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Abst rac t .  We recall the basic definitions concerning homotopy in 2D 
Digital Topology, and we set and prove several results concerning homo- 
topy of subsets. Then we introduce an explicit isomorphism between the 
fundamental group and a free group. As a consequence, we provide an 
algorithm for deciding whether two closed path are homotopic. 
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Introduction 
Homotopy in the framework of Digital Topology is an important question in the 
field of Image Analysis. In particular, T. Y. Kong introduced a notion of the 
digital fundamental group in the 3-dimensionnal  digital Euclidian space ([1]), 
and in a more genaral framework ([2]). The purpose of this paper is to study 
the corresponding notion in the 2-dimensional  digital space. First we recall the 
basic definitions concerning homotopy in 2D Digital Topology. Then we set and 
prove several results which are required in the sequel concerning homotopy of 
subsets. Finally we introduce an explicit isomorphism between the fundamental 
group of any object with m holes and and the free group with rn generators. As 
a consequence, we provide an algorithm for deciding whether two closed path 
are homotopic or not in a given arbitrary object. The computational complexity 
of this algorithm is the sum of the lengths of the two considered paths. 

1 Basic definitions and notations 

If X is a subset of Z 2, we denote X = Z 2 \ X  the complement of X.  In this paper, 
we shall consider only finite subsets X of Z 3. For x = ( i , j )  E Z 2, we consider 
the two following neighborhoods: 

g4(x)  = {y- -  ( i ' , j ' )  e Z 2 / l i - i ' t  + I J -  J'l = 1} ; 
Ns(x) = {y = (i ' , j ' )  e Z 2 / max(t i  - i' I, lJ - J't) = 1}. 

Let n E {4, 8}. Two points x and y of Z 2 are said to be n -ad j acen t  if y E 
Nn(x).  This n - ad j acency  relation defines a graph structure on Z 2, called the 
n - ad j acen cy  graph. For any subset X of Z 2, n-connected components of X are 
connected components of the subgraph of the n -ad jacency  graph induced by X.  
The set X is said to be n-connected if it has a single n -connec ted  component. 
As usual, when we analyze a set X C Z 3 using an n-connec t iv i ty  type with 
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n E {4, 8}, we analyze X with a different ~ -connec t iv i ty  with ~ = 1 2 - n .  In the 
sequel, we consider (n,~) E {(4,8), (8,4)}. An n - h o l e  in X C Z 2 is a bounded 
~ -connec t ed  component  of X. A finite n-path is a finite sequence ( x o , . . . ,  xp) 
such that  for i E {1 , . . .  ,p} the point x i - i  is n - a d j a c e n t  or equal to x~. Such a 
finite n - p a t h  is said to be closed if x0 = Xp. An infinite n-path is a sequence 
(x~)~N such that  for i E N* the point xi-1 is n - a d j a c e n t  or equal to xi. Such 
an infinite n - p a t h  is called simple if i ~ j ~ xi ~ xj. If ~r is a finite or 
infinite n - p a t h  of Z 2, we denote by ~r* the set of the points of ~r. We also denote 
by ~r,  ~r' the concatenation of two finite n - p a t h s  ~r and ~r'. Given an n - p a t h  
zr = (xo , . . .  ,xp), we denote by ~_-1 the n - p a t h  (Xp,... ,x0). 

Now we need to introduce the n-homotopy relation between n - p a t h s .  Let 
us consider X C Z 2 and two points B E X and B ~ E X.  We also consider 
A~, B, (X) the set of all closed n - p a t h s  7~ = (Xo, . . . ,  xp) which are included in 
X and such that  x0 = B and xp = B t. First we introduce the notion of an 
elementary deformation. Two finite n - p a t h s  7c E A~, B, (X) and 7d E A~, B, (X) 
are said to be the same up to an elementary deformation (.with fixed extremities) 
if they are of the form ~r = 7rl * 7 * 7r2 and ~r s = 7rl * 7~ * 7r2, the n - p a t h s  "7 
and 3 ,~ having the same extremities and being both included in a common unit 
square. Now, the two n - p a t h s  7r E A~, B, (X) and 1r ~ E A~, B, (X) are said to 
be n-homotopie (with fixed extremities) in X if there exists a finite sequence 

. = 7d of such that  for i 1 , . . .  the of n - p a t h s  7r = 7to, . . ,~rm A~,B,(X ) = , m  
n -pa . th s  zci-1 and lr~ are the same up to an elementary deformation (with fixed 
extremities). 

