
Realistic Parallel Algorithms:
Priority Queue Operations

and Selection for the BSP* Model t

Armin B~umker, Wolfgang Dittrich,
Friedhelm Meyer auf der Heide, and Ingo Rieping

{abk, dittrich, fmadh, inri}@uni-paderborn.de

Department of Mathematics and Computer Science and Heinz Nixdorf Institute
University of Paderborn, D-33095 Paderborn, Germany

A b s t r a c t . In this paper, we explore parallel implementations of the
abstract data type priority queue. We use the BSP* model, an exten-
sion of Valiant's BSP model which rewards blockwise communication,
i.e. sending a few large messages instead of many small ones. We present
two randomized approaches for different relations between the size of
the data structure and the number of parallel updates to be performed.
Both yield work optimal algorithms that need asymptotically less com-
munication than computation time and use large messages. All previous
work optimal algorithms need asymptotically as much communication
as computation or do not consider blockwise communication. We use a
work optimal randomized selection algorithm as a building block. This
might be of independent interest. It uses less communication than com-
putation time, if the keys are distributed at random. A similar selection
algorithm was independently developed by Gerbessiotis and Siniolakis
for the standard BSP model. We improve upon previous work by both
reducing the amount of communication and by using large messages.

1 I n t r o d u c t i o n

In this paper, we investigate parallel algorithms for maintaining priority queues.
A priority queue is an abstract data structure that stores keys of a totally ordered
set and supports insert and delete operations. We consider a parallel modifica-
tion of these operations. Insert adds n keys to the da ta structure and DeleteMin
extracts and removes the currently best m keys. Other operations could be con-
sidered but we only deal with these two operations which are typically used in
branch-and-bound algorithms. N denotes the number of keys currently stored
in the da ta structure.

We use the BSP* model, which was introduced in [3] as an extension of
Valiant 's BSP model [7]. This is a general purpose model for parallel computa-
tion, representing a bridge between powerful abstractions, such as the PRAM,
and real machines based on specific architectures. The BSP* model differs from

t This research was partially supported by DFG-SFB 376 "Massive Parallelit~it" and
EU ESPRIT Long Term Research Project 20244 (ALCOM-IT).

370

the original BSP by rewarding blockwise communication, i.e. it is worthwhile to
combine data in order to communicate large messages instead of communicating
many small ones. With respect to actual machines, this yields better use of the
bandwidth of routers and reduces thereby the overhead involved in communica-
tion. A BSP*(p, g, L, B) machine consists of a set o fp processors communicat-
ing through some interconnection medium. The computation is organized as a
sequence of supersteps. In a superstep the processors operate independently per-
forming local computation and generating a number of point-to-point messages.
At the end of the superstep, the messages are delivered to their destinations and
a global barrier synchronisation is realized. If each processor performs at most
t local operations and sends or receives at most h messages of maximum size
s, the superstep requires max{L, t} computation time and max{g, h . [~] , L}
communication time. Note that messages of size smaller than B are treated as
if they were of size B. Hence, in the BSP* model it is worth communicating in
a blockwise fashion.

Several parallel algorithms for maintaining priority queues are known in the
literature. Deo and Prasad [5] present an optimal deterministic PRAM algo-
rithm for insertion and deletion of p keys which requires time O(logN). An-
other PRAM algorithm reaching the same time bound is given by Pinotti and
Pucci [9]. Ranade et al. [11] use a randomized approach on a d-dimensional array
network. Inserting and removing of p keys with p processors can be done in time
O(pl/d), if N = O(p c) and c constant. For the coarse grained multicomputer
model (CGM), Sanders [13] has developed a randomized algorithm using a simi-

N lar approach. Insertion and deletion of p keys require O(log 7 + d(p)) amortized
time, if N k p logp and d(p) denotes the diameter of the network. None of the
above mentioned algorithms takes blockwise communication into account.

