
A Linear Algorithm for Constructing the Polygon
Adjacency Relation in Iso-Surfaces of 3D Images

Serge Miguet
Laboratoire ERIC

B&t. L, Univ. Lyon II

5 av. P. Mend~s-France

69676 Broil (France)

miguet @univ-lyon2. fr

Jean-Marc Nicod*
LIB

IUT Belfort-Montbeliard

BP 527 Rue EngeI Gros

90016 Belfort Cedex

Joan-Nar¢ .Ni¢od@

iu~ -bm. univ-f ¢ omt e. fr

David Saxrut
Laboratoire ERIC

B~t. L, Univ. Lyon II

5 av. P. Mend~s-France

69676 Bron (France)

dsarrut@univ-lyon2, fr

A b s t r a c t

This paper proposes an optimal algorithm for constructing the surface
adjacency relation in a list of polygons extracted ~om 3D medical images.
The discrete nature of data allows us to build this adjacency relation in a
time proportional to the number of triangles 7-. We have payed a special
attention on the memory requirements, since our method takes as input
the surface extracted by the Marching-Cubes algorithm and does not make
reference to the initial 3D dataset. Moreover, no additional temporary
storage is needed to compute the relation.

1 Introduction

Since the development of 3D medical scanning devices, a tremendous number

of techniques have been proposed for reconstructing, processing and visualizing

the anatomical data. One of the most used approach for understanding the

3D structure of objects consists in extracting iso-surfaces from the volume. The

geometric description of these data can then be visualized by the help of classical

rendering algorithms, using various lighting and shading models.

The Marching-Cubes algorithm (MC) is probably the most popular of these

surface-based techniques, and is widely used in medical imaging as well as in

*This research has been done while the author was member of ERIC, Universit4 Lyon-2

126

other application domains (geoscience, biology, molecular systems, etc). The
input dataset consists in a 3D regular mesh whose elements (the voxets) have
gray-level values depending on the acquisition device (MR/, CT, etc). In its
original version [LC87], the algorithm generates a list of polygons (triangles)
corresponding to a threshold value. The extracted surface separates the voxels
having value above and below this threshold. Despite this list being sufficient for
visualization, some processing for geometric modeling, topological considerations
or image analysis need more information such as connected surface components,
surface orientation or curvature, inner volume, total area; and so on. All of these
kernels need to access in a simple way to the neighborhood of a given polygon.
Although this adjacency relation could be computed by the MC itself, it would
need an important amount of additional memory and computing time.

The main goal of this paper is to propose an efficient algorithm for construct-
ing the surface adjacency relation, taking as input the original extracted surface,
without using the initial 3]3 dataset. We show that our algorithm has a linear
(optimal) complexity in the number of polygons of the surface, without requir-
ing additional memory. Experimental restflts on medical images containing more
than 1 million triangles fully demonstrate the efficiency of our approach, since
the time for constructing the adjacency relation is less than t0 seconds.

2 Statement of the problem

The principle of the MC algorithm is to consider a cell made by 8 input samples.
If the iso-surface intersects this cell, we build this intersection with triangles.
The whole surface is made by moving this cell in the image successively along
the x, y, and z axis (see a part of such a surface on figure 3).

The data generated by MC consists of two lists: a list of vertices and a
list of triangles (solid tables in figure 1). Each vertex is represented by three
position coordinates and three coordinates of the vector normal to the surface.
One triangle is a triple of integers corresponding to the three vertex indices in
the first list. This allows to store the surface in a compact and non-redundant
way [MN95, ZN94]. Our goal is to build the surface adjacency relation 7~ such
that two distinct triangles t and t I are in relation by ;E if and only if they
have an edge in common. We use a slightly modified version of MC as proposed
in [Lac96], that has been proved to generate simple, oriented and closed surfaces.
Thanks to these properties, an edge is shared by two and only two faces, which
implies that a given triangle of the surface has exactly three neighbors. The
adjacency relation will thus be stored by adding to each triangle the indices of
its three neighbors (grayed table in figure 1).

127

list of neighbors list of triangles

• ' " S 2

Sk

Sk+l

Sm

list of vertices
xO,yO,zO NO

Figure 1: Output data structure of the MC algorithm

3 Algorithms for adjacency construction

In this section, we introduce two different adjacency construction algorithms

that require no additional memory. Indeed, it would be possible to use a 3D

data structure or an additional list associated with vertices to store the relation,

but the important needs of memory make these solutions practically unusable

with real medical images.