We denote A~ = A" The homotopy relation defines an equivalence reta- B,B 
tion on A~(X), and we denote by H~(X) the set of equivalence classes of this 
equivalence relation. The concatenation of closed n - p a t h s  is compatible with the 
homotopy relation, hence it defines an operation on H~(X), and this operation 
provides II~(X) with a group structure. We cal! th.is group the n-fundamental 
group of X. The n - f u n d a m e n t a l  group defined using a point B ~ as the based 
point is isomorphic to the n - f u n d a m e n t a l  group defined using a point B as the 
based point. 

Now we consider n -connec t ed  sets X C Y C Z e. First we observe that  a 
closed n - p a t h  in X is also a closed n - p a t h  in Y. Moreover, two n - h o m o t o p i c  
closed n - p a t h s  in X are also n - h o m o t o p i c  in Y. These two properties enables 
us to define a canonical morphism i ,  : H~(X) ---+ H~(Y) which is called the 
morphism induced by the inclusion i : X - -+  Y. 

Now we must introduce an algebraic notion called the free group with m 
generators. Let {a l , .  am} U {a~-l,.° a -1 • -~ .~ m } be an alphabet  with 2m distinct 
letters, and let Lm be the set of the all words over this alphabet  (i.e. finite 
sequences of letters of the alphabet).  We say that  two words w E L m  and w x E L,~ 
are the same up to an elementary simplification if, either w can be obtained from 
w ~ by inserting in w ~ a sequence of the form a~a~ 1 or a sequence of the form a~lai 
with i E {1~.. . ,  m}, or w' can be obtained from w by inserting in w a sequence 
of the form a~a~ 1 or a sequence of the form ai-la~ with i E { 1 , . . . , m } .  Now, 
two words w E L m  and w' E Lm are said to be free equivalent if there is a finite 
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sequence w = w l , . . . ,  Wk = w ~ oi words of Lm such tha t  for i = 2 , . . . ,  k the word 
wi-1 and wi are the same up to an elementary simplification. This defines an 
equivalence relation on Lm, and we denote by :Tn the set of equivalence classes 
of this equivalence relation. If  w E L m ,  we denote by ~ the class of w under the 
free equivalence relation. The concatenation of words defines an operation on ~'n 
which provides :Tn with a group structure. The group thus defined is called the 
free group with m generators. We denote by 1,~ the unit element of -~m, which is 
equal to ~ where w is the empty word. The only result which we shall admit  on 
the free group is the classical result that  if a word w E L~ is such that  ~ = lm 
and w is not the empty  word, then there exists in w two successive letters aia~ -1 
or aT, lai with i E {1 , . . . ,  m}. This remark leads to an immediate algorithm to 
decide whether a word w E Ln is such that  ~ = l m .  

2 O n  t h e  f u n d a m e n t a l  g r o u p  o f  s u b s e t s  

In this section, we s tate  and prove some results relative to inclusion of sets and 
the fundamental  group. First we set a definition : 

D e f i n i t i o n  1. Let X C Z 2 and x E X.  The point x is called n-simple if the 
number  of n - c o n n e c t e d  components of Ns (x) M X which are n - a d j a c e n t  to x is 
equal to 1, and N~(x) 0 X ~ ~. 

Observe that  if x E X is such that  Nn(x)MX is nonempty such that  N~(x)M 
~ ~, then x is n - s i m p l e  if and only if the number of ~ - connec t ed  components 

of Ns(x)  M X which are ~ - a d j a c e n t  to x is equal to 1. 
Let X C Y C Z 2. The set X is said to be lower n-homotopic to Y if X can 

be obtained from Y be deleting sequentially n - s i m p l e  points. In this case the 
set Y is called upper n-homotopie to X .  Finally, the set X and Y are called 
n-homotopic if there exists a finite sequence X 0 , . . . , X m  C Z 3 of sets such 
tha t  X = X0 and Y = Xm and for i = 1 , . . . , m  the set Xi-1  is either lower 
n - h o m o t o p i c  or upper n - h o m o t o p i c  to Xi. 

L e m m a  2. Let X C Z 2, let B, B ~ E X and x E X an n-simple point which 
is distinct from B and B'. Then i~ two n-paths 7c and ~r' o/ A~, s, (X \{x} )  are 
n-homotopic (with fixed extremities) in X ,  they are n-homotopie in X \  {x}. 

