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Abst rac t .  In the framework of combinatorial topology a surface is de- 
scribed as a set of faces which are linked by adjacency relations. This 
corresponds to a structural description of surfaces where we have some 
desirable properties: for example, any point is surrounded by a set of 
faces which constitute a "cycle". The notion of combinatorial surface ex- 
tracts these "structural" properties of surfaces. 
In this paper, we introduce a relation for points in Z 3 which is based on 
the notion of homotopy. This allows to propose a definition of a class of 
surfaces which are combinatorial surfaces. We then show that the main 
existing notions of discrete surfaces belong to this class of combinatorial 
surfaces. 
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1 I n t r o d u c t i o n  

In the three-dimensional discrete space Z 3, several approaches of surfaces have 
been proposed: 

- a graph-theoretical approach: a surface is defined as a set of points linked by 
adjacency relations [16, 17, 20]; 
- a voxel approach: a surface is defined as a set of faces (surfels) between pairs 
of adjacent voxels [1, 8]; 
- a general topology approach [13]; 
- a combinatorial approach: a surface is defined as a structure [7, 9, 15]. 

In the framework of combinatorial topology a surface is described as a set of 
faces which are linked by adjacency relations. This corresponds to a structural 
description of surfaces where we have some desirable properties: for example, 
any point is surrounded by a set of faces which constitute a "cycle". The notion 
of combinatorial surface extracts these "structural" properties of surfaces. 
The graph-theoretical definitions of closed surfaces are not based upon structural 
properties. In fact, the structural nature of these surfaces is difficult to extract. 
The major  problem which arises for these surfaces is that the adjacency relation 
used for defining them does not induce a structural relation. For example, the 
neighborhood of a point does not constitute a simple closed curve under the 
adjacency relation. 

In this paper, we make a link between the definitions of surfaces based on the 
graph-theoretical approach and the combinatorial approach. For that purpose, 
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we introduce a relation for points in Z ~ which is based on the notion ofhornotopy. 
This allows to propose a definition of a class of surfaces which are combinatorial 
surfaces. We then show that the main existing notions of surfaces belong to this 
class of combinatorial surfaces. 

2 B a s i c  n o t i o n s  

We recall some basic notions of 3D discrete topology (see also [12]). 
We denote E = Z 3, Z being the set of relative integers. A point x E E is defined 
by (xl,  x2, x3) with xi E Z. We consider the four neighborhoods: 
N~24(x) = {x' G E; Max[Ix1- x]l, Ix2- x~], Ix3- x~l] < 2}, 
N~s(x) = {x' e E; M a x [ l ~  - ~II, T~2 - ~'~l, Ix3 - ~'31] <- 1} ,  

N~(~) = {~' c E; I ~  - ~il + Ix2 - ~11 + J ~  - ~ t  _< 1). 
We define N;(x) = Nk(x) \ {x}, with k = 6, 18, 26, 124. 
Two points x and y are said to be n-adjacent (n = 6, 18, 26) if y E N~(x); we 
also say that y is an n-neighbor of x. 
We denote N+(x) = N;s(x ) \ Ng(x) and N+(x) = N;6(x) \ ~V;~(x). 
Two points x and y are said to be strictly n-adjacent (n = 18, 26) if y 6 N+(x). 
An n-path ~r is a (possibly empty) sequence of points xo..xk, with xi n-adjacent 
to xi-1, for i = 1..k. Ifrr  is not empty, the length ofrr is equal to k. If x0 = xk, 
~r is closed and x0 is caUed the origin of ~r. 

Let X be a subset of E. We denote by X the complement of X. 
Let x C X and y E X. We say that x is n-connected to y if there is an n-path in 
X between x and y. The relation "is n-connected to" is an equivalence relation. 
The equivalence classes relative to this relation are the n-connected components 
of X (or simply the n-components of X). 
A subset X of E is n-connected if it is made of exactly one n-connected compo- 
nent. 
A subset X of E is a simple closed n-curve if X is n-connected and if each point 
of X is n-adjacent to exactly two points in X. 

