analyses  

When studying methods for symbolically comparing expressions we encountered the 
need to recognize when two symbols represent the same value. For example, in Array 
Dependence Testing [JH94, Lap97] it is often useful to perform symbolic simplifica- 
tion before applying a dependence tester. Consider the case of comparing the two 
index expressions, ± + *p and ± + *p + 1, where ± is the loop induction variable. 
If we can determine that *p denotes the same value in both index ex)ressions, then 
we can subtract *p from both expressions, can reduce the test to comparing the ex- 
pressions ± and i + 1. According to property 2, we can just test if both the primary 
and secondary SSA numbers are the same for both uses of *p. 

I Because Extended SSA Numbering as we]] as SSA form are static analyses we assume 
statements are Within the same loop iteration and function call invocation. 
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5.2 I n d u c t i o n  v a r i a b l e s  

Wolfe [Wol92] has presented a method for recognizing induction variables and com- 
puting their formulas based on an SSA form. If one does not have SSA form or the 
programming language they are analyzing makes SSA form difficult to implement, 
then to recognize induction variables one must recognize when the pair (variable, 
set of reaching definitions) has already already visited when performing backward 
substitution. Properties 3 and 4 indicate that  SSA numbers can be used to detect 
when the set of reaching definitions are the same. 

5.3 R e c o g n i t i o n  o f  ref p a r a m e t e r s  

In C there exists no syntax for passing parameters by reference and thus to accom- 
plish this Programmers use explicit pointers. Optimizing compilers may benefit from 
knowing that some particular pointer parameters are really r e f  parameters. Pro- 
grammers can also be aided by a tools that  automatically indicates which pointers 
are being used to implement r e f  paramemters.  

Extended SSA numbers can be used to detect r e f  parameters. If the primary 
SSA number of a formal pointer parameter  remains constant throughout the body 
of the function, then we can guarantee that  the pointer itself is never updated, and 
thus it behaves like a r e f  parameter.  

5.4 S t r e n g t h e n i n g  r e a c h i n g  d e K u i t i o n s  

Consider the example in Figure 10. %Ve are interested in the possible definitions of 
*p. When analyzing statement $34 we have that a is defined at $32 and m is defined 
at $33. Statement $34 introduces a new definition but we don't know which variable 
it is defining until run time. It  could be introducing a new definition for n or for m. 
Because we don't  know which, we must  be conservative and say that from now on 
the possible definitions for n are {$32, S34} and for m they are {$33, $3/,}. Then at 
statement $35 we conclude that  the reaching definitions for *p is the union of the 
reaching definitions for a and ,, which is {$32, $33, $34}. 

~f(...) 
Pl = &n" 

else 

P2 = &m: 

$32:n2 = 1; 
$33:m2 = 2; 
$34:*p3,1 = 3; /* 

$35: x = *P3.1 + 

Cannot kill defs $32, $33 */ 

1; / ,  ~s~ible de/ o/ ,p = {S~e, SSS, SS4} , /  

Fig. 10. Example of reaching definitions for pointer references. 

Now let us use Extended SSA Numbering to make more precise reaching defini- 
tion sets. If SSA#(p,S35) = SSA#(p.S3¢) and ExtSSA#(p,S35) = ExtSSA#(p,S3¢) 
then the value returned by *p at s tatement S35 will be same as the one produced 
by statement $3,~. We can thus state that  the sole reaching definition is $34. 
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5.5 R e d u c t i o n  o f  indirect  r e f e r e n c e s  

Based on the result from section 5.4, we can note that  some definitions and uses 
via indirections could be replaced by" definitions and uses of scalars. This improves 
the program by reducing the number  of  memory  accesses, promoting more accesses 
to registers, and conveying more detailed dependence analysis to the instruction 
scheduler. 

The transformation operates as follows. Each t ime we recognize a definition and 
uses via indirection of  the same pointer such tha t  bo th  primary and secondary SSA 
numbers match we introduce a scalar t emporary  variable to pass the value without 
indirection to all matching uses. Similarly, if there is more than one indirect reference 
via the same pointer such that  bo th  pr imary and secondary SSA numbers match 
is recognized, the referenced value is stored in a temporary  variable to be accessed 
directly in the future matching uses. The  two transformations are illustrated in 
Figure 1 I. Care als0 has to be taken to ensure tha t  the statement at which the value 
is stored into a temporary dominates  -~ all the matching uses being replaced. 

*Pa,b = expr; trap = e.xpr; 
*pa,b = trap; 

x = *pa,b; x = trap; 

y --= *p~,b; y = trap; 

x ~ *Pa,b; trap = *Pa,b; 
x = t m p ;  

Y = *Pa,b; y = trap; 

z = *p~,~; z tmp; 

Fig. 11. Two transformations to reduce indirect references 

We have implemented this t ransformat ion in McCAT and we would like to stress 
the importance of providing SSA Numbers  for structures because it is rare for this 
optimization to be applicable otherwise. Table 1 gives a list of  benchmarks where 
our transformation was applied. Table 2 shows the effectiveness of our transforma- 
tion. For each benchmark table 2 gives the number  of  times the transformation was 
applied, statically on average how m a n y  indirect references were saved by applying 
the transformation, and finally how many  indirect references were avoided at run 
time for one example input. 

