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Abstract. Topology-based Geometric Modeling is concerned with 
modeling subdivisions of geometric spaces. Methods are close to that of 
combinatorial topology, but for different purposes. We discuss some of 
these methods, their interests and drawbacks for Geometric Modeling, 
mainly aspects we think that could be of possible interest for Discrete 
Geometry. 

1 I n t r o d u c t i o n  

Geometric objects handled in Geometric Modeling are often structured point sets, 
since it is important for many applications, not only to represent a geometric object, 
but also to distinguish between different parts of the object, according to properties 
which are relevant for the application (e.g. mechanical, photometric, geometric 
properties). Important consequences exist for interactive or procedural modelers; for 
instance, the structure of a modelled object has to be taken into account when 
constructing it (it can be used for controlling construction operations). 

Topology-based Geometric Modeling deals with subdivisions of geometric 
spaces, i.e. partitions of these spaces into cells: vertices, edges, faces, volumes, etc. 
which define a sort of discretization of the geometric space. The fundamentals of 
many approaches are close to that of Combinatorial Topology [Ale] [SeTh] [FrPi], 
but for different purposes, and consist in distinguishing between topological 
information and embedding information. Topological information can be captured by 
combinatorial structures and controlled by combinatorial operations. So 
implementation of these structures (and related algorithms) can be done without loss 
of information and without loss of properties. 

More precisely, a subdivision is represented using a combinatorial structure 
which describes its topology (mainly the cells and their boundary relations), and 
embedding information is associated with topological information in order to describe 
the location of the subdivision into its embedding space (usually E 2 or E3). Different 
methods exist for defining embedding: linear embedding, free-form spaces, hierarchized 
embedding (a subdivision is embedded onto an other subdivision, in order to 
distinguish between different representation levels, for instance). 

An important consequence of this distinction between topology and embedding is 
that it is necessary to maintain a strong consistency between these two 
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complementary aspects, and this has to be taken into account when designing 
construction operations [Tak]. 

Nevertheless, a main interest of topology-based geometric modeling is the fact 
that the relations between combinatorial structures and subdivisions of geometric 
spaces have been extensively studied by mathematicians. So, a lot of knowledge can 
be directly used: for instance, many results in combinatorial topology can be used for 
computing properties, which are useful for controlling (constructions of) modeled 
objects. Such controls are essential for most applications. Moreover, it is possible to 
modify several geometric algorithms (e.g. for rendering, finite element method), 
which classically perform numerical computations, so that they will exploit 
topological information, and perform combinatorial computations, increasing thus 
their reliability and efficiency. 

Different types of subdivisions have to be handled, according to the applications: 
general complexes or particular manifolds, subdivided into any cells or regular ones 
(e.g. simplices): cf. Figure 1. Since 25 years, numerous structures, operations, 
modelers have been conceived in topology-based geometric modeling: first, cellular 
subdivisions of 2-dimensional manifolds are studied for Boundary Representation of 
solids [AFF] [Bau] [Bra] [M~in] [Weil], but recent works deal with simplicial [FePal 
[LaLil] [PBCF] or cellular geometric complexes [CCM] [CrRe] [EILil] [GCP] 
[LuLu] [Mar] [MuHi] [RoOC] [Wei2] or manifolds [ArKo] [DoLa] [GuSt] [HC] 
[Liel] [Spel. 
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Fig. 1. Several types of topologically 2-dimensional subdivisions. 
Intuitively, complexes are any assemblies of cells (cells are regular, as 
simplices, or not). The neighborhood of any point of an n-dimensional 

manifolds is an n-baH (or hail ball if the point lies on a boundary). 

In order to illustrate previous remarks and assertions, we will focus on several 
works whose fundamentals are well-known in combinatorial topology, and we will 
discuss their interests for geomeric modeling. First, two combinatorial structures 
(simplicial sets, combinatorial maps) are presented : we discuss the definition of data 
structures, basic construction operations, and we show that classical geometric 
construction operations can be easily defined on these structures. Topological 
properties can be computed on these structures, and thus, geometric computations can 
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be translated into combinatorial ones. Second, complexity is discussed: it is possible, 
using mechanisms based upon topological properties, to reduce the complexity of data 
structures and algorithms, without loss of information. Remarks are mentioned about 
implementation, programming and geometric modelers based upon the previous 
notions. 