As in 2D, if we use an n-adjacency relation for X we have to use another 
g-adjacency relation for X,  i.e. the 6-adjacency for X is associated to the 18- 
or the 26-adjacency for X (and vice versa). This is necessary for having a cor- 
respondence between the topology of X and the topology of X.  Furthermore, 
it is sometimes necessary to distinguish the 6-adjacency associated with the 18- 
adjacency and the 6-adjacency associated with the 26-adjacency. Whenever we 
will have to make this distinction, a 6+-notion will indicate a 6-notion associ- 
ated with the t8-adjaeency. So, we can have (n, g) = (6, 26), (26, 6), (6 +, 18) or 
(18,6+). 
Note that,  if X is finite, the infinite g-connected component of X is the back- 
ground, the other g-connected components of X are the cavities. 

The notion of deformation allows to detect the presence of a "hole" in a set 
x (see [10]). 
Let X C 27 and let p E X be a point, called the base point. Let 7 and 7 ~ be 
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two closed n-paths composed of points of X and which have p as origin. We say 
that  71 is an elementary n-deformation of 7, or 7 ~ 7 ~, if there are two n-paths 
~h, ~r2, and two non-empty n-paths ~r, ~d, such that 7 and 7 ~ are of the form 
7 = 7h~r~r2, 7 / = wl~r1~r2, and such that all points of ~r and ~-~ are included in a 
little portion P of E: 
- for n = 6, P is a unit square (a 2 × 2 square); 
- f o r n = 6  + ,18 ,  26, P is a unit cube (a 2 × 2 × 2 cube). 
We say that  71 is an n-deformation of 7 or 7 - 71 if there is a sequence of closed 
n-paths 70--7k such that  7 = 70, 7 t = 7~ and 7i-1 "~ 7i for i = 1..k. 
Let 7 pxo...xip and 71 ~ / = = px o...xjp be two closed n-paths composed of points 
of X and which have p as origin. The product of 7 and 71 is the closed n-path 
pxo...xipx~o...x~.p obtained by eatenating 7 and 7 ~. 
Let us consider the classes of equivalence of the closed n-paths with origin p under 
the relation _~. We may define the product of two such classes as the equivalence 
class of the product of two closed n-paths corresponding to the classes. 
Under the product operation, these classes constitute a group IIn(p, X) which 
is the fundamental n-group (or Poincar~ group) with base point p. As in the 
continuous spaces, the fundamental group reflects the structure of the holes (or 
tunnels) in X. For example, the fundamental group of a hollow torus is a free 
abelian group on two generators. Note that  if p and q belong to the same n- 
connected component of X, then H~(p, X) is isomorphic to lI,(q, X). 

3 H o m o t o p y  a n d  s t r o n g  h o m o t o p y  

In this section, we recall some notions of homotopy and strong homotopy. The 
homotopy in a discrete grid may be defined through the notion of simple point 
(see also [10]). 
Let n E {6, 6 +, 18, 26}. Let X C ~.  A point x E E is said to be n-simple (for 
X)  if its removal from X (if x E X) or its addition to X (if x E X-) does not 
"change the topology of the image", i.e., if: 

1) There is a one to one correspondence between the n-connected com- 
ponents of X \ {x} and the n-connected components of X U {x}; and 

2) There is a one to one correspondence between the K-connected com- 
ponents of X \ {x} and the T-connected components of X U  {x}; and 

3) For each point p of X \ {x}, the inclusion map i: X \ {x} -~ X U {x} 
induces a group isomorphism i*: / / , (p ,  X \ {x}) ~ II~(p, X U {x}); and 

4) For each point q of X- \  {x), the inclusion map j:  X \  {x) -+ X U  {x} 
induces a group isomorphism j * : / 7 ~ q ,  X \ {x}) --~ II~(q,-X U {x}). 
The set Y C X is lower n-homotopic to X if there exists a sequence of sets 
Z0, ..., Zk, with Z0 = Y, Z~ = X, such that  Z~-I C Z~ and Z~ \ Zi-1 consists in 
a single point which is an n-simple point for Zi-1, i = 1, ..., k. The set S C X is 
called a (lower) n-simple set for X, if X \ {S} is lower n-homotopic to X. 