P r o o f i  First, i fc  = (x0 , . . . ,  xp) is an n - p a t h  in X such that  x0 ¢ x and xp ~ x, 
we define an n - p a t h  P(c) as follows: For any maximal sequence a = (xk , . . .  ,xl) 
with 0 < k < l < p of points of c such that  for i = k , . . . , l  we have xi ~ x, we 
define c(~) = a. For any maximal  sequence a = (Xk, . . . ,  xl) with 1 < k < 1 < p 
of points of c such that  for i = k , . . . , l  we have xi = x, we define c(a) as 
equal to the shortest n - p a t h  in Ns(x) MX from xl-1 to xk+l. Now, P(c) is the 
concatenation of all c(cr) for all maximal sequence a = ( x k , . . . ,  xl) of points of 
c such that  either for i = k , . . . , l  we have xi ~ x or for i = k , . . . , l  we have 
Xi ~ - X .  
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Now, it is sufficient to prove that  if ~r and ~r' are two elements of A~, B, (X) 
and axe the same up to an elementary deformation, the two n - p a t h s  P(~r) and 
P(Tr') also are the same up to an elementary deformation. Hence we assume ~r 
and 7d are of the form ~r = ~h "7"7r2 and ~r t = ~rt *Tt*~r2, the n - p a t h s  7 and 7 ~ 
having the same extremities and being both included in a common unit square 
S. Without  loss of generality, we assume that  x E S. Let ~1 = (Xl ,o , . . . ,  Xl,kl ) 
and ~ = (x2,0,. . .  ,x2,k2). We denote by a t  the shortest n - p a t h  in Ns(x)  f3 X 
from the last point of r l  to S, and we denote by a2 the shortest n - p a t h  in 
Ns(x) f3 X from S to the first point of ¢c2. We denote a t  = (Yt,0,. . . ,Yt,kl) 
and a2 = (Y2,0,... ,Y2,k~). Finally, we define 5 = (yt,k~)* 7 * (y2,0), and 5 t = 
(Yt,k~) * 7 ' *  (Y2,0). Now we have P(~r) = (P(Th) * at)  * P(5) * (a2 * P(~r2)) and 
P(zr') = (P(~h) * al )  * P(5') * (as * P(~r2)). Since P(5)  and P(5') have the same 
extremities and are both included in the unit square S, the n - p a t h s  P(Tr) and 
P(Tr') are the same up to an elementary deformation. 

C o r o l l a r y  3. Let X C Y C Z 2 be such that X is lower n.-homotopic to Y.  Let 
B, B t E X .  Then if two closed n-paths  7r and ~r ~ of A~, B, (X)  are n-homotopic 
(with fixed extremities) in Y ,  they are n-homotopic in X .  

L e m m a  4. Let X C Z 2, let B, B ~ E X and x E X an n-s imple  point distinct 
from B and B'.  Then any n-path  c of A~,B, (X ) is n-homotopic (with fixed 
extremities) to an n-path  contained in X \  {x}. 

P r o o f i  Let P(c) be the n - p a t h  as defined in the proof of Lemma 2. It  is easy 
to see that  c is n - h o m o t o p i c  (with fixed extremities) to P(C).  [] 

C o r o l l a r y  5. Let X C Y C Z 2 be such that X is lower n-homotopie to Y ,  
and let B, B'  E X .  Then any n-path  c o/ A~, B, (Y) is n -  homotopic (with fixed 
extremities) to an n -pa th  contained in X .  

C o r o l l a r y  6. Let X C Y C Z 2 be such that X is lower n-homotopic to Y .  
The morphism i .  : FIX(X ) ---4 FIX(Y ) induced by the inclusion map is a group 
isomorphism. 

The following result is folklore: 

T h e o r e m  7. Let X C Y C Z 2 be two n-connected sets. Suppose that any 
n-connected component o] X contains exactly one n-connected component o/ 
Y .  Then X is lower n-homotopic to Y .  

3 T h e  n o n c o m m u t a t i v e  w i n d i n g  n u m b e r  

In this section, for any X C Z 2 with m n -ho l e s  and B E X,  for any c E 
A~(X) ,  we define a word W C Lm. The corresponding element W of ~m is 
called the noncommutative winding number of c. The idea is the following: first 
we chose a point Pi in the i th n - h o l e  of X.  Then we consider a particular infinite 
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simple 4 - p a t h  7r which contains all points P i , - . . ,  Pro. By remaining P1 , - . . ,  P,~ 
if necessary, we may assume that the order in which the Pi's appear in 7r is 
the order of increasing i's. Then we construct the word w following c, adding a 
symbol a~ or a~ -1 to the word we construct each time c crosses the section of 7r 
between P~ and P~+~, depending on how c crosses m For instance, in Figure 1, 
the noncommutative winding number is equal to a21a, a2a~ 1. 