The first algorithm we present uses an intuitive approach, but its complexity

makes it unsuitable for surfaces with a lot of triangles. We then explain our

modified algorithm, tha t is proved to be optimal in section 3.3.

3.1 N o t a t i o n s

• let t be a triangle of the surface,

• let C(t) = (i, j, k) be the integer coordinates of the cen containing t,

• let Z(t) be position of t in the triangles list,

• let w be the maximum number of triangles tha t might be generated in one

cell. w = 6 in the version of MC algorithm we use.

128

• let n be the average side of the 3D dataset. We assume thus that we have
O(n 3) voxels.

• let T be the length of the triangles list.

3 . 2 T h e n a i v e a l g o r i t h m

The principle of this algorithm is to find the neighbors of each triangle t, by

searching in the remainder of the lisL three other triangles having an edge in

common with t. The number of operations done on each triangle is related to

the maximal distance A in the list, between two adjacent triangles. An obvious

upper bound on A is O(T) leading to a 0 (7 "2) complexity for the algorithm.
In the same way, an obvious lower bound on A is O(1) leading to a f~(T) lower
bound complexity. Although, we can exhibit families of surfaces for which these
upper and lower bounds are reached, these bounds can be tightened for real life

datasets. The idea of the improvemem is to give more realistic bounds on &.

We have to make the following hypotheses on our 3D images:

HI: the number of surface elements is a quadratic function of n, i.e. T = O(n2).

H2: the number 7~ of surface elements generated in each layer k is bounded by

a linear fimction of n, i.e. Tk = O(n).

These hypotheses exclude mathematically generated families of images, such
as fractals that can generate ®(n a) surface elements, or wireframe objects that

can lead to O(n) surface elements only.

T h e o r e m 1

The naive algorithm has a O(T~) complexity on images ver-
ifying hypotheses H1 and H2.

P r o o f :

® from H1, we have: 7" = O(n 2) ~ ~a > 0 I an2 ~- 7", thus

• from H2, we have:

(1)

(2)

129

• let t be a triangle generated on layer k. The number of triangles we
have to scan to find the neighbors of t can be bounded by the number

of triangles generated 023 both layers k and k + 1:

A <_ ~ + ~+1

from equations (1) and (2), we have:

thus A = O(T½).

An upper bound on the complexity o[the naive algorithm is thus O(A ×

T) 3 = o (' r ~) . D

Nevertheless, this complexity is still too high to use this algorithm for a

surface coming from 3D medical images (T > 106). So we have to propose an

other way to construct the adjacency.

3.3 A l inear a d j a c e n c y c o n s t r u c t i o n a l g o r i t h m

The idea is now to avoid the entire scan of the triangle list from the current

position. We propose to start the scan from different positions defined by the

previous searches. Let t be a triangle of the surface belonging to cell C(t) =
(i, j, k). The neighbors t ' of t that are still unknown can be found in four

different cells only, tha t are Cz - C(t) itself or the three 6-neighboring cells of

C(t) tha t have not yet been scanned, i.e. Cx = (i + 1, j ,k) , Cy = (i , j + t , k)
and Cz = (i, j, k + 1). The corresponding subscript I , X, Y or Z is called

the direction of the neighbor t ' and is noted T~ in the following. This direction

can easily be determined from the coordinates of the edge common to t and t I.

Figure 2 illustrates these four cases. An additional fifth case noted ~D : 0 will be

used in section 4 when the triangle has already been scanned by the algorithm,

because it was located before t in the list.

In the case w h e r e /) = I or :D = X , the neighbor t I is known to be close to

t in the list and can be searched exhaustively in a constant time. I t is only if

2) = Y or :D = Z, tha t we use an optimization.

Even if we do not know Z(tl), we know the exact position Z(u') of the last
triangle we searched for (from a given triangle u) in direction :D. The main idea

of our algorithm consists in start ing the search of t ' in a neighborhood of C.

The algorithm is justified by the following result:

130

t
(~) v = z %) z~ : x (¢) ~ : r (a) z ~ = z

Figure 2: the 4 configurations corresponding to the 4 values of 1).

T h e o r e m 2

Let t be the current triangle in the list known to have a neigh-

bor t' in direction 1) (1) = Y or I) = Z) , and let u be the

last scanned triangle having had a neighbor u' in the same

direction 1). The following property holds:

z(¢) > zW) -

P r o o f i

The different ceils (i, j, k) are implicitly ordered by the scanning performed
by MC. Following this order, the number of ceils separating C(u) and C(t)

is equal to the number of cells separating C(u') and C(t').