Thus, the set Y is lower n-homotopic to X, if X may be obtained from Y 
by iterative additions of n-simple points, or, equivalently, if Y may be obtained 
i¥om X by iterative deletions of n-simple points. 
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Let X C E and x ¢ E. We denote IXl ~ = N~6(x) N X .  
The geodesic n-neighborhood of x inside X of order k is the set N~(x, X)  defined 
recursively by: N~(x ,X)  = N * ( ¢ ) N X  and N~(x ,X)  = U{Nn(y)N IXV,y  e 
N~- l (x ,  X)}. 
In other words N~(x ,X)  is the set composed of all points y of [XI ~ such that  
there exists an n-path ~r from x to y of length less than or equal to k, all points of 
~r, except x, belonging to 1XI x. We give now a definition of topological numbers 
which leads to a characterization of simple points [2]: 

D e f i n i t i o n  1: Let X C E,  x E E and n E {6, 6 +, 18, 26}. 
The geodesic neighborhoods Gn(x, X)  are defined by: 

G6(x,X) = N~(x ,X) ;  G6+(x,X) = Ng(x,X);  
x) = x); x) = X). 

The topological number Tn (x, X) is defined as the number of n-components in 

Note that  the topological number depends only on the neighborhood N~6(x)N 
X, we have T, (x ,  X) = T,~(x, tXI~). The evaluation of the topological number 
may be done by using classical graph-theoretic algorithms for searching con- 
nected components. We have [2]: 

T h e o r e m  2: Let X C E and x E E: x is an n-simple point if  and only if 
T,~(x,X) = 1 and TK(x,--~) = 1. 

We introduce the notion of strong homotopy: see [3], see also the work of Kong 
[11] in which the notion of hereditarily simple set is introduced, this notion is 
equivalent to the notion of strongly simple set presented hereafter: 

D e f i n i t i o n  3: Let X C E and Y C X. The set Y is strongly (lower) n- 
homotopic to X if, for each subset Z such that Y C Z C X, Z is lower n- 
homotopic to X. 
If Y is strongly n-homotopic to X, we say that  X \ Y is a strongly (lower) 
n-simple set. 

4 Existing notions of surfaces 

We now present existing notions of surfaces. First of all, we give some general 
definitions. 

D e f i n i t i o n  4" Let X be a subset of E and let x be a point of E. 
The set X is an n-thin set if, Vx ~ X, IXI '~ has exactly two g-components which 
are g-adjacent to x. 
The set X is an n-Jordan set if X is n-connected and if X has two g-connected 
components. 
If X is an n-Jordan set, we will denote by A and B the two components of X. 
These components are called the back-components of X. The closure of a hack- 
component is the union of this back-component and X, 
An n-separating set is an n-Jordan set which is also an n-thin set. 
An n-separating set X is a strongly n-separating set if, Vx E X,  x is g-adjacent 
to both A and B. 
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4.1 M o r g e n t h a l e r ~ s  su r faces  

Let us present the definition of surfaces introduced by Morgenthaler and Rosen- 
feld [20]: 

D e f i n i t i o n  5: Let (n, g) = (6, 26) or (26, 6) and let X be a subset of E.  
A point x of X is a Morgenthaler's (simple) n-surface point if: 

1) Ixl  ~ has exactly one n-component which is n-adjacent to x; and 
2) IXI ~ has exactly two g-components which are g-adjacent to x; we 

denote C ~ and D ~ these components; and 
3) Vy E N,~(x) N X,  N~(y) C) C xx • ¢ and N~(y) N D x~ 5£ ~. 

Furthermore, if N124(x)C/X has exactly two g-components which are g-adjacent 
to x, we say that  the n-surface point x is orientabIe. 
A MorgenthaIer's (simple) closed n-surface is a finite n-connected set X consist- 
ing entirely of orientable Morgenthaler's n-surface points. 

In Fig. 1, the configuration (a) corresponds to a Morgenthaler's 6-surface 
point, the configurations (b), (e) correspond to Morgenthaler's 26-surface points. 
It was shown that  [20]: 

T h e o r e m  6: A Morgenthaler's closed n-surface is a strongly n-separating 
set. 
Furthermore, it was proved that the assumption of orientability is unnecessary 
for the 6-connectivity [22] and for the 26-connectivity [21]. 

