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A b s t r a c t .  In this paper, we explore parallel implementations of the 
abstract data type priority queue. We use the BSP* model, an exten- 
sion of Valiant's BSP model which rewards blockwise communication, 
i.e. sending a few large messages instead of many small ones. We present 
two randomized approaches for different relations between the size of 
the data structure and the number of parallel updates to be performed. 
Both yield work optimal algorithms that need asymptotically less com- 
munication than computation time and use large messages. All previous 
work optimal algorithms need asymptotically as much communication 
as computation or do not consider blockwise communication. We use a 
work optimal randomized selection algorithm as a building block. This 
might be of independent interest. It uses less communication than com- 
putation time, if the keys are distributed at random. A similar selection 
algorithm was independently developed by Gerbessiotis and Siniolakis 
for the standard BSP model. We improve upon previous work by both 
reducing the amount of communication and by using large messages. 

1 I n t r o d u c t i o n  

In this paper,  we investigate parallel algorithms for maintaining priority queues. 
A priority queue is an abstract  data  structure that  stores keys of a totally ordered 
set and supports  insert and delete operations. We consider a parallel modifica- 
tion of these operations. Insert adds n keys to  the da ta  structure and DeleteMin 
extracts  and removes the currently best m keys. Other operations could be con- 
sidered but  we only deal with these two operations which are typically used in 
branch-and-bound algorithms. N denotes the number  of keys currently stored 
in the da ta  structure. 

We use the BSP* model, which was introduced in [3] as an extension of 
Valiant 's  BSP model [7]. This is a general purpose model for parallel computa-  
tion, representing a bridge between powerful abstractions, such as the PRAM,  
and real machines based on specific architectures. The BSP* model differs from 

t This research was partially supported by DFG-SFB 376 "Massive Parallelit~it" and 
EU ESPRIT Long Term Research Project 20244 (ALCOM-IT). 
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the original BSP by rewarding blockwise communication, i.e. it is worthwhile to 
combine data  in order to communicate large messages instead of communicating 
many small ones. With respect to actual machines, this yields better use of the 
bandwidth of routers and reduces thereby the overhead involved in communica- 
tion. A BSP*(p, g, L, B) machine consists of a set o fp  processors communicat- 
ing through some interconnection medium. The computation is organized as a 
sequence of supersteps. In a superstep the processors operate independently per- 
forming local computation and generating a number of point-to-point messages. 
At the end of the superstep, the messages are delivered to their destinations and 
a global barrier synchronisation is realized. If each processor performs at most 
t local operations and sends or receives at most h messages of maximum size 
s, the superstep requires max{L, t} computation time and max{g,  h .  [~] ,  L} 
communication time. Note that  messages of size smaller than B are treated as 
if they were of size B. Hence, in the BSP* model it is worth communicating in 
a blockwise fashion. 

Several parallel algorithms for maintaining priority queues are known in the 
literature. Deo and Prasad [5] present an optimal deterministic PRAM algo- 
rithm for insertion and deletion of p keys which requires time O(logN). An- 
other PRAM algorithm reaching the same time bound is given by Pinotti and 
Pucci [9]. Ranade et al. [11] use a randomized approach on a d-dimensional array 
network. Inserting and removing of p keys with p processors can be done in time 
O(pl/d), if N = O(p c) and c constant. For the coarse grained multicomputer 
model (CGM), Sanders [13] has developed a randomized algorithm using a simi- 

N lar approach. Insertion and deletion of p keys require O(log 7 + d(p)) amortized 
time, if N k p logp and d(p) denotes the diameter of the network. None of the 
above mentioned algorithms takes blockwise communication into account. 

We present two randomized approaches to maintain a parallel priority queue 
on the BSP* model. Our first one is based on the algorithm of Sanders [13] 
and the second on the PRAM algorithm of Deo and Prasad [5]. Our algorithms 
are both work optimal and need asymptotically less communication than com- 
putation time. Fhrther, we communicate only large messages. Both approaches 
distribute the N priority queue keys evenly among the processors, with high 
probability. 