~ f  X 

Fig. 1. Example with non commutative winding number equal to a~*ala2a-~ 1. 

Let us now consider all this more precisely. In the following, X is a subset 
of Z 2 with m n-holes .  We chose a point P~ = (a~,/3i) in the i TM n - h o l e  of X. 
Let R = [a, b] x [a', b'] be a rectangle such that  X is contained in R. We denote 
X, = R \ { P l , . . . ,  Pro}. 

We construct a particlular infinite simple 4 - p a t h  ~r = (Yl){eN (see Figure 2) 
as follows: Let kl = b + l - a , ,  and for j = 2 , . . . , ~ m  - i l l  + 1 ,  let kj = 
k j _ 1 + b - a + 3 .  For convenience, we set k ~ - ~ + 2  = +c~. For i E {0, . . .  kl} we set 
yi -- ( a l + i ,  ill), and for kj < i <_ kj+l with j >_ 2, we set Yi = ( a + i - k j , f l , + j - 1 )  
if j is even and Yi = (b - (i - kj),  fll + j - 1) otherwise. 

f f  " " ~  

Pl" . . . . . .  / 
R X J 

7r 

Fig. 2. The 4-path ~r. 

In other words, 7r is the concatenation of strait line segments, [ ( a -  1,/~1 + j -  
1), (b + 1, ~1 + j - 1)] or [(b + 1, fiI + j - 1), C a - 1, fll + j - 1)], depending on the 
parity of j (except for j = 1 for which we have a segment [(al, ill), (b + 1, fl,)]). 
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By remaining the Pi's if necessary, we may assume that the order in which 
they appear in the 4 - p a t h  ~r is the order of increasing i's. 

Now, for k = 1 , . . . ,  m, we denote by ek the unique integer such that  Yek = Pk. 
For convenience, we denote em+l -= +co. We denote by Ia the interval of integers 
{ek , . . . ,  ek+l}. We also denote ~r(lk) = {Ye~,..., Y~k+l}. 

In the sequel, B is the base point of X and we assume without loss of gen- 
erality that  it has its second coordinate less than ~1. In particular, B ~ ~r*. 
In the sequel of this section, c = (x0 , . . . , xp )  is an element of A~(X1) .  For 
i = 0 , . . . , p ,  we denote xi = (xij ,xi ,~).  For k = 1 , . . . , m ,  we call maximal se- 
quence of indices of points c* N 7r(I~ ) any interval {i, . . . , j }  of integers such that  
{x i , . . .  , x j }  C ~r(Zk), xi-~ ¢ ~r(/~) and xj+~ f~ ~r(I~). 

Let { i , . . .  , j }  be a maximal sequence of indices of points c* Nr( Ik) .  Observe 
that  xi,2 - xi- l ,2 = :t:1 and Xj+l ,2-xj ,2  = =1:1. We denote Wb#(C, P1 , . . . ,  Prn) = 
(x i ,2 -x i - l ,2 ) . ( -1 )  (~''~-~) and We,j(c, P I , . . . ,  Pro) = (x j+l ,2-x j ,2 ) . ( -1)  (~;'2-fh) 
We define the contribution of i to the noneommutative winding number of c rel- 
ative to {P1 , . . . ,  Pro}, the element of J-'m defined by: 

2 W (c, P 1 , . . . ,  = ak 
~ ( c ,  PI ,o . . ,  Pro) is an element of 5rm which is equal either to ak, or to a~ -1, 

or to lm. For convenience, we denote Wi(c, P 1 , . . . , P m )  = l m  if i is not the 
smallest element of a maximal sequence of indices of points of some c* A 7r(Ik) 
with k E { 1 , . . . , m } ,  so that Wi(c, P1, . . .  ,~Pm) is defined for any i E {0 , . . . , p} .  

D e f i n i t i o n  8. We call noncommutative winding number of c 
{Pt ,oo . ,Pm} the element of 5cm defined by: 

P 

W(c,  P t , . . . , P m )  = ~ I  W~(c, Pt , .  . . ,Pm)  
i-=O 

relative to 

Observe that,  since ~cm is not an abetian group, the order in which the 
product  is defined in this last definition must be respected. 