I think that topological aspects are common to Geometric Modeling and Discrete 
Geometry (as, for instance, very natural relations exist between free-form space 
modeling and topology-based modeling). Some recent works establish interesting 
links between these fields [Fio] [Fra] [Lac] [Bru] [Som]. In the following, some of 
them will be mentioned, but not carefully discussed, since I will focus on methods in 
Topology-based Geometric Modeling. 

2 Subdiv is ions  and combinator ia l  s tructures  

In order to illustrate basic aspectb in topology-based geometric modeling, we first 
present two combinatorial structures: semi-simplicial sets (resp. generalized 
combinatorial maps, or G-maps) are used for handling simplicial subdivisions of 
geometric complexes (resp. cellular subdivisions of manifolds). 

2.1 Semi-simplicial sets 

An n-dimensional semi-simpticiaf set [May] is a collection of sets K = (Kk)k=0,...n 
with maps (cf. Figure 2): 

di: Kk--+ Kk-1, k>l,  0<i<_k, 
satisfying the following relations: 

didj = djdi-l, j<i. 

v2 . ~  do d Od [ 
d l . . ~ a ~  r . , 4 a - , , , ,  

V[ V3 d~ ~________~d0d0[ do ~ U l  d I _ _ ~  ~ 1 

Fig, 2. 2-dimensional semi-simplicial set. The semi-simplicial set 
(middle) describes the topology of the triangulation (left). Each simplex 

correspond to a sequence of vertices; for instance, 2-simplices correspond 
to (vl,v2,v4) and (v2,v3,v4). (vl,v2,v4)d 0 = (v2,v4), (vl,v2,v4)d I = 

(vl,v4), (vl,v2.v4)d2 = (vl,v2). The semi-simplicial set (right) is 
constructed by identifying 0-simplices corresponding to v4 and vS. Local 

neighbourhood of a simplex corresponds to boundary and star notions. 
More generally, boundary operators and their inverses make it possible to 

explore more or less large neighbourhoods of parts of semi-simplicial sets. 
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Elements of Kk are k-dimensional abstract simplices (or k-simplices) ; maps di are 
face operators. A j-face of a k-simplex (0_<j_<k) is obtained by applying a sequence of 
(k-j) face operators. The face is principal if the sequence is empty, otherwise it is 
proper. The boundary of a simplex is the set of its proper faces:/'or instance, (k+l) 
face operators (di)i=0,...k associate the (k-t)-simplices of its boundary with every k- 
simplex. The star of a simplex is the set of all simplices of which it is a proper face. 

Any semi-simplicial set can be constructed by two operations: the creation of a 
k-simplex (together with its boundary), and the identification of simplices. 

The geometric realization of a semi-simplicial set is a topological space [Mill. A 
topological cell, homeomorphic to the n-ball, is associated with any n~simplex. A 
CW-complex is defined by deducing identifications of celt boundaries from face 
relations in the semi-simpticiat set. 

2.2 Genera l ized  maps 

An n-dimensional generalized combinatorial map (or n-G-m@: cf. [BrSi] [Lie2] [Vin]) 
G is a set D with bijections (cf. Figure 3): 

o¢i: D --> D, 0_<i_<n, 
such that: 

cq is an involution on D, 0_<i<n (i.e. for any element d of D, do~io q = d); 
o~i~ j is an involution, 0_<i<i+l<j_<n. 

D is a set of abstract objets called darts. A connected component of G incident to dart 
d of D is the set of all darts that can be reached by successively applying involutions 
(xi, starting from d. The i-cells of G are defined as the connected components of the 
(n-l)-G-maps (D,o~ 0 ...... ~xi ..... (Xn), where c q  means that involution o~ i is omitted 
in the sequence of involutions. If darts exist, such that they are invariant for cq, G is 
with boundaries, else it is without boundaries. Boundaries of G are also defined as 
connected components of an (n- 1)-G-map. 

