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A b s t r a c t  

This paper proposes an optimal algorithm for constructing the surface 
adjacency relation in a list of polygons extracted ~om 3D medical images. 
The discrete nature of data allows us to build this adjacency relation in a 
time proportional to the number of triangles 7-. We have payed a special 
attention on the memory requirements, since our method takes as input 
the surface extracted by the Marching-Cubes algorithm and does not make 
reference to the initial 3D dataset. Moreover, no additional temporary 
storage is needed to compute the relation. 

1 Introduction 

Since the development of 3D medical scanning devices, a tremendous number 

of techniques have been proposed for reconstructing, processing and visualizing 

the anatomical data. One of the most used approach for understanding the 

3D structure of objects consists in extracting iso-surfaces from the volume. The 

geometric description of these data can then be visualized by the help of classical 

rendering algorithms, using various lighting and shading models. 

The Marching-Cubes algorithm (MC) is probably the most popular of these 

surface-based techniques, and is widely used in medical imaging as well as in 

*This research has been done while the author was member of ERIC, Universit4 Lyon-2 
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other application domains (geoscience, biology, molecular systems, etc). The 
input dataset consists in a 3D regular mesh whose elements (the voxets) have 
gray-level values depending on the acquisition device (MR/, CT, etc). In its 
original version [LC87], the algorithm generates a list of polygons (triangles) 
corresponding to a threshold value. The extracted surface separates the voxels 
having value above and below this threshold. Despite this list being sufficient for 
visualization, some processing for geometric modeling, topological considerations 
or image analysis need more information such as connected surface components, 
surface orientation or curvature, inner volume, total area; and so on. All of these 
kernels need to access in a simple way to the neighborhood of a given polygon. 
Although this adjacency relation could be computed by the MC itself, it would 
need an important amount of additional memory and computing time. 

The main goal of this paper is to propose an efficient algorithm for construct- 
ing the surface adjacency relation, taking as input the original extracted surface, 
without using the initial 3]3 dataset. We show that our algorithm has a linear 
(optimal) complexity in the number of polygons of the surface, without requir- 
ing additional memory. Experimental restflts on medical images containing more 
than 1 million triangles fully demonstrate the efficiency of our approach, since 
the time for constructing the adjacency relation is less than t0 seconds. 

2 Statement  of the problem 

The principle of the MC algorithm is to consider a cell made by 8 input samples. 
If the iso-surface intersects this cell, we build this intersection with triangles. 
The whole surface is made by moving this cell in the image successively along 
the x, y, and z axis (see a part of such a surface on figure 3). 

The data generated by MC consists of two lists: a list of vertices and a 
list of triangles (solid tables in figure 1). Each vertex is represented by three 
position coordinates and three coordinates of the vector normal to the surface. 
One triangle is a triple of integers corresponding to the three vertex indices in 
the first list. This allows to store the surface in a compact and non-redundant 
way [MN95, ZN94]. Our goal is to build the surface adjacency relation 7~ such 
that two distinct triangles t and t I are in relation by ;E if and only if they 
have an edge in common. We use a slightly modified version of MC as proposed 
in [Lac96], that has been proved to generate simple, oriented and closed surfaces. 
Thanks to these properties, an edge is shared by two and only two faces, which 
implies that a given triangle of the surface has exactly three neighbors. The 
adjacency relation will thus be stored by adding to each triangle the indices of 
its three neighbors (grayed table in figure 1). 
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Figure 1: Output  data  structure of the MC algorithm 

3 Algorithms for adjacency construction 

In this section, we introduce two different adjacency construction algorithms 

that  require no additional memory. Indeed, it would be possible to use a 3D 

data  structure or an additional list associated with vertices to store the relation, 

but  the important  needs of memory make these solutions practically unusable 

with real medical images. 

The first algorithm we present uses an intuitive approach, but  its complexity 

makes it unsuitable for surfaces with a lot of triangles. We then explain our 

modified algorithm, tha t  is proved to be optimal in section 3.3. 