We also define a word W(c,  P1, . . . ,Prn)  of Lm by the sequence of letters 
obtained by replacing the element Wi(c, P1, . . . ,  Pro) of Ym by the corresponding 
letter ak or ak 1 if Wi(c, P1 , . . . ,  Pro) 7 ~ 1,.~ in the product of the last definition. 

4 M a i n  r e s u l t s  

The purpose of this section is to prove that W(c, P1, . . .  ,Pro), the noncommu- 
tative winding number, depends on the n - p a t h  c only up to homotopy, so that  
a map from I I~(X)  to ~m is defined. Then we prove that this map is a group 
isomorphism. 

T h e o r e m  9. I f  two n-pa ths  c,c I E A~(X1)  are n-homotopic  (with fixed ex- 
tremities), then W ( c, P1, . . . , Pro) = W ( c', P 1 , . . . ,  Prn) 

P r o o f :  We only need to prove this result when c and c' are the same up to an 
elementary deformation. So, let c = cl * 7 * c~ and c' = cl * ~/i, c2, the n - p a t h s  
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7 and V' having the same extremities and being both included in a common 
unit square S. If 7 and 7'  are both included in 7r(Ik) with k e {1 , . . .  ,m},  the 
result is obvious. Hence we may assume that  S meets two sets ~r(Ik) and :r(Ik,) 
with k # k'. Moreover, it is easily seen that the unit square S meets at most 
two sets of the form 7r(Ij) with j E {1 , . . .  ,m}.  Hence the two lower points of 
S are, say, in ~r(Ik) t_J { P I , . . . ,  Pro} and the two upper points of S then are in 
7r(Ik,) U { P l , . . . ,  Pro}. 

We denote c = (xo, . . . ,xv)~ c' = (X~o,...,x'v), for i e {O, . . . ,p}  x~ = 
I ! I (X~,l,X~,2) and for i E {O, . . . ,p '}  x~ = (xi,l,x~,2). We also denote 7 = 

(xio, • • . ,  x~ ) and 3" = (X~o,..., z~i). 
' = x '   (Ik, Let us consider the case when x~ 0 = xio E ~(Ik) and xi~ q E ). 

Let d = m i n ( { j  > io / xj  e 1r(Ik,)}) and d' = min( { j  >_ io / x~ E Ir(Ik,)}). 
Let f = m a x ( { j  < il / xj  E ~(Ik)}) and f '  = m a x ( { j  < i~1 / x~ E r ( Ik)}) .  
If ( i , . . .  , j )  is a maximal sequence of indices of points of c* N x(I~) which is 
included in { io , . . .  , i l } ,  i f j  # d - 1 and i # f + 1 we have Wb#(C, P i , . . .Pro)  = 
- W e j ( c ,  P1 , . . .Pm) ,  hence g/~(c, P 1 , . . . , P m )  = lm. Similarly, for ( i , . . . , j )  a 
maximal sequence of indices of points of d* N ~r(Ik) which is included in 
{ i0 , . - . ,  i~}, i f j  # d ' - I  and i # f f + l  we have Wi(c', P 1 , . . . ,  Pro) = lm. Hence we 
consider ( i , . . . ,  d -  1) the maximal sequence of indices of points of c* Nv(Ik) which 
contains d - 1, and we consider ( i , . . . ,  d' - 1) the maximal sequence of indices 
of points of c'* N 7r(Ik) which contains d' - 1. We have We,d-l(C, P1 , . . . ,  Pro) -: 

p 
! (-1)(~-~,2-z~) = (-1)(%'-~. 2-z~) = l/Ve,~,_~(c ,P~ , . . .  ,Pro). On the other hand, 

we have Wb,i(c, P 1 , . . . , P m )  = Wb, i (c ' ,P1, . . . ,Pm),  and therefore 
W i ( c , P ~ , . . . , P m )  = W~(c ' ,PI , . . . ,Pm) .  Similarly, we can obtain 
WI(c,  P 1 , . . . , P m )  = WI , ( c ' ,P~ , . . . ,Pm ) so that  W ( c , P ~ , . . . , P m )  = 
W ( c', P1, . . . ,Pro). 