Any n-G-map can be constructed by two operations : the creation of a dart (which 
is invariant for any involution ~xi), and the sewing of two darts (cf. Figure 3). 

Any n-G-map can be associated with an n-dimensional cellular quasi-manifold; 
conversely, any n-dimensional cellular quasi-manifold can be associated with an n-G- 
map [Lie2]. Quasi-manifolds can be with or without boundaries, orientabte or not 
orientab[e. Note that it does not exist a combinatorial notion equivalent to that of 
manifold: quasi-manifolds make a sub-class of pseudo-manitblds; intuitively, an n- 
dimensional cellular quasi-manifold can be constructed by sewing together n-cells by 
identifying (n-l)-cells, in such a way that at most two n-cells share an (n-1)-cell. In 
fact, we can prove that n-G-maps are equivalent to a sub-class of semi-simpliciat sets, 
where simplices eu'e structured into cells. So, notions and operations defined on semi- 
simplicial sets can be extended on G-maps. Moreover, other notions can be defined 
(e.g. boundary of a G-map), since G-maps make a sub-class of simplicial quasi- 
manifolds (i.e. semi-simpticial sets which can be constructed by creating n-slmplices 
and by identifying (n~ 1)-simpfices in such a way that at most two n-simplices share 
an (n- 1 )-simplex). 
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Fig. 3. a: a cellular subdivision; b: the corresponding 2-G-map: a point 

corresponds to a dart, involution c~ 0 (resp. o~1,o~2) is symbolized by a 

dashed line (resp. line, thick line). All darts, except 4,5,7 and 8, are their 

own images by ct 2, Intuitively, dart 5 (resp. 4=5c~0,6=5cq,7=5c~2) 

corresponds to the 3-tupie (2,c,A) (resp. (3,c,A),(2,a,A),(2,c,B): cf. [Bri]). 
The 2-G-map is composed by a unique connected component. Vertex 2 

(resp. edge c, face A) corresponds to {6,5,7,14} (resp. {4,5,7,8}, 

{ 1,2,3,4,5,6}), which darts are connected by o~ 1 and o~ 2 (resp. 0~ 0 and c(2,(~ 0 

and oq). The 2-G-map, and its corresponding subdivision, has one 

boundary, defined by {1,2,3,9,I0,11,12,13,14,6}. Involutions o~ i make it 

possible to explore the neighbourhood of any dart and cell (and also to 
compute properties as duality, orientability, etc.: cf. below), c: a face and 
its corresponding 2-G-map. d and e: identification of vertices and edges, 

corresponding to sewing by o~ 2 (contrary to semi-simpticial sets, 

identification does not involve removal of elements, but only 
modifications of operators), f: a minimal subdivision of a Klein bottle, 

embedded into E 3, with self-intersections (the edge is symbolized by the 
thick line). This is a surface subdivision which can be represented using 2- 
G-maps; if we intend to model the resulting subdivision of E 3, we have to 

explicity represent intersectiot~s and resulting volumes using 3-G-maps. g: 
quasi-manifolds are not manifolds. Identification of faces (A,E,B) and 

(D,E,C) produces a quasi-manifold (up and right), which is not a manifold, 
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since the neighbomhood of vertex E is not a ball nor a half-ball; a similar 
quasi-manifold can also be constructed by identifying two central points of 

the circular faces of a full cylinder (down right). 

2.3 D i s c u s s i o n  

Semi-simplicial sets are well-known objects in algebraic topology, and generalized 
maps can be deduced from simplicial sets (cf. section 3). Geometric objects that can 
be associated with these structures are well defined. Thus, numerous notions, methods 
and results of algebraic topology can be applied and used in geometric modeling, and 
experiments have shown that it is important for implementations, constructions and 
controls. 