4.2 M a l g o u y r e s  ~ su r faces  

Malgouyres' surfaces [17] are based on a generalization of the notion of a simple 
closed curve. 

D e f i n i t i o n  7: Let X be a subset of E. We say that  a point x of X is an 
n-corner if x is n-adjacent to two and only two points y and z belonging to X 
such that  y and z are themself n-adjacent; we say that the n-corner x is simple 
if y and z are not corners and if x is the only point n-adjacent to both y and z. 
We say that  X is a generalized simple closed n-curve, or a Gn-curve, if the set 
obtained by removing all simple n-corners of X is a simple closed n-curve. 

D e f i n i t i o n  8: A finite subset X of E is called a Malgouyres' (simple) closed 
18-surface i f X  is 18-connected and if, for each x of X,  the set IXI ~ is a Gls-curve. 

In Figure 1, (b), (c), (f), (g) are examples of Malgouyres' surface points It 
was proved in [17] that: 

T h e o r e m  9: Any Malgouyres' 18-surface is a strongly n-separating set, for 
n = 1 8  and n = 26. 

4.3 S t r o n g  su r faces  

The definition of strong surfaces is based on the notion of strong homotopy (see 
[5]): 

D e f i n i t i o n  10: Let X C E be an n-separating set. The set X is a strong 
(closed) n-surface if any back-component of X is strongly n-homotopic to its 
closure. 
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We have the following result [5]: 
Theorem 11: Let X C E be an n-separating .set. 

X is a strong n-surface if and only if, for each x of X,  each of the four following 
conditions is satisfied: 

I) T~(x, IAI ~) = 1 and 7~(x, IBf )  = 1; 
2) T~(, ,  [AI ~) : 1 and 7k(x, [~l ~) : 1; 
3) Vy E N*(x) N X ,  T~(x, tA1 ~ U {y}) = 1 and T,(x,  ] B f  U {y}) = 1; 
4) Vy C N*(x) N X,  T~(x, IAf  U {y}) = 1 and T~(x, [ B f  U {y}) = 1. 

In Fig. I, the central points of (b), (c), (d), (g), could satisfy the conditions 
of Th. 11 for strong 26-surfaces. The central points of (b), (c), (d), (e), (f), (g), 
(h), could satisfy the conditions of Th. 11 for strong 18-surfaces. 

. /T / / 

,r / _ix 
, ( 

/ - 2  

(~) 

__7 ~_  / 

- - /  / 

(b) (c) (d) 

/ / . /  ~ /T J l  / K - ~  / S / '  

/ / t .  ' '1 
i /  / I ~ /  / Z / 

/ / / / A 

../ / / /" 

(e) (0 (g) (h) 

Fig. 1. Examples. 

A fully local characterization of strong 26-surfaces was proposed [6], [19]. 
Furthermore, we have [5]: 

Theorem 12: Any Morgenthaler's closed 26.surface is a strong 26-surface. 
Theorem 13: Any Matgouyres' closed 18-surface is a strong 18-surface. 

5 C o m b i n a t o r i a l  m a n i f o l d  

We introduce the notion of two-dimensional combinatorial manifold. We use the 
same definitions as in [7]. 
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D e f i n i t i o n  14: Let G be a graph. An oriented loop of G is a circular per- 
mutation L = (v0, vl, .., vk-1), k > 2, of vertices of G such that  , for all i, vi is 
adjacent to vi+l (indices taken modulo k) and v~ # vj if i # j ;  a loop of G is an 
oriented loop up to its orientation. A vertex v~ of a loop is called adjacent to the 
loop; the oriented edge (v~, vi+l) (resp. the edge {vi, V~+l}) is called adjacent to 
the oriented loop (resp. the loop). Two loops having a common edge are called 
adjacent. 