R e s u l t  1. Let n = J2(plog 2 n), m = f2(plog 2 m) and k an arbitrary constant. 
Algorithm Insert needs O(g-~ + L) communication time with B <_ pl-f~gn and 
Algorithm DeleteMin O(g-~ + (L + g) logp) communication time with B < p .  
The computation times are: 

computation time Insert DeleteMin 

N n +L) leftist heap O(log ~- + 

..... searchtree O ( ~ l o g N  + L) 

standard heap log } + L) 

m N L log p) 0(- T log 7 + 
O(log + + L logp) 

0 ra  N L logp) (7  log ~- + 
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We reach these time bounds with probability at least 1 - 1/n k (Insert) and 
1 - 1/m k (DeleteMin). 

This result improves upon Sanders' algorithm by achieving blockwise com- 
munication. The second approach benefits from small values of N/n.  

Resu l t  2. Let fl be constant, n = ~(p log 4 n), N < fin and n suI~icient large. For 
any constant k it holds: The algorithms Insert and DeleteMin need with probabil- 
ity at least 1 - 1/n k computation time O(p log N + n logp) and communication 

O n N (n + g) logp), for B < ~ V / ' ~ .  time (g-~ + ~V/ -~ l~  + _ 1 

We improve upon Deo and Prasad's algorithm by reducing the amount of 
communication and by communicating in a blockwise fashion. 

Moreover, we present a selection algorithm which is crucial for the efficiency 
of our algorithms, and which is of interest on its own. Given a set X of n keys 
and a number r E {1, ...,n}, selection determines the key with rank r from X. 

Several optimal PRAM algorithms for selection exist. Cole [4] presents an 
optimal deterministic selection algorithm for the EREW PRAM requiring O(n) 
work and O(lognlog*n) time. Further, Rajasekaran [10] presents a selection 
algorithm for the hypercube which solves selection for n keys using n~ log n pro- 
cessors in time O(log n). On the Distributed Memory Model (BDM), Bader and 
Js163 [1] developed a practical parallel selection algorithm which needs compu- 
tation time O(n/p) and communication time O((r + p) log ~ + n/p) if n > p2  
where T is the latency. Recently, Gerbessiotis and Siniolakis [6] independently 
developed a randomized selection algorithm for the standard BSP model which 
is similar to our algorithm. They need 3n/(2p) + o(n/p) number of comparisons 
and asymptotically less communication than computation time for a wide range 
of BSP parameters. Again, none of the mentioned selection algorithms considers 
blockwise communication. 

Our selection algorithm is based on the technique used by Rajasekaran. It is 
work optimal and improves upon previous work by reducing the communication 
time. If X is randomly distributed, it requires asymptotically less communication 
than computation time. 

Resu l t  3. If n = s 4 n) holds and k is any constant, then Algorithm Select 
needs computation time O(n/p + L logp) and communication time O( ~s X / f ~  + 

(L + g) logp) for B <_ x / ~ ,  with probability at least 1 - 1/n k. 

The paper is organized as follows: In Section 2 we describe the randomized 
selection algorithm. Section 3 presents the method for distributing the new keys 
among the processors used in the priority queue algorithms. Our two approaches 
to implement priority queues are given in Section 4 and 5. Most results are only 
sketched. Fhrther explanations and some experimental results can be found in 
[12] and [2]. 
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2 T h e  S e l e c t i o n  A l g o r i t h m  

In this section, we describe our randomized selection algorithm Select. It deter- 
mines, for a given integer r and a set X,  IX[ = n, the key with rank r from 
X.  It is based on techniques previously developed by Rajasekaran [10]. Let the 
processors be divided in x/P groups of x/P processors each. For further applica- 
tion in priority queue operations we need that  X is randomly distributed among 
the processors such that  the following condition holds with probability at least 
1 - 1In k for any constant k: 

C o n d i t i o n 4 .  a) o (  Xk~) keys of set X are stored in each processor group. 

b) Each processor group stores o (  SJ-~ + l o g n )  keys of a random subset S of X .  