® I f u and t have been generated in the same cell (i.e. C(u) = C(t)),

then u' and t' are a/so generated in the same cell (i.e. C(u') = C(t')).
We do not know i f u t is generated before t', but since there are at
most w triangles per cell, it is sufficient to start the search of t ° from

index Z (d) - w + 1.

® Else (i.e. C(u) # C(t)), the fact that u is before t in the tist impties

that C(u) was scanned before C(t) by MC. We deduce that C(u') and
C(t J) were also scanned in that order which allows to conclude that

z(¢) > z%').

In these two cases, it is easy to check that the announced resu/t is verified.

131

The only data structure needed to control this adjacency construction algo-

r i thm is reduced to three addresses in the triangles list: the current index Z(t),

and the last values Zy and Zz of Z(u~), corresponding respectively to ~D -- Y

and 1) = Z.

The figure 4 represents a part of the triangles list generated from the example

shown in figure 3. In this case, the triangle t has one of its neighbors, named

t', in the direction ~D -= Y. Before storing the relation between t and t ' , Zv was
equal to 27(u') since (u, u') was the last couple of triangles in direction T~ = Y.

t ' could thus be searched from the position of u' instead of the one of t as in the

naive algorithm. After having established the relation between ~ and t', the new

value of Zy is Z(t').

t '

t

Figure 3: An example of a generated surface in a layer.

u t u" t'

Figure 4: A example of a triangle list generated from the previous example

4 Complexity analysis

In this section, we present a proof of the linearity of the algorithm we have

presented. The algorithm scans the whole list of triangles, and searches for the
neighbors of the current one. Although some of these searches are costly (and
can be as expensive as in the naive algorithm), we will show that they occur

seldom enough to be amortized by many constant cost of other searches. This

132

is a typical proof using the amortized analysis. We use the potential method of

D. D. Sleator, with the notations of [CLR90]:

Let Di be the data structure at the i th step of the algorithm. This method

associates to the data structure a potential function ~ who maps each data

structure Di to a real number ~(Di). Let ci be the actual cost of the i th op-

eration. By definition, the amortized cost 6~ of the i th operation is : ~ =

ci + ~(Di) - ~(D~-I).

The main property used in amortized analysis is that the total amortized cost

after n steps is equal to the total actual cost of these n steps plus the increase

of potential:

r~ r~

/ = 1 i : l

It is st~fflcient to check that the final potential is larger than the initial one,

to guarantee that the total amortized cost is an upper bound of the total actual

cost.

The i th step of the algorithm consists in the search of one neighbor t ' of a

given triangle t. The actual cost of searches depends on *he direct ion/) of t~:

i/) = 0" this is the notation we use when t t has already been scanned because

located before t in the list. No search is needed, and we can let ci = 1.

7) = I : t and t I are in the same cell, with distant of at most w - i triangles.

We have thus ci < ~.

= X: t ~ is in the cell following t, with distant of at most 2w - 1 triangles.

We have thus c~ < 2w.

T~ = Y: the search for t' starts from index Zy. Let A y be the number of

scanned triangles until t ' is reached. We have thus ci = Ay .

i/3 = Z: the search for t ' starts from index Zz. Let A z be the number of

scanned triangles until t ' is reached. We have thus ci = Az .

We are now ready to announce the mMn result of the paper:

T h e o r e m 3

The algorithm described in section 3.3 has a linear complexity
in the number of triangles

133

P r o o f :

The expression of • we use for the potential method is:

• : i - - Z z (4)

It is easy to check that this potential is n u / / a t the beginning of the algo-

rithm, and positive at the end. Indeed, there are T triangles having each

3 edges. The last value of i is thus 3T, and Zy and Zz are smaller than

T .

Let us now compute the increase of potential associated to the five possible

values for 1):

1) = ~}~ 1) = I o r 1) = X: in these three cases, Zy and Zz are not modi-

 ed, t h u s e (D ,) - = 1 ,

1) = Y: the new value of Zv corresponds to the position ol t'. It has thus

been increased of A y , so q?(D~) - # (Di -1) = 1 - A y ,

1) = Z: the new value of Zz corresponds to the position of t ' . I t has thus

been increased of &z, so ~(Di) - ~ (Di -~) = 1 - Az ,

B y adding the actual cost with this increase of potential, we check that

the amortized cost of the each of the five operations is 0(1) . We can thus

deduce that the 3 T operations are done in complexity O(T) .

[]

Since any algorithm for this problem has to visit at least once each triangle,

our approach is optimal.