D e f i n i t i o n  15: A two dimensional (closed) combinatorial manifold M = 
[G, F] is a graph G together with a set F of loops of G, called faces or 2-cells of 
M, such that: 
1) every edge of G is adjacent to exactly two faces, and 
2) for every vertex v, the set of faces adjacent to v can be organized in a circular 
permutation (f0, f l ,  ..., fk-1), k > 1, called the umbrella of v, such that,  for all 
i, fi is adjacent to fi+l (indices taken modulo k). 
The vertices (resp. edges) of a combinatorial manifold are also called the O-cells 
(resp. 1-cells). 

The notion of 2D combinatorial manifold corresponds to a structural descrip- 
tion of a surface. It is then desirable to have such a description for surfaces in 
Z 3. The major problem is that the n-adjacency relation used to define these 
surfaces does not allow to recover this description. Let us see for example the 
simple configuration depicted Fig. 2 (a). It corresponds to a Morgenthaler's 26- 
surface point. We see that, under the 26-adjacency relation, the set of points 
of the surface which surround the central point z does not constitute a simple 
closed curve. For example the point 1 has four 26-neighbors (7, 8, 2, 3) in N~6(x ). 
The 26-adjacency relations for the configuration of Fig. 2 (a) are depicted Fig. 
2 (b). We see that  the elementary loops for the graph corresponding to the 26- 
adjacency does not satisfy the conditions of Def. 15: for example, the edge {x, 3} 
is adjacent to the four loops (x, 2, 3), (x, 1,3), (x, 3, 4), (x, 3, 5). 

Thus, we have to consider another relation for extracting the structure of 
such surfaces. We consider a relation based upon the notion of homotopy and 
simple point. Let us consider again the configuration of Fig. 2 (a). We suppose 
that all the neighbors of the central point x have a 26-neighborhood which also 
corresponds to this configuration, i.e., the 5 × 5 × 5 neighborhood of x is a digital 
plane. Let us first note that all points of a surface are non-simple points. Suppose 
now that  the point x is removed; we see that  there are four points 1, 3, 5, 7 which 
will appear as 26-simple points; the other points will not appear as simple, for 
example the neighborhood of the point 2 after deletion of x is depicted Fig. 2 
(c), this does not correspond to a 26-simple point. Let us denote S(x) the set 
of points which appear as simple after deletion of z. As already seen we have 
S(x) = {1, 3, 5, 7}, we also have {x~ 2, 8} C S(1), {t, 3} C S(2)... The restriction 
of the relation S inside the neighborhood of x is depicted Fig. 2 (d). We see 
that,  if we consider a 2-cell as a closed path included in a unit cube, we have the 
structure of a 2D combinatorial manifold. In Fig. 2 (e), a configuration which 
could appear in a strong 18-surface is represented. We could expect that  the 
restriction of the relation S inside the neighborhood of x be the one depicted 
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Fig. 2 (f): we see that the central point is surrounded by a simple closed curve 
1 ,2 ,3 ,4 ,6 ,7 ,8 .  

8 1 2 
/ / / :  

: 1 f / / 
A ~ 

8 1 2 

I 

6 5 4 

(d) 

8 1 

6 5 4 
(b) 

I 

(e) 

Fig. 2. Examples. 
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/ 2 /  / 
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7 8 1 

4 3 
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It follows the idea of considering the following graph for extracting a surface 
structure from a discrete surface in Za: 

D e f i n i t i o n  16: Let X C £ .  We define the graph G,~(X) the vertices of which 
are the points of X and such that,  for all x, y of X, x is adjacent to y if: 
1) x and y are n-adjacent; and 
2) x and y are not n-simple points for X; and 
3) x is n-simple for X \ {y}; and 
4) y is re-simple for X \ {x}. 

Let G be a graph. A loop of G is simple if any vertex of the loop is adjacent 
to exactly two vertices in the loop. 

D e f i n i t i o n  1 7 :  

Let X C E. We define the set F~(X) composed of all simple loops for the graph 
Gn(X) such that: 
- for n = 6, these loops are included in a unit square; 
- for n = 6 +, 18, 26, these loops are included in a unit cube. 