Semi-simplicial sets and generalized maps are combinatorial structures, from 
which basic data structures can be derived in a straigthforward way (for instance, 
simplices are implemented as records, containing pointers which correspond to 
boundary operators). Constraints of consistency of these data structures (thus pre and 
post-conditions of construction operations) are obviously deduced from the definitions 
of semi-simplicial sets and generalized maps [LaLi 1] [BD] [Lie 1 ]. 

Modeled objects are structured ones. It is thus possible to structure embedding 
information, and to control consistency between topology and embedding (when it is 
needed: cf. Figure 3.f). For instance, semi-simplicial sets linearly embedded 
correspond to simpliciat complexes. [LaLil] has studied the modeling of semi- 
simplicial sets embedded using triangular Bezier patches : control points are associated 
with simplices, in such a way that the data structure is minimal, and consistency is 
based upon relations deduced from boundary operators. Modelers have been designed in 
which generalized maps are linearly embedded [BDFL], or embedded in a hierarchical 
way [Bor]: hierarchized embeddings are very useful for many applications (e.g. 
geology [MLCF]). Complementary structures are often added when non connected 
objects are handled (e.g. inclusion trees [HCRR]). 

Topological properties are defined on semi-simplicial sets and can be extended on 
generalized maps. Basic properties as incidence and adjacency relations are explicitly 
defined and represented in data structures, through boundary operators (in practice, 
inverse operators are also explicitly represented in order to get a minimal cost when 
accessing cell neighbours~). For instance for' 3D object reconstruction from stereo 
images, [Som] employs a combinatorial structure for describing the topology of 
segmented images, and its matching method is based upon a parallel traversal of the 
two structures corresponding to a pair of images (a similar structure describing the 
topology of the 3D object is constructed during this traversat). Many interesting 
properties can be also computed by data structure traversals. For instance, the 
topological surface associated with a 2-dimensional generalized map is completely 
defined by its number of boundaries, its orientability and its genus (using Euler 
characteristic) [Gri] [Tut]. which can be computed on the 2-G-map. Some properties 
(and algorithms for computing them) are defined for higher dimensions (e.g. 

1 It is useless for involutions, since an involution is its own inverse. 
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orientability), although there is no equivalent classification. More generally, 
homology groups [Ago] [Gib] can be computed on semi-simplicial sets; it is also 
possible to decide whether or not a semi-simplicial set belongs to a given class 
(homogeneous, regular, pseudo or quasi manifold, etc) by simple traversals [E1Lil]. 

Such topological properties are important for controlling handled objects, their 
constructions, for proving algorithms, etc. Since topological information is 
represented by combinatorial structures, these properties can be computed without 
numerical computing. Moreover, these properties are important in order to control 
computing complexity. For instance, [FBDFR] studies an algorithm for locating 
points in a 3D mesh. Alter numerical optimizations (and conversion of some 
numerical computations into combinatorial computations), this algorithm spend more 
than 90% of computation time in traversals; since modelled subdivisions are 
orientable, it is possible to employ a specialized data structure, reducing significantly 
the cost in space and time (cf. section 3). 

Construction operations have been defined in algebraic topology and in geometric 
modeling: creating simplices or cells, identification, cartesian product (extrusion 
being a particular case), chamfering, cell fusion, splitting, etc. These operations are 
implemented into modelers, often in a straightforward way and with minimal 
complexity. Note that several operations are tess complex on generalized maps, since 
some informations are implicit: cf. Figure 4. An other example is the following. 
Given an n-G-map G = (D,o~ 0 ..... o~a) which describes the topology of a cellular 
quasi-manifold Q, the dual of G, G d = (D,o~ n ..... o~0), describes the topology of the 
dual of Q (i.e. a subdivision of the same space in which i-cells correspond to (n-i)- 
cells in the initial subdivision, preserving adjacency relations). 

a. b. c. 

d. e. 
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f. g. h. i. 
F i g .  4 ,  a: a subdivision mainly composed by four faces; b, the 

corresponding 2-G-map (involution c~ 2 is not represented when it is equal to 
identity); c. 2 "copies" of the G-map describing the central vertex; d. 

chamfering the central vertex; e. the corresponding 2-G-map, obtained by 
inserting c. (chamfering operation can be easily defined for any cell 
dimension and any G-map dimension), f. two edges ; g. the 2D semi- 
simplicial set corresponding to their cartesian product; h: two semi- 

simplicial set, and i: their 3D cartesian product. 