The case when x~ o and x~ lie on the same horizontal line is similar, except in 
the case, say, 7 is included in ~r(I~) and 7' is not. In this case, we prove that ,  ei- 
ther W(c,  P~,. . . , Pro) = W(c',  P~,. .  . , Pro), or the word W(c' ,  P ~ , . . . ,  Pro) is ob- 
tained from W(c,  P1 , . . .  ,P,~) by inserting a~a~ 1 or a-~a~ in W ( c , P ~ , . . .  ,P,~). 
In both cases, W(c,  P 1 , . . . ,  Pro) = W(c',  P~ , . . . ,  Pro). [] 

Remark 10. From Theorem 9 follows that  the map c ~ W(c,  P 1 , . . . ,  P,~) from 
A ~ ( X )  to $-m induces a map ~ x  : I I~(X)  .... ~ ,~m. This map ~ x  is a group 
morphism. 

In order to prove that the map ~ x  is a group isomorphism, we first need 
some technical lemmas. 

L e m m a  11. Let c E A~(X1)  be such that W(c,  P I , . . . ,  Pro) is the empty word. 
Then c is n -homotop ic  in X1 to an n - p a t h  which contains only the point B .  

P r o o f :  For convenience, we call 7C(/m+l) and ~r(Im+~) the n - connec t ed  compo- 
nents of X1 \7c*. We also denote m ~ = m + 2. First of all, since 7r* has no n -ho le ,  
is not bounded, and contains all n -ho les  of X1, the set XI \~* has no n -ho le .  
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Hence if we assume that c A 7r* = 0, it follows from Theorem 7 and Corollary 5 
that c is n-homotopic  in Xl\~Tr* to an n - p a t h  which contains only the point 
B. Now, we shall prove that  c is n-homotopic  in XI to an n - p a t h  which con- 
tains only the point B by induction on the number I(c)  of maximal intervals 
{ i , . . .  , j}  such that  there exists k E {1, . . .  ,m'} with {x~,...  , x j }  C ~r(Ik). Sup- 
pose that the result is true for any c' E A~(X1) with Z(c') _< h with h > 0, and 
W(c, P1 , . . . ,  Pro) is the empty word. Suppose that c is such that  Z(c) = h + 1. 
We distinguish two case : 

First case: for all maximal interval { i , . . . ,  j }  of points of c* ~l ~(I~) with k E 
{ 1 , . . . , m ' }  we have: xi-1,2 ~ xj+l,2 or 3k' C { 1 , . . . , m ' }  such that  
{xi-l,2,xj+l,2} C 7r(Ik,). We consider the first maximal interval { i , . . . , j }  of 
indices of points of c* gl tr(Ik) with k E {1, . . .  ,m}  such that  xj+l,2 = xj,2 - 1. 
Since W~(c, P1 , . . . ,  Pro) = l m  and xi,~ = xi-l,2 + 1, x~,2 and xj,2 have the same 
parity, hence they are equal. Therefore, from the assumptions of the first case we 
are dealing with, there exists k' E { 1 , . . . ,  m'} such that  {xi-1,2, xj+t,2 } C ~(Ik, ). 
It is easily seen that  the horizontal straJ.t line segment S = [x~-l, xj+l] is in- 
cluded in ~(Ik,) and that  SU~( Ik )  has no n-hole .  Hence, from Theorem 7 and 
Corollary 5 follows that the n - p a t h  cl = (x i -1 , . . . ,  xj+l) is n -homotopic  with 
fixed extremities to an n - p a t h  contained in S. Therefore, c is n -homotopic  to 
an n - p a t h  c' e A~(X1)  with Z(c ~) = h. Furthermore, it is easy to see that  
W(c', P1 , - . . ,  Pro) is the empty word, hence from our induction hypothesis d is 
n-homotopic  in )(1 to a constant n - p a t h .  This completes the proof in the first 
c a s e .  