The following theorem is the main result of this paper. It shows that  the 
main existing notions of discrete surfaces in Z a are 2D combinatorial manifolds. 
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T h e o r e m  18: Let X C E. 
I f  X is a iorgenthaler n-sur.facc, then [Gn(X),Fn(X)] is a 2D combinatorial 
manifold, with n = 6 and n = 26. 
I f  X is a Malgouyres 18-surface, then [Gls(X), Fls(X)] is a 29 combinatorial 
manifold. 
I f  X is a strong n-surface, then [Gn(X), Fn(X)] is a 2]) combinatorial manifold, 
with n = 18 and n = 26. 

In Fig. 3 (a), a strong 26-surface X is depicted. The cavity of this surface is 
made of three points which constitute a "corner". The graph G26(X) is depicted 
Fig. 3 (b). It may be seen that  [G26(X), ~½6(X)] is a 2D combinatorial manifold. 

6 P r o o f  o f  t h e  t h e o r e m  

The proof of Th. 18 has been made with the help of a computer. Even with 
a computer this proof is not obvious. The reason is that proposed definition 
of combinatorial manifold involves the checking of the 125-neighborhood of a 
point: see the above discussion for the configuration of Fig. 2 (a) where some 
assumptions about the 125-neighborhood of the central point has been made for 
recovering the structural description of Fig. 2 (d). An exhaustive checking of all 
the 212~ configurations in this neighborhood is out of the reach of computers. 
This explains that  we have to establish some intermediate lemmas in order to 
induce the properties of combinatorial manifolds from the 26-neighborhood of a 
point. 

First of all, we introduce the notion of extensible configurations (see also 
[17]). Let us consider the configuration of Fig. t (e). It satisfies the conditions for 
Morgenthater's 26-surface points (Def. 5). Nevertheless, it is impossible that  such 
a configuration appear in a Morgenthaler's 26-surface. The reason is that this 
configuration is not extensibte: it is not possible that all the points 26-adjacent 
to the central point could satis~" the conditions of Morgenthaler's 26-surface 
points. We give a precise definition of these cases: 

Let x e E. A configuration of x is a subset of N26(x) which contains x. Let 
]Cx be a set of configurations of x. We sac" that  Cx C ~ is extensible if, for each 
point y of C~ there exists a configuration C~ E ]C~ such that  C~, which is the 
translation of C~ by the vector xy, satisfies C~ N N2e(x) = C~ N N26(y). 

We present now the way for proving Th. 18. By Th. 12 and 13, we have only 
to prove it for Morgenthaler's 6-surfaces and for strong n-surfaces (n = 18, 26). 

6.1 M o r g e n t h a l e r ' s  6-surfaces  

First, a list of all possible configurations which satisfy the conditions for Mor- 
genthaler's 6-surfaces has been made. Such an exhaustive checking is within the 
reach of computers since it involves only 226 cases. Second all non-extensible 
configurations have been eliminated. Then, the following lemma was proved by 
checking all extensible configurations, (xG,~y means that x and y are adjacent 
for the graph G~(X)): 
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L e m m a  19: Let X be a Morgenthaler's &surface. 
If x E X and y E X are 6-neighbors, then xG6y. 

On the other hand, by Def. 16, if xG6y, then x and y are necessarily 6- 
neighbors. Thus it is possible to prove the theorem by checking again all exten- 
sible configurations: with Lemma 19, it is possible to recover the graph G6(X) 
and the set of loops F6(X) which appear in the neighborhood of.the central 
point. The conditions for 2D combinatorial manifolds were verified. 

6.2 S t r o n g  26-sur thces  

We see that the characterization of Th. 11 for strong n-surfaces is not "fully 
local": the knowledge of IXI ~ is not sufficient to decide if x satisfies the four 
properties. For checking the characterization, we need to know IX] ~ but we also 
need to know the distribution of the points of fxI ~ between IA] ~ and IBI ~. In 
fact, since the symmetry of the four conditions with respect to A and B, we see 
that it is sufficient to know this distribution up to a renaming of A and B. More 
precisely, it is sufficient to know, for each x of X, a labeling of [X-]~: 

De f in i t i on  20: Let X C E be an n-separating set and let x E X. A labeling 
{f;  (0) , f ;  (1 )}={]AI~, IBF}.  of IX[ ~ is a map f.~: Ixl a , {0,1} such that. -1 -1 

The knowledge of a labeling is necessary only if there is a component of IX[ ~ 
not ~-adjacent to x, (see, for example, the configuration depicted Fig. I (g)). 
The following lemmas allow to characterize these cases (see [6] for the proof). 

