
Extended SSA Numbering: Introducing SSA Properties
to Languages with Multi-level Pointers

Christopher Lapkowski and Laurie J. Hendren
School of Computer Science

McGill University, Montrgal, Quebec, Canada
[lapkow, hendren~ Gc s. mcgill, ca

Abstract . Static Single Assignment (SSA) intermediate representations have
become quite popular in compiler development. One advantage of the SSA
form is that each variable corresponds to exactly one definition, and thus two
references of the same SSA variable must denote the same value. To date,
most SSA forms concentrate on scalar variables, and it is difficult to extend
these intermediate representations to languages with multi-level pointers like
C.
In this paper we introduce a Extended SSA Numbering, a simple analysis
that concentrates on the "same name, same value" property of SSA form.
The analysis handles aI1 variable references, including those via pointer in-
directions. For each scalar variable, Extended SSA Numbering associates a
primary SSA number, whereas for each pointer variable, it associates both
a primary and secondary SSA number. Extended SSA Numbering can be
easily implemented in any compiler that supports pointer analysis and side-
effect analysis. There is no need to change the intermediate form used in the
compiler since SSA numbers can be captured as dataflow attributes.
In this paper we present our implementation of the technique in the McCAT
optimizing/paraUelizing C compiler. Further, we demonstrate the usefulness
of Extended SSA Numbers by describing several typical applications.

1 Introduction
In modern compiler technology the role of analyses and intermediate representa-
tions has become very important. Powerful analyses facilitate effective optimiz-
ing transformations and well-designed intermediate representations ease the design
and implementation of these analyses. Static Single Assignment (SSA) form is one
such intermediate representation. A program in SSA form has some key proper-
ties that make this intermediate representation favorable. Each variable has only
one static definition point and can therefore be used to provide factored use-def
and def-use chains. The SSA form and its properties have been widely discussed.
[SG95, CFR+89, CFR+91, AWZ88, RWZ88, BM94]

Although, SSA form neatly handles scalar variables, there is no natural way
to handle multi-level pointers and explicit pointer dereferences like those present
in C. We propose a new flow analysis technique, called Extended SSA Numbering,
that provides the property "same name - same value s', for both scalar and pointer
variables. However, Extended SSA Numbering does not include any notion of e-
nodes, and thus it sacrifices the idea of exactly one static definition point. The
technique is simple to implement, simple to use, and can be easily implemented in
any compiler that supports pointer analysis and side-effect analysis.

129

To motivate the introduction of SSA Numbering instead of SSA form let's con-
sider an example and the process of transforming a program into SSA form. Putting
a program into SSA form requires two basic steps. The first, inserts ¢-nodes that
join two possible values from different flow of control paths, and the other renames
variables such that each name has exactly one definition. It is the first step the
causes most difficulty in the presence of pointers. We propose to concentrate on the
second step, renaming variables by appending numbers.

Consider the code fragment example in Figure 1. Figure l(a) contains the original
program, Figure l(b) contains the program in SSA form and Figure l(c) contains
the program with SSA Numbers. Notice several key differences, between the original
program and the program in SSA form. First, all variables are renamed and some
variables, such as a that had several static definition points became several vari-
ables, (a_l, a_2, a_3, a_4) one for each definition point. Note that separate memory
locations are associated with these variables. Second, a new statement is introduced,
labeled $2. This statement, known as q~node or join node, ensures that data cor-
rectly flows when two flow of control paths join. Depending from which branch flow
of control came to the C-node the corresponding value is returned.

int main() i nt
{ {

int a,b,c;

a = l ;
b = 2 ;
if(a < 10) {

a-- - -a q- 1;
} else {

a = a ÷ b; SI:
}

S~:
c - - a ' b ;

} }
(a)

main()

int a_l,b_l,c_l;
|n t a_2,a_3,a_4;
a_l ---- 1;
b l = 2;
if(a_1 < 10) {

a_2 = a_l + 1;
} e l ~ {

a.3 = a_l + b_l',
}
a_4 = ~(a_2,a_3);
c_1 = a_4 * b_l;

(b)

Fig. 1. Example of SSA form vs. SSA Numbering

ifit mainO

int a,b,c;

al -- 1;
bl -- 2;
if(~ < 1o) (

a2 = al -k 1;
} else {

= al + bl;
}

Cl = a4 * bl;

(c)

Now let us compare SSA form to our proposed SSA Numbering in Figure 1(c).
Notice that the SSA Numbered program does not add new variables. In the example,
there is only one location for the variable a where as in SSA form there were four.
Also, the SSA Numbered program does not have C-nodes. With the exception of
subscripts on all variables, the program looks exactly like the original. The subscripts
are the same numbers as the ones appended to variables in the SSA form program
(Figure l(b)). For example, in statement $3 and its counterpart $I we see that the
left hand sides are a_3 and a3. Similarly, on the right hand side we have a_l vs. al
and b_1 vs. bl. These subscript numbers are not part of the variable, rather they
are just stored as attributes for each variable reference.