This somewhat artificial condition is later needed in order to guarantee block- 
wise communication. It is fulfilled if we choose, for example, for each key a 
processor at random. Thus, Select may be applied in many situations. 
Algorithm Select: Beginning with X,  we recursively choose a small subset Y of 
X containing the key with rank r. We repeat this until Y has size x/~. Then, 
the key with rank r is determined by sorting the ~ keys. 

The crucial part  is the way we choose set Y. Let Xl be the subset of X 
considered in round l. We use the technique over-sampling presented by Valiant 
and Gerbessiotis in [7] to determine a small subset Y of Xe containing the key 
with rank r. Therefore, we choose a random subset S of Xt  of size [ x / ~ ,  the 

samples, by marking every key with probability 1 / [x /T~ .  We sort the sample set 
S. The samples s~i, i E {1, ..., 4 - 1 } ,  partit ion X! into ~ buckets of size O([Xt]/~) 
with high probability, for suitable ~ and g. Thus, we can determine a constant 
number of buckets which contain the key with rank r with high probability. The 
keys h := s~i and t2 := sgj bound these buckets. The keys of Xe which are 
greater than tl  and smaller than t2 form Y. We prove that  with high probability 
Y is small (_< [Xl[ a with a < 1) and the key with rank r is in Y. 

The crucial observation for the efficiency of this algorithm is the following. 
The algorithm needs only constantly many recursive rounds and the "random 
distribution" of X yields an almost even distribution of each subset of X among 
the processors. Therefore, all sets, we sort, are evenly distributed to the proces- 
sors and thus the communication time is small. 

L e m m a  5. For every k > O, if n is sufficiently large, the following holds with 
probability at least 1 -  l ink :  (a) the set S has size of O( [X/-~[), (b) the key with 
rank r is in Y and (c) ]Y[ < IXt[ ~ with a < 1 and a constant. 

Proof. Part  (a) can easily be proved by Chernoff bounds. To prove (b) and (c) 
we use the following fact proved in [7]: If you have a chosen sample of size $~ of 
set X~ and look at each s-th key ri (with ri = si~,i E {1, . . . , ~ -  1}) of this sorted 
sample set, these keys separate set X~ into buckets Bi = {x E X~iri < x <_ ri+l} 
(r0 = - c %  re = c~) which are with high probability nearly of the same size 
(_< [(1 + e)(iXtl + 1)/~],e < 1). We have to choose ~ and ~ that  ~ = c [ x / ~  
holds. [] 
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The operations we use in Algorithm Select are Broadcast, Parallel Prefix 
(see [3]) and Ranking (modify a PRAM algorithm from Nassimi and Sahni [8]). 
With Cond. 4 and Lemma 5 we get the running times of Result 3. 

Algorithm Select can easily be extended to an algorithm that  works on d sets 
and searches one key in each set. We only have to execute every step for all d 
sets concurrently. Therefore, we can extend the block size and do not need more 
synchronizations. 

3 T h e  B l o c k  D i s t r i b u t i o n  

In this section we want to solve the following distribution problem: Input: (a) 
Set M, distributed among the processors such that  each subset of size n is 
distributed according to Cond. 4. (b) Set S of size n, distributed evenly among 
the processors. Aim: Distribute S among the processors such that  each subset 
of size n of M U S is distributed according to Cond. 4. 

The following algorithm for this problem communicates the keys in a block- 
wise fashion, therefore we call it block distribution. With Si we denote the subset 
of S of size n ip  at processor P~. Algorithm block distribution (s) works, for each 
Si, as follows: (1) Choose randomly one out of s buckets for each key. (2) Store 
the keys belonging to the j - th  bucket (1 _< j <_ s) on a randomly chosen proces- 
sor. 

The following two lemmas show that  Cond. 4 holds for the block distribution. 
Furthermore, the first one is used by the priority queue algorithms. By Lemma 7 
we know that  we need assumption n = ~2(plog 4 n) to fulfil Cond. 4 in Result 3. 