Second case: there exists a maximal interval { i , . . . ,  j} of indices of points such 
that  {x~, . . .~x j}  C ~(Ik) with k E ( 1 , . . . , m ' }  such that  x~-i,2 = xj+l,2 and 
Sk' # k" with xi-l,2 E ~r(Ik,) and xj.bl,2 e 7 r ( /k" ) -  Since Xi, 2 # Xi--1, 2 : Xj-kl,2 , 
we have either k < k' and k < k" or k > k r and k > k". We assume for instance 
that k ~ < k" < k. let { i t , . . . , y }  be the last maximal interval of indices of 
points such that  {xi , , . . .  ,x j ,}  C ~r(Ik,,,) with k "  E {1, . . .  ,m'} such that  for all 
j < i" < j '  xi,, e r ( Ik , , )U ' '  'Uu(Ik-1).  We denote by $1 and $2 respectively the 
two horizontal strait line segments [(a, xj,2), (b, xj,2)] and [(a, xj+l,2), (b, xj+l,:)]. 
For any i" ~ {i ~ - 1 , . . .  ,S} we have : xi,, ~ $1 U S~. Since xi,-~ e S~ U Su and 
W~,(c,P~,.. .  ,Pro) = l m ,  we must have xj,+l e $t US2. It is easily seen that  the 
only possibility is that xj,+~,2 = xj,2 and x~,+~ E ~(I~). Hence we can proceed 
as in the first case : The strait line segment S -- Ix./, xj,+x] is contained in ~(I~) 
and in S~. Since (S~ U S~) Ft X~ has no n-hole ,  the n - p a t h  Cl = ( x j , . . . ,  xy+~) 
is n-homotopic  with fixed extremities to an n - p a t h  contained in S, hence, as 
in the first case, c is n-homotopic  to an n - p a t h  c ~ ~ A~(X~)  with Z(c') = h 
and such that  W ( d ,  P~, . . .  ,Pro) is the empty word. [] 

Now we observe that  the definition of Wi(c,P~, . . .  ,Pro) makes sense for a 
non-closed n - p a t h  c = (xo, . . .  ,x~) and for any maximal sequence ( i , . . .  , j )  of 
indices of points of some c* F~ ~r(I~) such that  j ¢ p and i ~ 0. 

L e m m a  12. Let k ~ {1, . . .~m} and e e {-1,1}.  Then there exists an n -pa th  
c = (xo~... ,Xp) from B to a point o f f ( h )  such that (denoting xi = (xi,~,x~,2) 
for i e {0,... ,p}): 
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1. For any maximal sequence ( i , . . . ,  j )  of indices of points of some c* N ~r(Ik,) 
such that j # p and i # 0 we have: Wi ( c ,P~ , . . . ,Pm)  = 0 ; 

2. I f  ( i , . . .  ,p) is the maximal sequence of indices of points of c* N ~r(Ik) which 
contains p we have: (xi,2 - xi-~,2) . (-1)  *',=-& = 6. 

P r o o f i  We distinguish two cases depending on whether ~r(Ik) is included in a 
strait line segment or not. We treat for instance the first case, assuming that 
7r(Ik) is included in a strait line segment S at the height h. Let $1 and $2 be 
respectively the set of the points of R of height h - 1 and h + 1. We assume for 
instance that  h - fll is even. Let at be the first coordinate of the leftmost Pk, 
with k' E {1 , . . . ,  m}. we construct an n - p a t h  c~ by following a horizontal line 
from B to a point M1 having al - 1 as its first coordinate, and then a vertical 
line from the point M1 to the point M2 = ( a l -  1, h + l )  E $2. Since ( S U S 2 ) A X 1  
is n -connec ted ,  there is an n - p a t h  c~ contained in (S U $2) Vt X1 from M2 to 
a point of ~r(Ik). Let cl = ( x o , . . . ,  xp) be the concatenation of c~ and c~. We 
denote xi = (xi,l,xi,2) for i C {0 , . . .  ,p}. Then it is clear that for any maximal 
sequence ( i , . . .  , j )  of indices of points of some c~ A ~r(I~,) such that  j ¢ p and 
i ~ 0 we have: W i ( c ~ , P ~ , . . . , P ~ )  = 0. Moreover, if ( i , . . . , p )  is the maximal 
sequence of indices of points of c~ A zC(Ik) which contains p we have: xi_~ E $2 
so that  (xi,2 - X i - l , 2 ) . ( - 1 )  x ' ' ~ - f l ~  = ( -1 ) . (h  - fl~) = -1 .  

Now, by considering b~ the first coordinate of the rightmost point Pi for 
i = 1 , . . . ,  m, we construct an n - p a t h  c: satisfying the conditions 1. and 2. with 
~ = 1 . ~  

L e m m a  in .  Let c = (xo, . . .  ,Xp) be a closed n - p a t h  with Xo = Xp E ~(Ik) with 
k E {1 , . . .  ,m},  such that or any maximal sequence ( i , . . .  , j )  of indices o]points 
o] some c* N~r(Ik,) such that j ~ p and i ~ 0 we have: Wi(c, P 1 , . . . , P m )  = O. 
Moreover we assume that (denoting xi = (xi,t,xi,2) for i E { 0 , . . . , p } )  if j '  = 
- 1  + min{O < i <_ p / xi ~ ~(Ik)} and i ~ = 1 + max{O <_ i <_ p / xi ~ v:(Ik)}, 
(x¢,2 - xi , -1,2) . (-1)  x ' ' ' : -~l  = - (xy+ l ,2  - xj , ,2) . ( -1)  ~ ' '2 -& • 
Then c is n -homotopic  (with fixed extremities) in X1 to a constant n -pa th .  