t30

1.1 Dif f icul t ies w i t h p o i n t e r s

Given the differences between SSA form and SSA Numbering it is clear that the
SSA Numbering intermediate representation supports fewer properties than the SSA
form. SSA Numbering still has the property that two variable references with the
same SSA number must denote the same value. However, unlike SSA form, SSA
numbers do not provide single definition point for each use. Why do we then propose
SSA Numbering? The answer lies in three major problems which are easily solved
in SSA Numbering, two of which are illustrated in Figure 2.

int a;

a = l ;
ff(a < 10) {

a = 2 ;
:S~: p = &a;

}
(a)
/ * assume p points to"a or b ~/

c = a + b ;
$7: *p = 5;

d = a + b ;
(d)

55:

int a_l,a_2,...;

a_l = i;
if(~ i < 10) {

a 2 = 2 ;
p-2 =- &a_?;

}
(b)

c_l = a 1 + b_l;
$8: * p l = 5;

q ? ?

$9: d_l -= a 1 4- b_l;
(e)

int a;

al = 1;
if(at < 10) {

ai ---- 2;
$6: p2 = &a;

}
(c)

c1 = al + b~;
*pl = 5;

SlO:dl = at + b2;
(f)

Fig. 2. Difficulties with pointer for SSA form shown in original program, SSA form and
SSA Numbered program

First consider the problem of taking the address of variables. This problem is
illustrated in parts (a), (b), and (c) of Figure 2. Specifically, consider statement $4
which takes the address of the variable a. In SSA form the variable a is represented
by several memory locations, one for each static definition. Which location is being
asked for? tn the corresponding statement in the SSA form, $5, do we take address
of a_l, a_2 or even maybe something else? In the SSA Numbered program, statement
$6 does not have this problem because the variable a remains represented by only a
single location.

Next consider the problem of an assignment via a pointer, illustrated in parts
(d), (e), and (f) of Figure 2. The original statement is labeled SZ For the purpose
of the example let us assume that the pointer p can point to either a or b. As we
attempt to put the program segment into SSA form we see that statement $8 has an
implicit write to either a or b. We don' t know which until run time. For the program
to be in SSA form it is necessary to somehow expose this implicit write. Cytron and
Gershbein [CG93] have done some work to correctly model this such that statement
$9 uses the correct variables with the correct values; however, as it can be seen in
Figure 2(f), such a construct is easily modeled in SSA Numbering. The SSA number
of a and b after statement $10 are different to reflect that they have a new possible
static definition point.

The third problem is the lack of information about the value represented by *p.
For two scalar references with the same name we are able to say that they share
the same static definition; however, for two references of *p we can only say that

13t

they share the same static definition of p, we cannot infer anything about the value
returnedby *p. Extended SSA Numbering solves this problem by providing a second
number to represent the value pointed to by p.

The remainder of this paper is divided in the following way. Section 2 describes
the compiler in which we implemented Extended SSA Numbering. Section 3 presents
the Extended SSA Numbering algorithm. Section 4 defines the properties of Ex-
tended SSA Numbering as compared to the properties of SSA form. Section 5 de-
scribes some of the uses of Extended SSA Numbering. Section 6 relates our work to
that done by others and section 7 presents our conclusions.

2 C o m p i l e r F r a m e w o r k

We have implemented Extended SSA Numbering in McCAT paralletizing/optimizing
compiler which provides many analyses and an intermediate representation called
SIMPLE[HDE+92]. The structure of McCAT is illustrated in Figure 3. McCAT ac-
cepts standard C programs in one or more files. For the purpose of interprocedural
analyses, all the input C files are first symbolically linked into one, parsed and sim-
plified to a simplified C called SIMPLE-C. High-level transformations and analyses
are then performed at the SIMPLE level which is shown in Figure 3 as a box list-
ing several of the analyses. Extended SSA Numbering is one of these analyses. The
transformed SIMPLE-C program can be used to produce a new C program, or it can
be used as input for the lower-level representation, analyses and code generation.

The SIMPLE intermediate representation is an Abstract Syntax Tree that rep-
resents a simplified C. Some key properties of SIMPLE are:

- Complex expressions are simplified to a series of assignments to temporaries
reducing all assignment statements to at most 3 address form.

- All multi-level indirect references are simplified into several single-level indirect
references.

- Program structuring removes all unstructured control flow branches [EH94, Ero95].

Simplifying multi-level indirections is crucial for Extended SSA Numbering. Program
structuring is not necessary, but it allows us to develop simple and efficient structure-
based algorithms. Figure 4 shows an example of a program and its corresponding
SIMPLE intermediate representation.

In addition to the SIMPLE intermediate representation, Extended SSA Number-
ing requires two other analyses:

Po in t s - to ana lys i s [EGH94] : identifies for each point in the program, which named
locations a pointer points to. Figure 5(a) shows points-to relationships for each
program point for the SIMPLE-C program in Figure 4(b). Each points-to rela-
tionship is shown as a pair (p,v) of pointer p and variable v to indicate that p
can point to v. For example, at statement $13 we introduce a new relationship
namely that q points to h. This relationship shows up in the table starting at
statement $1~. Also, possible points to relationships are marked with a question
mark following the pair.