L e m m a  6. I f  t > O, n >_ ps log t, and k is an arbitrary constant, then with 
probability at least 1 - 1 / t k :  (a) the bucket size of an arbitrary bucket is 0 (  ~ ) and 

(b) each processor has O ( t )  of t arbitrarily chosen keys from M U S, assuming 

additionally t = ~ ( ~ s  )" 

Proof. Part  (a): Use Chernoff bounds. Part  (b): We investigate how many keys 
a given processor P gets. The t arbitrary keys are distributed to at most t 
buckets B~ by Step 1 of the block distribution. We conclude from part  (a), that  
IB~I = O(~),n Vi E {1, ...,t}, with probability at least 1 - t / t  k' for any constant 

k'. Let Xt ,  ..., Xn be independent random variables. Set Xi = IB~I, if B~ is placed 
= ~ i = t  X~ be random variable which on processor P and X~ = 0 else. Let X n a 

represents the number of keys placed on processor P.  We have Xi E {0, ..., c ~ }  
for a constant c, Prob(X~ = IBil) = l iP  and E X  = t/p. By Hoeffding bound 
holds for a constant a >__ e: Prob(X  > a t )  < e x p ( -  ~L~'~) _< t - k  with t >_/~nlo~t 
and constant/~ >_ c . k .  [:] 

L e m m a T .  Let n = /2(plog4n), s = { 9 ( V ~ / p l o g n  ), k an arbitrary constant 
and X an arbitrarily chosen subset of M U S of size n. With probability at least 
1 - 1/nk: (a) every processor group owns O ( n / v ~  ) keys of set X and (b) every 
processor group owns O ( m a x { ~ / - ~ ,  log n}) keys of a random subset of Z of size 
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Proof. We prove (a) in the same way as Lemma 6 (b). To bound the bucket size 
we use Lemma 6 (a) and set t = n, n = $2(plog4 n) and s = ( 9 ( v / ~ l o g n )  to 
fulfil the assumptions of Lemma 6. Par t  (b): Chernoff bounds and (a). [] 

4 A l g o r i t h m s  f o r  t h e  R a n d o m i z e d  H e a p  

The algorithms of this section are based on Sanders'  heap algorithm [13]. In 
contrast  to the algorithm of Sanders, which uses a s tandard heap, we use a 
search tree or a leftist heap as local da ta  structure which either allow a faster 
extraction of the O(m/p) smallest elements or a faster insertion of O(n/p) new 
keys. Our algorithm also differs from Sanders'  algorithm in the way we distribute 
the new keys. We use the block distribution, which allows to communicate the 
new keys blockwise. 

Each processor Pi possesses its own local data  structure. Now we present the 
algorithms Insert and DeleteMin without using a specific da ta  structure. 
Algorithm Insert: The n keys are distributed by block distribution and then 
inserted into the local da ta  structure. 
Algorithm DeleteMin: Each processor repeats removing from its local data  struc- 
ture a m / p  keys until the altogether best m keys are taken. Then, the key with 
rank m from these removed keys is selected. The best m keys are distributed 
among the processors and the others are added back to the local data  structures. 

The following lemma tells us how keys are distributed to the processors and 
tha t  the removal of a m / p  keys, a constant,  is sufficient to have the best m 
keys. Furthermore, it is easy to prove that  every processor owns nearly the same 
number of the N priority queue keys. 

_ 
L e m m a S .  Let n > splogn, s > logn, m =  , s N =  $2(nlogn) and k 
an arbitrary constant. For one insert operation, the following holds with proba- 
bility at least 1 - l ink:  (a) every bucket Si,j at the block distribution has a size of 
0 (  ~ )  and (b) every processor gets O(s) buckets. (c) With the same probability 
every processor holds O(N/p) of the total N priority queue keys and (d) with 
probability at least 1 - 1 /m k each processor holds O(m/p)  keys of the best m 
keys. 

Proof. Use Lemma 6 and Chernoff bounds. [] 

Now, we investigate the influence of different local da ta  structures on the 
running times of our parallel priority queue. With Lemma 8 follows Result 1. 