The effectiveness of this t ransformation varied greatly. For example two bench- 
marks f r a ¢  and v l s i  produced very little benefit at run time, even though the 
benchmark f r a c  applied the t ransformat ion more  times then any other. On the 
other hand a benchmark like p u z z l e  produced the most  benefit at run time even 
though there was only one place in the program were we could apply the transfor- 
mation. 

5.6 I m p r o v i n g  H e a p  D e p e n d e n c e  T e s t s  

The McCAT compiler supports a wide variety of  heap analyses, including connection 
analgsis[GH96, Ghi96]. Connection analysis determines, for each program point, 
which heap-directed pointers can point to the same data structure. In order to 

2 Statement S dominates statement T if and only if S is in every execution path from the 
START to T 
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Name Descraptlon 
vlsi VLSI chip testing problem 
frac Represents floating point as a quotient of two integers 
chomp Simple game solver using game tree 
queens N Queens problem 
stanford Stanford baby benchmark suit from John Hennessy 
travel Traveling Salesman problem 
puzzle Solve 15 numbered square puzzle 

Table 1. List of benchmarks to which we applied our indirect reference reduction. 

Num I Avg. Static Dynamic 
Benchmark Transf. l Savings Savings 
vlsi ......... 2 1 1 
frac 7" 1.29 25 
chomp 4 1.50 138 
queens 5 1 12,513 
stanford 2 l 38,450 
travel 1 9 67,037 
puzzle 1 1 339,579 

Table 2. Results of applying our indirect reference reduction transformation. 

make connection analysis useful for dependence testing one must introduce the idea 
of anchor handles, or symbolic pointers that capture the value of a heap-directed 
pointer at a specific program point. Without Extended SSA Numbers, one must 
create a new anchor handle for each indirect assignment in the program. However, 
using Extended SSA Numbers, anchor handles can be reused if the primary SSA 
number does not change. This optimization reduces the number of anchor handles 
by over 50% [Ghi97]. 

5.7 Summary 

Overall, we have found that SSA numbers are useful for many of our subsequent 
analyses and transformations, and SSA numbers are now an integral part of our 
compiler. 

6 Related Work 
Most previous work has concentrated on extending SSA form to accommodate 
pointers[CG93, CCL+96]. Both of these cases assume the compiler uses SSA form as 
its intermediate representation, and SSA form must be extended to handle pointers. 

The first approach, by Cytron and Gershbein [CG93], concentrats on assignments 
via pointers. They devised a well behaved function, I sAl i a s  (p, v), taking a pointer 
p and a variable v and does the following operation. If pointer p actually points to v, 
it returns the value of *p, otherwise it returns the value of v. After each assignment 
of the form *p=. . .  a series of statements of the form v_2 = I sAl ias  (p,~v_:D ; are 
inserted for each variable that p can point to. This has the effect of giving new names 
to all variables that can point to p. This is an good idea, but only solves part of the 
problem. It does not completely address indirect references on the rhs of assignments 
( . . . .  *p), nor does it handle statements of the form p = ~v. 
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A more complete, and more complicated, approach was suggested by Chow et. 
al. [CCL+96]. In this case new sorts of operators: the tt operator to model MayUses, 
and the X operator to model MayDefs. In order to reduce the number of versions 
required in this approach, they suggest the use of zero versioning which restricts 
the number of versions for variables that do not correspond to real variables. The 
technique appears to handle all of the complexities of aliases in C and Fortran, and 
has been implemented in in the WOPT global optimizer. 

Our approach does not attempt to incorporate pointers into SSA form. Rather 
we take some of the nice properties of SSA form, and capture these via SSA numbers, 
and then give a very simple method for handling pointers via Extended SSA numbers. 
Thus, our approach is useful for compilers using a non-SSA intermediate form (for 
example, any structured Abstract Syntax Tree, or control flow graphs). Our approach 
is simple, and it does not require changing the structure of the intermediate form. 
We merely store Extended SSA numbers with variable uses and definitions. 

7 Conclusions 

We have introduced an analysis called Extended SSA Numbering which provides 
some of the properties of SSA form, even in the presence of pointers. A primary SSA 
number is associated with each scalar variable, and primary and secondary SSA 
numbers are associated with each pointer variable~ Variables with the same SSA 
numbers denote the same value, and have the same set of reaching definitions. These 
properties are useful for a wide-range of subsequent analyses and transformations. 

We have provided a simple and efficient algorithm for computing Extended SSA 
Numbers. Our algorithm operates on a structured intermediate representation, the 
SIMPLE form of the McCAT compiler. However, the general idea holds for any 
intermediate representation that has points-to and read/write set information. 

Extended SSA Numbers have been implemented in the McCAT C compiler, and 
they are used in many subsequent phases in the compiler. We demonstrated several 
of these applications including their use in symbolic analyses and a transformation 
to reduce the number of indirect references. 
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