R e a d / W r i t e sets (also k n o w n as M o d / R e f sets): summarizes at each state-
ment which variables are read and written by this statement. This information
is propagated in a hierarchical fashion such that compound statements that con-
tain blocks of statements (eg. loops) describe which variables are read and which

!32

Fig. 3. Structure of McCAT compiler

variables are written by the whole compound statement. Figure 5(b) shows the
Read and Write sets that are associated with each statement for the SIMPLE-
C program in Figure 4(b). Notice that the Read set for the i f statement ($16)
contains all the variables read by the condition and the body of the i f statement.

3 D e f i n i t i o n a n d I m p l e m e n t a t i o n o f E x t e n d e d SSA

N u m b e r i n g

We now describe the Extended SSA Numbering analysis by first defining the ba-
sic idea behind Extended SSA Numbering and then presenting our algorithm for
computing it.

The goal of SSA Numbering analysis is to:

133

int" g,h,**p,,q,,r;
int main()

h = 2;
q = &h;
r = &zg;
p = & r ;
if(h < 10) {

g = (h+2)'5;
p = &:q;

}

h = 2*g + **p;

(a)

int g,h,**p,,q,*r;
Sl l.~nt main()

{
int tmp_l,t mp_0,,t mp._3,t mp.fl;

S12: h = 2;
S13: q = &h;
$14: r = &g;
$15: p = &r;
$16: if(h < 10) {
$17: trap_0 = h + 2;
$18: g = tmp_O * 5;
$19: p = &q;

}
$20: tmp_l = 2 * g;
$21: trap._3 = ,p;
$22:trap_2 = ,trap._3;
$23: h = tmp_l+tmp_2;

}

(b)

Fig. 4. Example of SIMPLE intermediate representation

Strut Foints-'ib Relations Stmt
SII
S12
S13
514
$15
$16
$17
$18
$19
S~O
S~1
S~2
$23

(%h)
(q,h) (r,g)
q,h) (r,g) (p,r)
q,h) (r,g)/p,rt
q,h) (r,g) (p,r)
q,h) (r,g) q p,q)
q,h) (r,g) tp,r)? (p,q)?
q,h) (r,g) !p,r)? (p,q)?
q,h) (r,g) ip,r)? (p,q)? (tmp~,g)? (tmp_3,h)?
q,h) (r,g)4p,r)? (p,q)? (tmp_3,g)? (tmp_3,h)?

(t Points-to Pairs

Read Set
SII h, g, p, q, r
S12
$18

815
S16 h, tmp_0
$17 h
$18 trap_0
$19
S~O g
$21 p , q , r
$22 trap_3, g, h
$23 trap_l, tmp2

Write Set
h, g, p, q, r
h
q
r

P
tmp_O, g, p
tmp_O

P
tmp_l
tmp_3
trap_2
h

(b) Read/Write Sets

Fig. 5. Points-to Pairs and Read/Write sets for the SIMPLE program in Figure 4(b)

Associate with each variable reference a number such that if the numbers
were used as a renaming method the program would be in SSA form with
all the C-nodes removed.

Note that the major differences in generating SSA Numbering and SSA form are

- No 0-nodes are inserted for SSA Numbering where as in SSA form C-nodes are
a crucial part of the intermediate representation.

- When performing the renaming, in SSA Numbering, numbers are associated with
variable references bu t no variables are actually renamed or created.

Let's take a closer look at what pointer variables represent and what data can be
reached via a pointer. For example if we have a pointer p we can use it directly (q
= p;) or we can dereference it (x = *p;) . Figure 6 shows how" we commonly draw
pointers. It points out that there are two values accessible via the pointer, p and *p.

134

P *P

I

Fig. 6. Data accessible via a pointer.

Since pointers represent two memory locations, modeling their behavior with one
number is not sufficient. We therefore introduce a second SSA number for pointer
variables. We call the two numbers primary and secondary SSA numbers. Recall from
section 2 that one of the properties of SIMPLE is that multi-level pointer references
are simplified to several single-level dereferences. Thanks to this simplification we
do not require any more SSA numbers to handle multi-level pointers.

We use the primary SSA number to represent the address the pointer holds (data
labeled p in Figure 6) and the secondary SSA number is associated with the data
the pointer points to (data labeled *p in Figure 6). Therefore, if we define the value
of the pointer we generate a new pr imary SSA number, and if we encounter an
assignment via *p or via a variable v that p points to we generate a new secondary
SSA number for p.