Previous structures, notions and operations are defined for any dimension, in an 
homogeneous manner. So, it is often easy to extend algorithms to higher dimensions. 
So, generic algorithms and operations can be defined. Sometimes, generalization to 
higher dimensions provides simplification of algorithms. This is not always true, 
since some properties are not applicable, for instance: 

- the Euler characteristic is defined for any semi-simplicial set (and thus for 
any generalized map), orientabitity can be computed on any generalized map, 
but the classification of 2-dimensionaI manifolds cat~ not be generalized: cf. 
above. 
- A local ordering of edges around vertices exists for subdivisions of surfaces. 
This is generalized in 3D in a local ordering of faces around edges for 3D- 
manifolds, but the structure of edges around vertices is no more 1 -dimensional, 
but 2-dimensional. 

Extensibility for higher dimensions is important, since more and more applications 
initially concerned with (topologically) 2-dimensional problems (CAD/CAM, 
imagery 2, etc) are now concerned with (topologically) 3D and more recently 4D ones 
(in order to take time into account). 

Semi-simplicial sets (and more generally simplicial sets) are the basis of  an 
experimental modeler [LaLi l] [LaLi2]. Abstract simplices are embedded as triangular 
Bezier spaces, and assemblies of such patches can thus be constructed (since a natural 
relation exists between indices of boundary operators and of control points). Several 
classical topological operations have been implemented and experimented, as 
identification, cut, cartesian product, and algorithms have been designed to compute 
homology groups of simplicial sets and their generators. 

Topofil [BD] is a modeler of 3D subdivisions based upon 3-G-maps linearly 
embedded into E 3. Classical operations in geometric modeling were adapted on 3-G- 
maps, but many other operations were conceived since Topofil is employed for 

2 For handling the topology of surface subdivisions, the first data structure used in 
topology-based modeling was conceived for computer vision problems. 
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different uses and application fields, as rendering, discrete geometry (for constructing 
discrete objects and checking their properties), animation, medical drawings, 
architecture, etc. The kernel of Topofil has been used for developing modelers in 
geophysics, meshes, etc. With a software engineering point of view, these extensions 
were simplified since TopofiI has been algebraically specified, increasing thus 
reliability and reusing [BDFL]. 

3 Complexity 

3.1 Reduced  s t ruc tures  

For many applications, very efficient data structures are needed due to data size 3. 
According to the properties of the modelled subdivisions, reduced simplicial and 
cellular structures can be derived from semi-simplicial sets. Examples are the 
tbllowing (for a more complete study, see [FuLi], [E1Lil], [E1Li2]): 

- A n  n-dimensional cubic set [Ser] is a collection of sets K = (Km)m= 0 ..... n 
with operators (cf. Figure 5.a and 5.b): 

eli: K m --> Km_l~ m>l, l<_i<_m, 0_<j<_l, 
satisfying the following relations: 

eijek 1 = ektei 'l  j with i>k. 
Km is a set of m-dimensional abstract cubes. 2m operators act on an m-cube, 
since an m-cube can be defined as the cartesian product of m edges, each one 
corresponding to a direction, and an edge has two extremities; so, El0 (resp. 
Eli) gives the (m-1)-cube at the origin (resp. extremity) along the i th direction. 
Notions and operations (similar to that related with semi-simpliciat sets) can 
be defined on cubic sets. Semi-simplicial sets can be naturally associated with 
cubic sets, through cartesian product• So, for "cubic subdivisions" (i.e. 
subdivisions in which cells are isomorphic to cubes), the cost of cubic sets is 
lower than that of the associated simplicial set (cf. figure 5.c; this is similar 
for cubic sets and associated generalized maps)• 
- Simplicial quasi-manifolds make a sub-class of semi-simplicial sets (cf. 
section 2.2). Generalized maps correspond to cellular quasi-manifolds, which 
are defined as simplicial quasi-manifolds where simplices are structured into 
cells according to a numbering of vertices [Lie2] (this is closely related to the 
notion of barycentric triangulation): cf. figure 5.d and 5.e; 
- A n  n-dimensional combinatorial map (or n-map [Edm] [Jac] [Cor] [Liel ]) M 
is a set D with bijections (cf. Figure 5.f and 5.g): 