5 E x p e r i m e n t s and resul ts

In this section, we show experiments on the implementation of our two ap-

proaches for constructing the polygon adjacency relation.

In figure 5, we test the two algorithms on several surfaces extracted from

3D medical images. The computat ion time, for bo th figures, is obtained with
the same set of surfaces. We can observe experimentally the linearity of our

approach. For the surface made with 1.5 x 106 triangles, the t ime decreases

from 3000 seconds to 10 seconds.

Figure 6, shows graphically the benefits of our improvement: we plot the

cumulated cost of searches as a fimction of the displacement A, performed to

11

I0

9

8

7
6
5
4
3
2
1

3000 , , , , 2
~nalve algorithm" ~

2500 /
/

2000 /

1500 ~ ' /

looo ~ , ,
500 I~-

0 r ~ = ,
20000Q 400000 600000 800000 l e~06 1.2e+0~ 1 4e+06 I 0e+06

(a) naive a~gorithm

134

j/JJ i
/ t

200000 400000 600000 800000 Ie*~06 1,2e+06 1.4e+06 1.6e+06

(b) linear algorithm

Figure 5: Comparison of the computation time between two different algorithms
for constructing the polygon adjacency relation.

find the neighbor. The surface of the histograms correspond to the cost of the
algorithm. We clearly observe three modes in the first histogram 6(a) corre-
sponding to the three directions of searches 1) = I, X , ~D = Y or T~ = Z. These
modes completely disappear in figure 6(b) meaning that most of the searches
are completely local.

6 Conclusion

We have introduced an optimal algorithm for constructing the adjacency rela-
tion in a triangles list computed by the Marching-Cubes algorithm. The main
advantage of this technique is to require no additional memory, which is a cru-
cial point in 3D medical imaging. We have used amortized analysis to prove
the optimal complexity of our algorithm. Numerical experiments demonstrate
practically the efficiency of the approach.

A parallel version of this algorithm has been developed and integrated in our
parallel 3D medical imaging environment [Mig95]. It has been chained with a
parallel connected components algorithm, adapted from Perroton [Per94]. This
will make it possible to interactively select connected objects from a 3D visu-
alization, or to initiate a segmentation algorithm based on active surfaces as
proposed in [LB94].

135

500000 fi
400000

300000

50

 o ooo ii

400000 ~'
i

I:
! 300000 i

i [~ooooo
 ooooo :

100 150 200 250 0 , 1~o 2~o 250

(a) naive algorithm (b) linear algorithm

Figure 6: Distribution of the cumulative cost for each different displacement in
the list.

R e f e r e n c e s

[CLRg0]

[Lac96]

[LB94]

[LC87]

[Mig95]

[MN95]

Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction
to Algorithms. MIT Press, 1990.

Jacques-Olivier Lachaud. Topologically defined isosurfaces. In Serge
Miguet, Annie Montanvert, and St6phane Ub6da, editors, Discrete Ge-
ometry for Computer Imagery, volume 1176 of Lecture Notes in Com-
puter Science, pages 245-256. Springer, November 1996.

Jacques-Olivier Lachaud and Eric Bainville. A discrete model follow-
ing topological modifications of volumes. In Jean-Marc Chassery and
Annick Montanvert, editors, Discrete geometry]or computer imagery,
pages 183-194, Grenoble (France), September 1994.

William E. Lorensen and Harvey E. Cline. Marching cubes : a high
resolution 3D surface construction algorithm. Computer Graphics,
21(4):163-169, July 1987.

Serge Miguet. Un environnement parall~le pour l'imagerie 3D. M~moire
d'habilitation ~ diriger des recherches, Laboratoire de l'informatique du
Parall61isme, 46 all~e d'Italie, 69364 Lyon Cedex 07, December 1995.

Serge Miguet and Jean-Marc Nicod. An optimal parallel iso-surface ex-
traction algorithm. In Fourth International Workshop on Parallel Im-
age Analysis (IWPIA '95), pages 65-78. Laboratoire de l'Informatique
du Parall4lisme, ENS Lyon (France), December 1995.

136

[Per94]

[ZN94]

Laurent Perroton. Segmentation Parall~le d'Images Volumiques. PhD
thesis, Ecole Normale Sup~rieure de Lyon, December 1994.

Meiyun Zheng and H.T. Nguyen. An Efficient Parallel Implementation
of the Marching-cubes Algorithm. In L. Decker, W. Smit, and J.C.
Zuidervaart, editors, Massively Parallel Processing Applications and
Development, pages 903-910, 1994.