For an example of how secondary SSA numbers work consider Figure 7. In this
example the statements of the form x = *p + n; (statements 524, $25, $27, $28,
$30, $3I) are used to illustrate the pr imary and secondary numbers of p. Take for
example statements $25 and $27. Both of these statements reference *p. The primary
numbers in both references of*p are the same because they both have the same static
definition for p. On the other hand because there is a write to n at statement $26
and p points to a the use of *p at s ta tement $27 has a different static definition
point from that of statement $25 thus producing a new secondary SSA number.
Statement $29 has a similar affect on references of *p in statements $28 and $30. In
addition to assignment statements we must also perform correct merging of control
flow paths. Statement $31 shows the new primary and secondary SSA numbers for
p after a merge in control flow paths. We can imagine that there exists a ¢-node just
after the i f statement which would look like *P!,4 = ¢(*Pl i ,*PI ,3) .

3.1 I m p l e m e n t a t i o n

With the goal of Extended SSA Numbering analysis in mind we now describe our
implementation of this analysis. To correctly SSA number all variable references we
must know where ¢-nodes would have to be inserted if we were putting the input
program into SSA form. As noted in section 2, McCAT has a restructuring phase
which guarantees the input program wilt be well structured (ie. no goto's). With
this in mind we refer the reader to the paper by Brandis and Mhssenbhck [BM94]
for a description of the placement of o-nodes in structured programs for SSA form.

Figure 8 shows the steps that are taken for handling some of the key types of
assignment statements, if statement, for loops, while loop~ do-while loops, and
function calls.

TO assign SSA Numbers to variable references we maintain a look-up table con-
raining the pairs (v, n) where v is a variable and n is the current SSA Number
assigned to the variable v. The table is indexed by v. Each time an assignment to a

135

i n t main()

{ int a,x,n,,p;
Pl,1 = &n;

$24: al = *Pl.1 + nl;
if (al <= 9) {

$25: xl = *p1,1 + nl;
$26: n 2 --'-- X l ;

[$27: x2 = *pl.2 + n2;
} else {

x3 -.-~ h i ;

$28: x4 = *pt,t + nl;
$29: *Pl.3 = ~ ;
:$30: xs = *pi,3 + n4;

}
$31: x6 = *Pl,4 + ns;

Fig. 7. Sample program with Extended SSA Numbers.

variable v is encountered or a &node for v is expected, the pair (v, n) is replaced by
(v, a t) where n' is an SSA number that has never been used by the variable v. Select-
ing n ~ is easily accomplished by having a separate master table and each time a new
number is needed for v, its SSA number is incremented by one in the master table.
The function new -~SA(v,l;) generates a new primary SSA number for the variable
v and records that new number in the table t. For pointer variables we manage
secondary numbers similarly using the function new_$e¢ondary_$SA(v,t). We use
the function Store_SSA(v,~,s) to took up the primary and secondary numbers of
v in table t and store them in the reference of v at the statement s.

The algorithm makes use of a procedure update_~r±t~en() defined in Figure 8.
This procedure handles the generation of new SSA numbers for those variables that
need it. For example, a simple assignment into a wilt increment the primary SSA
number of a (a is in the write set) and it also increments the secondary SSA numbers
of all pointers that can point to a. For an assignment into *a, the write set contains all
the variables that a can point to, call this set S. Thus, update_m:it~en() generates
new primary SSA numbers for all variables in S. In addition, new secondary SSA
numbers must be generated for all pointers that can point to any pointer in S (which
of course includes a).

Note that even in the case of loops, the analysis is single-pass. This is possible
thanks to the availability of Write Sets. Similarly, because Read/Write sets is an
interprocedural analysis we can use write sets to accurately model the effect of
function calls to SSA numbers.

Also, notice in the algorithm that when processing conditionals we must make a
copy of ±n_table. At the end of processing both sides of the conditional the copy
can be discarded. Instead of merging the two tables we can use the Write Set to
know which variables would have to be merged and we generate new SSA numbers
for them.

Details on implementing Extended SSA Numbering in the presence of break and
cont inue statements are found in the technical memo version of this paper [LH96].

fun update_wrkten(stm%in_table)
{

foreach v in WriteSet(stmt)
new.SSA(v,in_table)
foreach pointer p

if(at stm% p points to v)
} new.secondary_SSA (p,in_table)

f un process.statement (stmt,in_table)

switch(stmt)
< a = b o p c >

Store.SSA(b,in_table,stmt)
Store.SSA(c,in_table,stmt)
update_written(stmt,in_table)
Store.SSA(a,in_table,stmt)

< a = * b >
Store_SSA(b,in_table,stmt)
update_written(stmt,in_table)
Store.SSA(a,in_table,stmt)

< * a = b >
Store.SSA(b,in_table,stmt)
update_written(strut,in_table)
Store.SSA(a,in_table,stmt)

< if(a op b) { Tblo~k } else { ~ l o c k }>
Store.SSA(a,in_table,st mt)
Store_SSA(b,in_table,stmt)
in_table2 = duplicate(in_table)
process.statement (Tblock,in_table)
process_statement (Fblock,in_t able2)
update_written(stmt,in_tabte)

< for(INIT;a op b;INC) { body } >
process_statement (INIT,in_table)
update_written(strut,in_table)
Store_SSA(a,in_table,stmt)
Store_SSA(b,in_table,stmt)
process_statement (body,in_table)
process_statement(INC,in_table)
update_written(strut,in_table)