13i: D --~ D, t<i_<n, 
such that: 

~l is a permutation on D, [3 i is an involution on D, 2<i_<n; 
13i~3 j is an involution, I<i<i+l<j<n. 

3 See also the study in [BF] [FB] about the complexity of 2D and 3D subdivisions. 
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Given a connected orientable n-G-map without boundaries G = (D,o~0 ..... an) ,  
two n-maps M 1 and M2 can be associated with G, each one corresponding to a 
possible orientation of  G, i.e. : let d be a dart of  D; M1 = (DI,~31 ..... ~3n) where 
~i = o~0o~i/Dl, l_<i<n, and D 1 is the set of  all darts which can be reached 
starting from d by successively applying ~i (l_<i<n) (the definition of  M2 is 
similar, and do~ 0 belongs to M2). In practice, data structures deduced from n- 
maps are used for handling orientabte cellular quasi-manifolds,  with a lower 

space complexi ty  than n-G-maps,  since one dart of  an n-map corresponds to 
two darts of  the associated n-G-map. 

b. 

• • - - , , . , *  - % 
0o ~b ~b q~ 

. . . . . . . . .  

!S.I' 

• d~ aa % ® ;~:,'.ii~:. - - 

C, 

< 
< 

f. h. 

d~ 

F i g .  5 .  a: a cubic subdivision, b: a corresponding cubic set. c: a semi- 
simplicial set associated with a 2-cube of b. d. the barycentric triangulation 

of a.; each cell is split by inserting a vertex at its barycenter, numbered 
with the cell dimension, e: the corresponding 2-G-map (involution c~ 2 is 

not represented when it is equal to identity); a dart is associated with each 
simplex, and involutions are deduced from boundary operators and vertex 
numbering, f: since the subdivision of d. is orientable, simpliees can be 
merged two by two. g. the corresponding 2-map, which defines an 
orientation of d. h. a subdivision of a. where cells are not regular. 
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Other structures can be deduced from sub-classes of semi-simplicial sets (even 
cellular structures, defined as structured semi-simplicial sets), according to some 
mechanisms which employ the properties of sub-classes in order to reduce the 
information explicitly represented, e.g.: 

- when cells are cartesian products of simplices, the corresponding 
triangulation of cells is not explicitly represented in cubic or simptoidal sets 
[FuLi]; 
- chains [EILi2] are deduced from semi-simplicial sets in which simplices are 
structured into cells (chains are associated with cellular complexes) and G-maps 
can be deduced from chains representing cellular manifolds (it is useless to 
explicitly represent 0-,...,(n- l)-cells, and the related boundary operators, when 
handling manifolds ; this is also true for simplicial manifolds). 

Other mechanisms exist for other properties [E1Lil]. Main interest here consists 
in reducing the space complexity of data structures (information becomes implicit), 
and advantages presented before remain, since conversions between structures do not 
involve loss of information. For instance, for some very regular subdivisions as 
presented in figure 5, the explicit representation of all topological information is 
useless for many algorithms (even cubic sets are not optimal). Simplicial sets, cubic 
sets, etc., are needed in order to handle irregular assemblies of regular cells. Chains, 
generalized maps, etc, make it possible to handle irregular assemblies of irregular 
cells. 