L e m m a  21: 
Let X be a strong 26-surface and letx E X.  If[Xt ~ contains a 6-component not 6- 
adjacent to x, then this 6-component is composed solely of one point. Furthermore 
this point is necessarily strictly 26-adjacent to x. 

L e m m a  22: 
Let X be a strong 26-surface. Let m ~ X and let U E N+(x)MX. If  Ng(x)NNg(y) 
is a subset of the same 6-component of{X] ~, then y is 6-adjacent to a one-point 
component of {Xt ~. Furthermore this one-point component and N~(x) 0 N~'(y) 
will belong to two different 6-components of X .  

For proving Th. 18, we first make a list of all possible configurations such 
that there exists a labeling for which the conditions of Th. 11 are satisfied. We 
eliminate all non-extensible configurations. Then, we prove the following temma 
by an exhaustive checking of all remaining configurations: 

L e m m a  23: Let X be a strong 26-sur¢ace and let x E X. We have: 
- gy E N~(x) M X,  xG2~y; and 
- Vy E N+(x)  M X,  if one of the two common 6-neighbors of x and y belong to 
X,  then we do not have xGz6y; and 
- Vy E N+(x) M X,  if the two common 6-neighbors of x and y belong to two 
different 6-components of X,  then xG26Y; and 
- Vy E N+(x )OX,  if the two common 6-neighbors ofx and y belong to the same 
6-component of X ,  then we do not have xG26y. 

On the other hand, by the definition of simple points, if y E N + (x)OX, we do 
not have xG26y. Thus, as for Morgenthaler's 6-surfaces, it is possible to examine 
all extensible configurations and~ with Lemmas 22 and 23, to recover the graph 
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G26(X) and the set of loops F26(X) which appear in the neighborhood of the 
central point. The  conditions for 2D combinatorial manifolds were verified. 

6.3 S t r o n g  18-sur faces  

As for strong 26-surfaces, we first, make a list of all possible configurations such 
that there exists a labeling for which the conditions of Th. 11 are satisfied. We 
eliminate all non-extensible configurations. We then prove the following lemmas 
by an exhaustive checking of all these configurations: 

L e m m a  24: 
I f  X is a strong 18-surface, then Vx E X ,  [-XI ~ admits an unique labeling. 

L e m m a  25: Let X be a strong 18-surface and let x and y be two points of 
X .  Let C be any back-component of X ,  i.e. C = A or C = B. We say that a 
6-path ~r from x to y is a C-path if all points of Tc, except x and y, belong to C. 
We say that x and y are Ck-eonnected if there is a C-path from x to y and if 
the minimal length of a C-path from x to y is equal to k. 
We have: 
- Vy E N~(x) N X ,  xGlsy; and 
- Vy E N+(x)  N X ,  xGtsy  if and only if  x and y are Ak-connected and B z- 
connected, with k 4- l < 6; and 
- Vy E N + ( x ) N X ,  if  the two common 6-neighbors o fx  and y belong to --if, then 
we have xGlsy  if and only if the two common 6-neighbors belong to two different 
6-components of X .  

The problem with strong 18-surfaces is that,  if a point y is such that  y E 
N+(x)  A X ,  and if only one of the two common 6-neighbors of x and y belong to 
X, then we may have xGlsy  but it is also possible that x and y are not adjacent 
under the Gls  relation. It follows that  it is not always possible to recover the 
Gls graph by examining the 26-neighborhood of a point. For these cases, we 
make two assumptions: we first suppose that xGlsy and then we suppose that  
x and y are not adjacent under the Gls relation. With this exhaustive checking 
and with Lemmas 24 and 25, Th. t8 was proved. 

(a) (b) 

Fig. 3. A strong 26-surface X and the graph G26(X). 
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