< wh[le(a op b) { body } >
update_written(strut,in.table)
Store_SSA(a, in_table,stmt)
Store_SSA (b,in_table,stmt)
process_statement (body,in.table)
update_writ ten(strut,in_table)

< do (body } while(a op b) >
update_writ ten(strut ,in_table)
process_stat ement (body,in_table)
Store_SSA(a,in_table,stmQ
Store_SSA(b,in_table,stmt)

< f(a,b,...) >
foreach function argument v

Store_SSA(v,in.table,stmt)
update_writ ten(stm~,in_table)

process_statement (NEXT(st rot),in_table)

Fig. 8. Partial algorithm for SSA Numbering analysis

H a n d l i n g A r r a y s Extended SSA Number ing treats each array as one entity. A
write or read from different elements of the array need not be distinguished, since
array dependence testers perform this task. However, Extended SSA Numbers can be
used to determine when two names denote the same array. Such methods are common
(see [CFR+91, pages 460-46t]) for handling arrays in SSA form as well as other data-
flow analyses. Each update of an array element and each access or an array element
are modeled using A = u p d a t e (A , e l e m u m , v a l) ; and x = a c c e s s (A , e l e . m m) ;
functions. These functions hide part ial access or update of the array and treat the
array as one entity.

H a n d l i n g S t r u c t u r e s There are two approaches for assigning SSA Numbers to
structures.

M e t h o d 1: Only scalar and array s t ructure fields (ie. [ear fields) are assigned SSA
numbers. In the case of s t ructure copy assignments new SSA numbers must be
generated for all such fields. For example, a field reference may 10ok like x =
a . b . c . d s ; assuming tha t the field d is not of structure type.

137

M e t h o d 2: SSA numbers are associated with all the fields as well as with the
structure itselfi Assignment to a field deals with the SSA number associated
with the field and a structure copy assignment changes only the SSA number
associated with the structure as a whole. For example a field reference may look
like x = al . bl. c2. d5 ;. In this case the meaning of two references to having the
same Extended SSA Numbers means that each corresponding structure/field
have matching Extended SSA Numbers.

We chose to implement method 2. Method 2 is more cumbersome but for us it is
important to have the primary SSA number for pointer varialJles to structures (eg.
x = (* pl,z).b4;)- We need this information to support further pointer analysis.
Figure 9 shows a sample program manipulating points with SSA numbers assigned
to structures for both methods. In method 1 at statement S.~O new SSA numbers
for both fields x and y were generated. In method 2 at statement $41 only the
SSA number for the structure a was generated and the SSA numbers for its fields
remained the same.

$40:

s t ruct {
int x,y;

} a,b;
mt v;

a.xl = 0;
a.yl = 0;
b.Xl = 1;
b.yl = 1;
a - - - b ;
vl = a.x2 q- a.y21

(Method 1)

$41:

struct {'
int x,y;

} a,b;
mt v;

al.xl = 0;
al.yl = 0;
bt.xl = 1;
bl.yl = 1;
a = b ;
vl = a2.xl q- a2.yl;

(Method 2)

Fig. 9. Example program showing SSA numbers for structures using both methods

4 P r o p e r t i e s o f E x t e n d e d S S A N u m b e r i n g

As mentioned in section 1 Extended SSA Numbering is not SSA form and does
not have all the properties of SSA form. Some properties were lost and some new
properties for pointer variables have been introduced. Let us consider more closely
the properties of Extended SSA Numbering.

4.1 Fac to red u se -de f a n d defouse chains

First, because Extended SSA Numbering has no C-nodes we can not use it to get
use-def and def-use chains. For this reason we need reaching definitions as a sepa-
rate analysis. The McCAT compiler is equipped with this analysis where for each
definition point a set of statements is stored indicating all the statements where this
newly generated value may possibly be used. Also, for all variable references a set
of statements listing the possible definitions points that may reach the reference is
stored at the reference point.

138

It is commonly pointed out that using SSA form to provide use-def and def-use
chains is space efficient, where as the space requirement for storing sets of possible
uses and sets of possible definitions can grow very quickly. In theory, this is very
true; however, we have tested a significant number of benchmarks and on average
programs do not require more then two or three elements per set. Considering that
in SSA form one requires to insert 6-nodes, we feel the cost to be not significant.
We refer the reader to the longer version of this paper as a technical memo[LH96]
for some empiriCal data.

4.2 ~Same N a m e - Same Va lue" P r o p e r t i e s

Even though SSA Numbers does not support factored use-def and def-use changes,
we can state the following important properties.

P r o p e r t y 1 Two references of variable v at statement S and statement T will pro.
duce the same value i f SSA#(v ,S) = S S A # (v , T) 1

Note that SSA~(v,S) returns the primary SSA number ofv at statement S. Similarly
for indirect references

P r o p e r t y 2 Two indirect references of a pointer *p at statement S and statement
T will produce the same value if SSA#(p ,S) = SSA#(p ,T) and ExtSSA#(p,S) =
ExtSZA #(p,T) I

Note that ExtSSA#(v,S) returns the secondary SSA number of v at statement S.
Further, using Extended SSA numbers as part of the name we can derive two more
properties.