Operations for computing topological properties and construction operations have 
to be adapted to reduced structures. Time complexity of these operations can thus be 
strongly reduced (for instance, time complexity of some modification operations is 
reduced since less information has to be explicitly modified, for instance sewing or 
chamfering G-maps) or increased (when it is necessary to explicitly compute 
information being implicit in the handled structure). No general results exist, and it is 
necessary to carefully analyse space and time complexity according to the type of 
objects and operations which are needed for a particular use (partial results are 
presented in [E1Li t ]). 

In order to handle complex assemblies of free-form spaces, a modeler of 
simploids has been developed [FuLi], since natural links which exist between 
simplicial sets and control points of tree-form spaces can be extended for simploidaI 
sets and general simpliciat algorithms. 

[BeLi] studies the conception of Multifil, a modeler of cellular and simplicial 
complexes based upon the hierarchy of structures presented above, for handling 
general complexes with a minimal complexity in space and time. Hybrid structures 
are also studied, since few singularities exist in objects for many applications. For 
instance, usual objects are manifolds except in some few parts; it is thus useless to 
employ a general structure for representing all parts of the object: a manifold structure 
can be used, enriched when it is necessary to represent "non manifold" parts (similar 
mechanisms m'e used in [MAT']). 
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3.2 Hierarchized embeddings 

For some applications, objects are structured into different levels, for representing 
informations related to the objects (for instance, a geographic map) or for optimizing 
time or space complexity (for instance different resolution levels can be distinguished 
in order to decrease time complexity of algorithms). Several approaches are based 
upon the natural recursivity of the definition of embedding [Bor] (a cell can be 
embedded onto a part of geometric space which is itself subdivided). 

The key point here is consistency between topology and embedding. Since a 
discrete (or hierarchized) embedding is a "combinatorial embedding", its properties can 
be exactly defined and preserved through constructions. For instance, combinatorial 
maps are employed by [BrGu] [Bru] in order to handle segmented images: a 2- 
dimensional map is embedded into Z 2 by associating an "inter-pixel" path with each 
edge; these paths are the frontiers of regions, associated with faces, and their 
intersections are associated with vertices. For reconstructing 3D objects from stereo 
images, [Som] uses two 2-dimensional maps in order to describe the topology of a 
pair of segmented images, and an other 2-map describes the topology of the 3D 
object. This map is embedded into E 3, but also into the two other maps in order to 
control consistency between the object and its images (and to control its 
construction). 

Problems related to consistency in a multi-level hierarchized embedding were 
studied by [Fey]. He proposed a definition of embedding of simplicial (and cellular) 
structures into lower-level simplicial (resp. cellular) structures (the lowest level being 
a regular subdivision of the 2D and 3D space, vertices being embedded onto points of 
Z 2 and Z3), and of some properties of embedding which are necessary for applying 
some operations (e.g. boolean operations), in such a way that their results can be 
propagated to higher or lower levels. 

4 C o n c l u s i o n  

Numerous combinatorial structures have been defined for representing regular or 
irregular subdivisions of geometric objects, for any dimension, and many construction 
operations and operations for computing topological properties have been proposed 
and experimented. 

Using these structures, it is possible to handle "discretizations" of geometric 
objects, since they define the topology of structured continuous or discrete objects. 
Since they are combinatorial ones, data structures and algorithms have been defined 
without any loss of properties, and several modelers have been designed for different 
application fields as CAD, animation and image synthesis, architecture, digital 
imagery, etc. 

Among numerous research directions, I think a main one is the following: 
Several works have shown that some results of topology-based geometric modeling 
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can be useful for Discrete Geometry and Computer Imagery. A careful study of the 
usefulness of structures and algorithms has to be made, i.e. I think it is important to 
systematically study classical algorithms in Discrete Geometry and Imagery in order 
to get a definitive conclusion about the possible interests of Topology-based 
Modeling methods for these fields (thus following approaches of [Fio], [Lac], etc.). A 
step could be the conception of a modeler of discrete objects. It is thus important to 
carry on investigating algebraic topology in order to select and experiment 
constructions and properties which can be useful for geometric modelers and 
algorithms in Discrete Geometry, 
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