3.1 N o t a t i o n s  

• let t be a triangle of the surface, 

• let C(t) = (i, j,  k) be the integer coordinates of the cen containing t, 

• let Z(t) be position of t in the triangles list, 

• let w be the maximum number of triangles tha t  might be generated in one 

cell. w = 6 in the version of MC algorithm we use. 
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• let n be the average side of the 3D dataset. We assume thus that  we have 
O(n 3) voxels. 

• let T be the length of the triangles list. 

3 . 2  T h e  n a i v e  a l g o r i t h m  

The principle of this algorithm is to find the neighbors of each triangle t, by 

searching in the remainder of the lisL three other triangles having an edge in 

common with t. The number of operations done on each triangle is related to 

the maximal distance A in the list, between two adjacent triangles. An obvious 

upper bound on A is O(T)  leading to a 0 ( 7  "2) complexity for the algorithm. 
In the same way, an obvious lower bound on A is O(1) leading to a f~(T) lower 
bound complexity. Although, we can exhibit families of surfaces for which these 
upper and lower bounds are reached, these bounds can be tightened for real life 

datasets. The idea of the improvemem is to give more realistic bounds on &. 

We have to make the following hypotheses on our 3D images: 

HI: the number of surface elements is a quadratic function of n, i.e. T = O(n2). 

H2: the number 7~ of surface elements generated in each layer k is bounded by 

a linear fimction of n, i.e. Tk = O(n). 

These hypotheses exclude mathematically generated families of images, such 
as fractals that  can generate ®(n a) surface elements, or wireframe objects that  

can lead to O(n) surface elements only. 

T h e o r e m 1  

The naive algorithm has a O(T~  ) complexity on images ver- 
ifying hypotheses H1 and H2. 

P r o o f :  

® from H1, we have: 7" = O(n 2) ~ ~a > 0 I an2 ~- 7", thus 

• from H2, we have: 

(1) 

(2) 
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• let t be a triangle generated on layer k. The number  of triangles we 
have to scan to find the neighbors of t  can be bounded by the number  

of triangles generated 023 both layers k and k + 1: 

A <_ ~ + ~+1 

from equations (1) and (2), we have: 

thus A = O(T½). 

An upper bound on the complexity o[ the naive algorithm is thus O(A  × 

T )  3 = o ( ' r ~ ) .  D 

Nevertheless, this complexity is still too high to use this algorithm for a 

surface coming from 3D medical images ( T  > 106). So we have to propose an 

other way to construct the adjacency. 

3.3 A l inear  a d j a c e n c y  c o n s t r u c t i o n  a l g o r i t h m  

The idea is now to avoid the entire scan of the triangle list from the current 

position. We propose to start  the scan from different positions defined by the 

previous searches. Let t be a triangle of the surface belonging to cell C(t) = 
(i, j, k). The neighbors t '  of t that  are still unknown can be found in four 

different cells only, tha t  are Cz - C(t) itself or the three 6-neighboring cells of 

C(t) tha t  have not yet been scanned, i.e. Cx = (i + 1, j ,k ) ,  Cy = ( i , j  + t , k )  
and Cz = (i, j, k + 1). The corresponding subscript I ,  X,  Y or Z is called 

the direction of the neighbor t '  and is noted T~ in the following. This direction 

can easily be determined from the coordinates of the edge common to t and t I. 

Figure 2 illustrates these four cases. An additional fifth case noted ~D : 0 will be 

used in section 4 when the triangle has already been scanned by the algorithm, 

because it was located before t in the list. 

In the case w h e r e / )  = I or :D = X ,  the neighbor t I is known to be close to 

t in the list and can be searched exhaustively in a constant time. I t  is only if 

2) = Y or :D = Z, tha t  we use an optimization. 

Even if we do not know Z(tl), we know the exact position Z(u') of the last 
triangle we searched for (from a given triangle u) in direction :D. The main idea 

of our algorithm consists in start ing the search of t '  in a neighborhood of C.  