P r o p e r t y 3 Two references of variable v at statement S and statement T will have
identical sets of possible definition points If SSA#(v ,S) = SSA #(v ,T}

P r o p e r t y 4 Two indirect references of a pointer *p at statement S and statement
T will have identical sets of possible definition points if SS'A#(p,S) = SSA#(p ,T)
and ExtSSA#(p,S) = ExtSSA#(p ,T) .

5 A p p l i c a t i o n s o f E x t e n d e d S S A N u m b e r i n g

Based on the properties presented in the previous section, we can use Extended SSA
Numbering in many subsequent analyses and transformations. In this section we
outline some of the uses that have been implemented in the McCAT compiler.

5.1 Symbol ic analyses

When studying methods for symbolically comparing expressions we encountered the
need to recognize when two symbols represent the same value. For example, in Array
Dependence Testing [JH94, Lap97] it is often useful to perform symbolic simplifica-
tion before applying a dependence tester. Consider the case of comparing the two
index expressions, ± + *p and ± + *p + 1, where ± is the loop induction variable.
If we can determine that *p denotes the same value in both index ex)ressions, then
we can subtract *p from both expressions, can reduce the test to comparing the ex-
pressions ± and i + 1. According to property 2, we can just test if both the primary
and secondary SSA numbers are the same for both uses of *p.

I Because Extended SSA Numbering as we]] as SSA form are static analyses we assume
statements are Within the same loop iteration and function call invocation.

139

5.2 I n d u c t i o n v a r i a b l e s

Wolfe [Wol92] has presented a method for recognizing induction variables and com-
puting their formulas based on an SSA form. If one does not have SSA form or the
programming language they are analyzing makes SSA form difficult to implement,
then to recognize induction variables one must recognize when the pair (variable,
set of reaching definitions) has already already visited when performing backward
substitution. Properties 3 and 4 indicate that SSA numbers can be used to detect
when the set of reaching definitions are the same.

5.3 R e c o g n i t i o n o f ref p a r a m e t e r s

In C there exists no syntax for passing parameters by reference and thus to accom-
plish this Programmers use explicit pointers. Optimizing compilers may benefit from
knowing that some particular pointer parameters are really r e f parameters. Pro-
grammers can also be aided by a tools that automatically indicates which pointers
are being used to implement r e f paramemters.

Extended SSA numbers can be used to detect r e f parameters. If the primary
SSA number of a formal pointer parameter remains constant throughout the body
of the function, then we can guarantee that the pointer itself is never updated, and
thus it behaves like a r e f parameter.

5.4 S t r e n g t h e n i n g r e a c h i n g d e K u i t i o n s

Consider the example in Figure 10. %Ve are interested in the possible definitions of
*p. When analyzing statement $34 we have that a is defined at $32 and m is defined
at $33. Statement $34 introduces a new definition but we don't know which variable
it is defining until run time. It could be introducing a new definition for n or for m.
Because we don't know which, we must be conservative and say that from now on
the possible definitions for n are {$32, S34} and for m they are {$33, $3/,}. Then at
statement $35 we conclude that the reaching definitions for *p is the union of the
reaching definitions for a and ,, which is {$32, $33, $34}.

~f(...)
Pl = &n"

else

P2 = &m:

$32:n2 = 1;
$33:m2 = 2;
$34:*p3,1 = 3; /*

$35: x = *P3.1 +

Cannot kill defs $32, $33 */

1; / , ~s~ible de/ o/ ,p = {S~e, SSS, SS4} , /

Fig. 10. Example of reaching definitions for pointer references.

Now let us use Extended SSA Numbering to make more precise reaching defini-
tion sets. If SSA#(p,S35) = SSA#(p.S3¢) and ExtSSA#(p,S35) = ExtSSA#(p,S3¢)
then the value returned by *p at s tatement S35 will be same as the one produced
by statement $3,~. We can thus state that the sole reaching definition is $34.

~40

5.5 R e d u c t i o n o f indirect r e f e r e n c e s

Based on the result from section 5.4, we can note that some definitions and uses
via indirections could be replaced by" definitions and uses of scalars. This improves
the program by reducing the number of memory accesses, promoting more accesses
to registers, and conveying more detailed dependence analysis to the instruction
scheduler.

The transformation operates as follows. Each t ime we recognize a definition and
uses via indirection of the same pointer such tha t bo th primary and secondary SSA
numbers match we introduce a scalar t emporary variable to pass the value without
indirection to all matching uses. Similarly, if there is more than one indirect reference
via the same pointer such that bo th pr imary and secondary SSA numbers match
is recognized, the referenced value is stored in a temporary variable to be accessed
directly in the future matching uses. The two transformations are illustrated in
Figure 1 I. Care als0 has to be taken to ensure tha t the statement at which the value
is stored into a temporary dominates -~ all the matching uses being replaced.