P r o o f :  We denote ¢ = (xi,,2 -- xi , -1,2) .(-1)  x~',2-& = -(xj ,+l ,2  - xy,2). 
be the n - p a t h  from B to a point x~, of (-1)~J'. 2 .&.  Let d = (x~o,...,Xp, 

7r(I~) given by Lemma 12. Since 7r(Ik) is n -connec ted ,  we may assume that  
Xp, = x0. The n - p a t h  c is n -homotop ic  in X1 to c '-1 * c' * c * d -1 * c'. Now, 

from Lemma 11, the n - p a t h  c' * c * d -1 is n -homotop ic  in X1 to a constant 
n - p a t h .  Hence c is n -homotop ic  in Xt  to a constant n - p a t h .  D 

T h e o r e m  14. The map ~ x  : / /~ ' (X)  
isomorphism. 

Jz m defined in Remark 10 is a group 

P r o o f :  First we prove that  ~ x  is one to one, i.e. that  W(c,  P 1 , . . . ,  Pro) = l m  
implies that  c is homotopic in X to a constant n - p a t h .  We already have proved 
it (Lemma 11) in the case W(c,  P t , . . .  ,Pro) is the empty word. Now, we prove 
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our result by induction on the length of the word W(c, P1, . . . ,  Pm). Let us as- 
sume that  c = (Xo,...,Xp) E A~(X)  is such that  W(c, PI , ° . . ,P~)  contains 
a sequence aka~ 1 or aklak, say a~a~ 1, and that the result is true for shorter 
n - p a t h s .  Let ( i , . . . ,  j )  and ( i~ . . . , j r )  be the corresponding respective maxi- 
mal sequences of indices of points of c* N .v(Ik) such that  Wi(c, P1, . . . ,  Pro) = 
ak and Wi,(c, P 1 , . . . , P m )  = ak 1. Necessarily, We,j(c, PI , . . . ,Pm)  -~ 1 and 
Wb,i, (c, P 1 , . . . ,  Prn) = -1 .  Let d be an n - p a t h  from x~, to xj which is contained 
in ~r(Ik). We denote ci = (xo , . . .  ,xj), c2 = (x j , . . . , x i , )  and c3 = (xi, , . . .  ,xp) 
Then c = Cl * c2 * c3 is n -homotop ic  in X1 to Cl * e2 * d * d -1 * ca. Now, from 
Lemma 13, c2 * c t is n -homotop ic  with fixed extremities to a constant n - p a t h ,  
so that c is n -homotop ic  to Cl * c '-1 * c3. Since W(cl * d -1 * c3, P1, . . . ,  Pro) is 
the word obtained from W(c, P1, . . . ,  Pro) by removing a sequence akak--1, we 
apply our induction hypothesis to ct * c ' - t  * c3, so that  it is n -homotop ic  in X1 
to a constant n - p a t h .  Therefore c also is. From Theorem 7 and Corollary 5, e 
is then n -homotop ic  in X to a constant n - p a t h .  

Now, for proving that  ~ x  is onto, we only observe that  by applying twice 
Lemma 12 we obtain, for any k E { 1 , . . . , m } ,  an n - p a t h  c such that  
W(c, P1 , . . .  ,P,~) = ok. [] 

C o r o l l a r y  15. There is an algorithm for deciding whether two n-paths c and 
c f of A~(X)  are n-homotopic in X whose complexity is the sum o/the lengths 
of c and d. 

Conclus ion  
Now, besides the characterization of low homotopy of sets using the fundamental 
group, we have a complete presentation of the fundamental group of any object 
in a 2-dimensionnal  digital image. Moreover, since the word problem (i.e. the 
problem of knowing whether a word in the generators is trivial or not) has 
a simple solution in a free group, we can decide whether two closed path are 
homotopic or not. 

Of course~ the same problem exists in three dimensions, but it seems rather 
more complicated. First of M1, we do not have a good characterization of tow 
homotopy of sets, and this is probably the first problem to solve. Then we know 
that  the word problem is not decidable in general ([3]). Hence a first step is 
may be to treat  the fundamental group of surfaces since we know that,  in the 
continuous framework, the word problem is decidable for the surface groups. 
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