The algorithm is justified by the following result: 
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t 
(~) v = z %) z~ : x (¢) ~ : r ( a ) z ~ =  z 

Figure 2: the 4 configurations corresponding to the 4 values of 1). 

T h e o r e m  2 

Let t be the current triangle in the list known to have a neigh- 

bor t' in direction 1) (1) = Y or I) = Z) ,  and let u be the 

last scanned triangle having had a neighbor u' in the same 

direction 1). The following property holds: 

z(¢) > zW) - 

P r o o f i  

The different ceils (i, j, k) are implicitly ordered by the scanning performed 
by MC. Following this order, the number of ceils separating C(u) and C(t) 

is equal to the number of  cells separating C(u') and C(t'). 

® I f  u and t have been generated in the same cell (i.e. C(u) = C(t)), 

then u' and t' are a/so generated in the same cell (i.e. C(u') = C(t')). 
We do not know i f  u t is generated before t', but since there are at 
most w triangles per cell, it is sufficient to start the search of  t ° from 

index Z ( d )  - w + 1. 

® Else (i.e. C(u) # C(t)), the fact that  u is before t in the tist impties 

that  C(u) was scanned before C(t) by MC. We deduce that C(u') and 
C(t J) were also scanned in that order which allows to conclude that 

z(¢) > z%'). 

In these two cases, it is easy to check that the announced resu/t is verified. 
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The only data  structure needed to control this adjacency construction algo- 

r i thm is reduced to three addresses in the triangles list: the current index Z(t),  

and the last values Zy and Zz of Z(u~), corresponding respectively to ~D -- Y 

and 1) = Z. 

The figure 4 represents a part  of the triangles list generated from the example 

shown in figure 3. In this case, the triangle t has one of its neighbors, named 

t', in the direction ~D -= Y. Before storing the relation between t and t ' ,  Zv was 
equal to 27(u') since (u, u') was the last couple of triangles in direction T~ = Y. 

t '  could thus be searched from the position of u' instead of the one of t as in the 

naive algorithm. After having established the relation between ~ and t', the new 

value of Zy is Z(t'). 

t '  

t 

Figure 3: An example of a generated surface in a layer. 

u t u" t' 

Figure 4: A example of a triangle list generated from the previous example 

4 Complexity analysis 

In this section, we present a proof of the linearity of the algorithm we have 

presented. The algorithm scans the whole list of triangles, and searches for the 
neighbors of the current one. Although some of these searches are costly (and 
can be as expensive as in the naive algorithm), we will show that  they occur 

seldom enough to be amortized by many constant cost of other searches. This 
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is a typical proof using the amortized analysis. We use the potential method of 

D. D. Sleator, with the notations of [CLR90]: 

Let Di be the data structure at the i th step of the algorithm. This method 

associates to the data structure a potential function ~ who maps each data 

structure Di to a real number ~(Di). Let ci be the actual cost of the i th  op- 

eration. By definition, the amortized cost 6~ of the i th operation is : ~ = 

ci + ~(Di) - ~(D~-I). 

The main property used in amortized analysis is that the total amortized cost 

after n steps is equal to the total actual cost of these n steps plus the increase 

of potential: 

r~ r~ 

/ = 1  i : l  

It is st~fflcient to check that  the final potential is larger than the initial one, 

to guarantee that the total amortized cost is an upper bound of the total actual 

cost. 

The i th step of the algorithm consists in the search of one neighbor t '  of a 

given triangle t. The actual cost of searches depends on *he direct ion/)  of t~: 

i/) = 0" this is the notation we use when t t has already been scanned because 

located before t in the list. No search is needed, and we can let ci = 1. 

7) = I :  t and t I are in the same cell, with distant of at most w - i triangles. 

We have thus ci < ~. 

= X:  t ~ is in the cell following t, with distant of at most 2w - 1 triangles. 

We have thus c~ < 2w. 

T~ = Y: the search for t' starts from index Zy. Let A y  be the number of 

scanned triangles until t '  is reached. We have thus ci = Ay .  

i/3 = Z: the search for t ' starts from index Zz. Let A z  be the number of 

scanned triangles until t '  is reached. We have thus ci = Az .  