*Pa,b = expr; trap = e.xpr;
*pa,b = trap;

x = *pa,b; x = trap;

y --= *p~,b; y = trap;

x ~ *Pa,b; trap = *Pa,b;
x = t m p ;

Y = *Pa,b; y = trap;

z = *p~,~; z tmp;

Fig. 11. Two transformations to reduce indirect references

We have implemented this t ransformat ion in McCAT and we would like to stress
the importance of providing SSA Numbers for structures because it is rare for this
optimization to be applicable otherwise. Table 1 gives a list of benchmarks where
our transformation was applied. Table 2 shows the effectiveness of our transforma-
tion. For each benchmark table 2 gives the number of times the transformation was
applied, statically on average how m a n y indirect references were saved by applying
the transformation, and finally how many indirect references were avoided at run
time for one example input.

The effectiveness of this t ransformation varied greatly. For example two bench-
marks f r a ¢ and v l s i produced very little benefit at run time, even though the
benchmark f r a c applied the t ransformat ion more times then any other. On the
other hand a benchmark like p u z z l e produced the most benefit at run time even
though there was only one place in the program were we could apply the transfor-
mation.

5.6 I m p r o v i n g H e a p D e p e n d e n c e T e s t s

The McCAT compiler supports a wide variety of heap analyses, including connection
analgsis[GH96, Ghi96]. Connection analysis determines, for each program point,
which heap-directed pointers can point to the same data structure. In order to

2 Statement S dominates statement T if and only if S is in every execution path from the
START to T

141

Name Descraptlon
vlsi VLSI chip testing problem
frac Represents floating point as a quotient of two integers
chomp Simple game solver using game tree
queens N Queens problem
stanford Stanford baby benchmark suit from John Hennessy
travel Traveling Salesman problem
puzzle Solve 15 numbered square puzzle

Table 1. List of benchmarks to which we applied our indirect reference reduction.

Num I Avg. Static Dynamic
Benchmark Transf. l Savings Savings
vlsi 2 1 1
frac 7" 1.29 25
chomp 4 1.50 138
queens 5 1 12,513
stanford 2 l 38,450
travel 1 9 67,037
puzzle 1 1 339,579

Table 2. Results of applying our indirect reference reduction transformation.

make connection analysis useful for dependence testing one must introduce the idea
of anchor handles, or symbolic pointers that capture the value of a heap-directed
pointer at a specific program point. Without Extended SSA Numbers, one must
create a new anchor handle for each indirect assignment in the program. However,
using Extended SSA Numbers, anchor handles can be reused if the primary SSA
number does not change. This optimization reduces the number of anchor handles
by over 50% [Ghi97].

5.7 Summary

Overall, we have found that SSA numbers are useful for many of our subsequent
analyses and transformations, and SSA numbers are now an integral part of our
compiler.

6 Related Work
Most previous work has concentrated on extending SSA form to accommodate
pointers[CG93, CCL+96]. Both of these cases assume the compiler uses SSA form as
its intermediate representation, and SSA form must be extended to handle pointers.

The first approach, by Cytron and Gershbein [CG93], concentrats on assignments
via pointers. They devised a well behaved function, I sAl i a s (p, v), taking a pointer
p and a variable v and does the following operation. If pointer p actually points to v,
it returns the value of *p, otherwise it returns the value of v. After each assignment
of the form *p=. . . a series of statements of the form v_2 = I sAl ias (p,~v_:D ; are
inserted for each variable that p can point to. This has the effect of giving new names
to all variables that can point to p. This is an good idea, but only solves part of the
problem. It does not completely address indirect references on the rhs of assignments
(. . . . *p), nor does it handle statements of the form p = ~v.

142

A more complete, and more complicated, approach was suggested by Chow et.
al. [CCL+96]. In this case new sorts of operators: the tt operator to model MayUses,
and the X operator to model MayDefs. In order to reduce the number of versions
required in this approach, they suggest the use of zero versioning which restricts
the number of versions for variables that do not correspond to real variables. The
technique appears to handle all of the complexities of aliases in C and Fortran, and
has been implemented in in the WOPT global optimizer.

Our approach does not attempt to incorporate pointers into SSA form. Rather
we take some of the nice properties of SSA form, and capture these via SSA numbers,
and then give a very simple method for handling pointers via Extended SSA numbers.
Thus, our approach is useful for compilers using a non-SSA intermediate form (for
example, any structured Abstract Syntax Tree, or control flow graphs). Our approach
is simple, and it does not require changing the structure of the intermediate form.
We merely store Extended SSA numbers with variable uses and definitions.

7 Conclusions

We have introduced an analysis called Extended SSA Numbering which provides
some of the properties of SSA form, even in the presence of pointers. A primary SSA
number is associated with each scalar variable, and primary and secondary SSA
numbers are associated with each pointer variable~ Variables with the same SSA
numbers denote the same value, and have the same set of reaching definitions. These
properties are useful for a wide-range of subsequent analyses and transformations.