Le f t i s t  H e a p :  Beside Insert  and DeleteMin the leftist heap supports the op- 
eration Meld which constructs a new leftist heap out of two leftist heaps, refer 
to [14]. Meld can be used in the operation Insert. 

S e a r c h  Tree :  We use a search tree (e.g. a B-tree or Red-black-tree [14]) which 
supports the operations Split and Join beside the operations DeleteMin and 
Insert, where Split divides a search tree into two search trees and Join merges 
two search trees to one. One can use these operations in routine DeleteMin to 
access and to reinsert the keys. 
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5 Algorithms for the Parallel Heap 

This section describes another randomized heap algorithm. It is based on a 
PRAM algorithm from Deo and Prasad [5] which uses a parallel data structure 
similar to the usual heap, the parallel heap. We introduce a novel way to map 
the parallel heap to the processors, to reduce the communication costs. This 
mapping is crucial for the efficiency of our algorithm and allows us to implement 
the PRAM algorithm of Deo and Prasad so that  it needs asymptotically less 
communication than computation time. 

A parallel heap is a binary tree, where each node stores n keys. A parallel 
heap which represents N keys has N/n nodes and height O(log N). We now 
sketch the operations Insert and DeleteMin like they are presented by Deo and 
Prasad [5]. Then we point out how the keys are distributed among the processors 
and prove that  this distribution works well. 

Algorithm Insert: In order to insert n new keys we process the nodes along the 
insert-path, the path from root to the first node without keys at the leaf-level. 
At every level we have to merge the new keys with the appropriate node of the 
level. 

Algorithm DeleteMin: Remove the n keys stored in the root and place the keys 
stored in the last node (a node of the leaf-level) in the root. Now, we let the keys 
move down the parallel heap. At every level we have to merge three nodes. 

Insertion and removing are made in a pipelined fashion. Each new opeation 
modifies the root and afterwards the parallel heap is updated. After such an 
update, the root is up-to-date, so that  the next operation can take place. 

In the following we describe how we map the nodes of the parallel heap to 
the processors: Every node is divided into p buckets, where Pi owns bucket i, 
i E {0, ...,p - 1}. These buckets store the keys. The n keys of each node are 
distributed randomly (use block distribution, Sect. 3). The main idea is that  
after distributing the keys at random to the processors no key ever leaves its 
processor until it is removed from the heap by a DeleteMin operation. If a key 
(in bucket i) changes the node of the parallel heap, it does not change the 
processor. It is always stored in bucket i of an arbitrary node, thus on Pi. Every 
processor has a portion of every node of the parallel heap. 

New e,c~es 
Parallel  Heap 

v Tags 

l•• 
Insert 

No operation 

I DeleteMin 

Fig. 1. Mapping of the parallel heap, including the buckets. The fat buckets 
are the ones stored in Po. 
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To merge nodes of the parallel heap, we use algorithm Select (Sect. 2) instead 
of a merging algorithm. This guarantees the small amount of communication. 
Since we perform O(log N) updates at the same time (because of pipelining) 
we select from O(log N)  sets, concurrently. For analyzing the computation and 
communication times it is necessary to show that each processor has nearly the 
same number of keys of every node and thus each processor has nearly the same 
number of keys of log g arbitrary nodes, each one chosen from a different level. 

L e m m a 9 .  Let k and fl be arbitrary constants, n >_ splogn, N <_ fin and s = 
~(logn). Then the following holds with probability at least 1 - 1/nk: (a) every 

O n processor holds (-~) keys of an arbitrary node and (b) every processor holds 
OZn 10 N~ N ~-~ g-~) keys of log -~ arbitrarily chosen nodes. 

Proof. Par t  (a): Use L e m m a  6 (b) with t = n, s = ~2(logn) and the fact t ha t  no 
key leaves its processor. [] 

To prove Result 2, we use s = cv/~-p/plogn with c constant, n = ~2(plog 4 n) 
and Lemma 9. The least block size is given by algorithm Inser t :  B < n < 

- -  p S  - -  
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