We are now ready to announce the mMn result of the paper: 

T h e o r e m 3  

The algorithm described in section 3.3 has a linear complexity 
in the number of triangles 
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P r o o f :  

The expression of • we use for the potential method is: 

• : i - - Z z  (4) 

It  is easy to check that  this potential is n u / / a t  the beginning of the algo- 

rithm, and positive at the end. Indeed, there are T triangles having each 

3 edges. The last value of  i is thus 3T,  and Zy  and Zz  are smaller than 

T .  

Let  us now compute the increase of potential associated to the five possible 

values for 1): 

1) = ~}~ 1) = I o r  1) = X:  in these three cases, Zy  and Zz  are not modi- 

 ed, t h u s  e ( D , )  - = 1 ,  

1) = Y:  the new value of Zv  corresponds to the position ol t'. It  has thus 

been increased of A y ,  so q?(D~) - # (Di -1)  = 1 - A y ,  

1) = Z: the new value of Zz  corresponds to the position of t ' .  I t  has thus 

been increased of &z,  so ~(Di )  - ~ (Di -~ )  = 1 - Az ,  

B y  adding the actual cost with this increase of potential, we check that  

the amortized cost of  the each of the five operations is 0(1) .  We can thus 

deduce that the 3 T  operations are done in complexity O(T) .  

[] 

Since any algorithm for this problem has to visit at  least once each triangle, 

our approach is optimal. 

5 E x p e r i m e n t s  and resul ts  

In this section, we show experiments on the implementation of our two ap- 

proaches for constructing the polygon adjacency relation. 

In figure 5, we test  the two algorithms on several surfaces extracted from 

3D medical images. The computat ion time, for bo th  figures, is obtained with 
the same set of surfaces. We can observe experimentally the linearity of our 

approach. For the surface made with 1.5 x 106 triangles, the t ime decreases 

from 3000 seconds to 10 seconds. 

Figure 6, shows graphically the benefits of our improvement: we plot the 

cumulated cost of searches as a fimction of the displacement A, performed to 



11 

I0 

9 

8 

7 
6 
5 
4 
3 
2 
1 

3000 , , , , 2  
~nalve algorithm" ~ 

2500 / 
/ 

2000 / 

1500 ~ ' /  

looo ~ , ,  
500 I~- 

0 r ~ = , 
20000Q 400000 600000 800000 l e~06  1.2e+0~ 1 4e+06 I 0e+06 

(a) naive a~gorithm 

134 

j/JJ  i 
/ t 

200000 400000 600000 800000 Ie*~06 1,2e+06 1.4e+06 1.6e+06 

(b) linear algorithm 

Figure 5: Comparison of the computation time between two different algorithms 
for constructing the polygon adjacency relation. 

find the neighbor. The surface of the histograms correspond to the cost of the 
algorithm. We clearly observe three modes in the first histogram 6(a) corre- 
sponding to the three directions of searches 1) = I, X ,  ~D = Y or T~ = Z. These 
modes completely disappear in figure 6(b) meaning that most of the searches 
are completely local. 

6 Conclusion 

We have introduced an optimal algorithm for constructing the adjacency rela- 
tion in a triangles list computed by the Marching-Cubes algorithm. The main 
advantage of this technique is to require no additional memory, which is a cru- 
cial point in 3D medical imaging. We have used amortized analysis to prove 
the optimal complexity of our algorithm. Numerical experiments demonstrate 
practically the efficiency of the approach. 

A parallel version of this algorithm has been developed and integrated in our 
parallel 3D medical imaging environment [Mig95]. It has been chained with a 
parallel connected components algorithm, adapted from Perroton [Per94]. This 
will make it possible to interactively select connected objects from a 3D visu- 
alization, or to initiate a segmentation algorithm based on active surfaces as 
proposed in [LB94]. 
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Figure 6: Distribution of the cumulative cost for each different displacement in 
the list. 
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