We have provided a simple and efficient algorithm for computing Extended SSA
Numbers. Our algorithm operates on a structured intermediate representation, the
SIMPLE form of the McCAT compiler. However, the general idea holds for any
intermediate representation that has points-to and read/write set information.

Extended SSA Numbers have been implemented in the McCAT C compiler, and
they are used in many subsequent phases in the compiler. We demonstrated several
of these applications including their use in symbolic analyses and a transformation
to reduce the number of indirect references.

References
[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality

of variables in programs, in Conf. Rec. of the Fifteenth Ann. A CM Syrup. on
Principles of Programming Languages, pages 1-11, San Diego, Calif., Jan. 1988.

[BM94] Marc M. Brandis and Hanspeter M6ssenb6ck. Single-pass generation of static
single-assignment form for structured languages. A CM Trans. on Programming
Languages and Systems, 16(6):1684-1698, Nov. 1994.

[CCL+96] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effec-
tive representation of aliases and indirect memory operations in ssa form. In
Proceedings of the International Conference on Compiler Construction, pages
253-267, 1996.

[CFR+89] lion Cytron, Jeanne Ferrante. Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. An efficient method of computing static single assignment
form. In Conf. Rec. of the Sixteenth Ann. ACM Syrup. on Principles of Pro-
gramming Languages, pages 25-35, Austin, Tex., Jan. 1989.

[CFR+9I] Ron Cytron, Jeanne Ferrante. Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form and
the control dependence graph. ACM Trans. on Programming Languages and
Systems, 13(4):451-490, Oct. 1991.

143

[CG93]

[EGH94]

[EH94]

[Ero95]

[GH96]

[Ghi96]

[Ghi97]

[HDE+92]

[JH94]

[Lap97]

[LH96]

[RWZ88]

[SG95]

[Wom2]

Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias infor-
• marion in SSA form. In Proe. of the ACM SIGPLAN '93 Conf. on Programming

Language Design and Implementation, pages 36-45, Albuquerque, N. Mex., Jun.
1993.
Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive in-
terprocedural points-to analysis in the presence of function pointers. In Proc.
of the ACM SIGPLAN "9~ Conf. on Programming Language Design and Imple-
mentation, pages 242-256, Odando, Flor., Jun. 1994.
Ana M. Erosa and Laurie J. Hendren. Taming control flow: A structured ap-
proach to eliminating goto statements. In Proc. of the 1994 Intl. Conf. on
Computer Languages, pages 229-240, Toulouse, France, May 1994.
Ana Marie Erosa. A goto-elimination method and its implementation for the
McCAT C compiler. Master's thesis, McGill U., Montr4al, Qu&, May 1995.
Rakesh Ghiya and Laurie J. Hendren. Connection analysis: A practical inter-
procedural heap analysis for C. Intl. J. of Parallel Programming, 24(6):547-578,
1996.
Rakesh Ghiya. Practical techniques for interprocedural heap analysis. Master's
thesis, McGill U., Montreal, Qu&, Jan. 1996.
Rakesh Ghiya. Putting Pointer Analysis to Work. Phi) thesis, McGiU U.,
Montr4al, Qu&, Nov. 1997.
L. Hendren, C. Donawa, M. Emami, G. Gag, Justiani, and B. Sridharan. De-

signing the McCAT compiler based on a family of structured intermediate rep-
resentations. In Proc. of the 5th Intl. Work. on Languages and Compilers for
Parallel Computing, number 757 in Lec. Notes in Comp. Sci., pages 406-420,
New Haven, Conn., Aug. 1992. Springer-Verlag. Publ. in 1993.
Justiani and Laurie J. Hendren. Supporting array dependence testing for an
optimizing/parallelizing C compiler. In Proc. of the 5th Intl. Conf. on Com-
piler Construction, number 786 in Lec. Notes in Comp. Sci., pages 309-323,
Edinburgh, Scotland, Apr. 1994. Springer-Verlag.
Christopher Lapkowski. A practical symbofic array dependence analysis frame-
work for c. Master's thesis, McGill U., Montr4al, Qu4., Jun. 1997.
Christopher Lapkowski and Laurie J. Hendren. Extended SSA numbering: In-
troducing SSA properties to languages with multi-level pointers. ACAPS Tech.
Memo 102, Sch. of Comp. Sci., McGill U., Montr4al, Qu4., Apr. 1996. In
ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.
Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value num-
bers and redundant computations. In Conf. Rec. of the Fifteenth Ann. ACM
Syrnp. on Principles of Programming Languages, pages 12-27, San Diego, Calif.,
Jan. 1988.
Vugranam C. Sreedhar and Guang R. Gag. A linear time algorithm for plac-
ing &nodes. In Conf. Rec. of the 2£nd ACM SIGPLANSIGACT Syrup. on
Principles of Programming Languages, pages 62-73, San Francisco, Calif., Jan.
1995.
Michael Wolfe. Beyond induction variables. In Proc. of the ACM SIGPLAN '92
Conf. on Programming Language Design and Implementation, pages 162-174,
San Francisco, Calif., Jun. 1992.