We present two randomized approaches to maintain a parallel priority queue
on the BSP* model. Our first one is based on the algorithm of Sanders [13]
and the second on the PRAM algorithm of Deo and Prasad [5]. Our algorithms
are both work optimal and need asymptotically less communication than com-
putation time. Fhrther, we communicate only large messages. Both approaches
distribute the N priority queue keys evenly among the processors, with high
probability.

R e s u l t 1. Let n = J2(plog 2 n), m = f2(plog 2 m) and k an arbitrary constant.
Algorithm Insert needs O(g-~ + L) communication time with B <_ pl-f~gn and
Algorithm DeleteMin O(g-~ + (L + g) logp) communication time with B < p .
The computation times are:

computation time Insert DeleteMin

N n +L) leftist heap O(log ~- +

..... searchtree O (~ l o g N + L)

standard heap log } + L)

m N L log p) 0(- T log 7 +
O(log + + L logp)

0 ra N L logp) (7 log ~- +

371

We reach these time bounds with probability at least 1 - 1/n k (Insert) and
1 - 1/m k (DeleteMin).

This result improves upon Sanders' algorithm by achieving blockwise com-
munication. The second approach benefits from small values of N/n.

Resu l t 2. Let fl be constant, n = ~(p log 4 n), N < fin and n suI~icient large. For
any constant k it holds: The algorithms Insert and DeleteMin need with probabil-
ity at least 1 - 1/n k computation time O(p log N + n logp) and communication

O n N (n + g) logp), for B < ~ V / ' ~ . time (g-~ + ~V/ -~ l~ + _ 1

We improve upon Deo and Prasad's algorithm by reducing the amount of
communication and by communicating in a blockwise fashion.

Moreover, we present a selection algorithm which is crucial for the efficiency
of our algorithms, and which is of interest on its own. Given a set X of n keys
and a number r E {1, ...,n}, selection determines the key with rank r from X.

Several optimal PRAM algorithms for selection exist. Cole [4] presents an
optimal deterministic selection algorithm for the EREW PRAM requiring O(n)
work and O(lognlog*n) time. Further, Rajasekaran [10] presents a selection
algorithm for the hypercube which solves selection for n keys using n~ log n pro-
cessors in time O(log n). On the Distributed Memory Model (BDM), Bader and
Js163 [1] developed a practical parallel selection algorithm which needs compu-
tation time O(n/p) and communication time O((r + p) log ~ + n/p) if n > p2
where T is the latency. Recently, Gerbessiotis and Siniolakis [6] independently
developed a randomized selection algorithm for the standard BSP model which
is similar to our algorithm. They need 3n/(2p) + o(n/p) number of comparisons
and asymptotically less communication than computation time for a wide range
of BSP parameters. Again, none of the mentioned selection algorithms considers
blockwise communication.

Our selection algorithm is based on the technique used by Rajasekaran. It is
work optimal and improves upon previous work by reducing the communication
time. If X is randomly distributed, it requires asymptotically less communication
than computation time.

Resu l t 3. If n = s 4 n) holds and k is any constant, then Algorithm Select
needs computation time O(n/p + L logp) and communication time O(~s X / f ~ +

(L + g) logp) for B <_ x / ~ , with probability at least 1 - 1/n k.

The paper is organized as follows: In Section 2 we describe the randomized
selection algorithm. Section 3 presents the method for distributing the new keys
among the processors used in the priority queue algorithms. Our two approaches
to implement priority queues are given in Section 4 and 5. Most results are only
sketched. Fhrther explanations and some experimental results can be found in
[12] and [2].

372

2 T h e S e l e c t i o n A l g o r i t h m

In this section, we describe our randomized selection algorithm Select. It deter-
mines, for a given integer r and a set X, IX[= n, the key with rank r from
X. It is based on techniques previously developed by Rajasekaran [10]. Let the
processors be divided in x/P groups of x/P processors each. For further applica-
tion in priority queue operations we need that X is randomly distributed among
the processors such that the following condition holds with probability at least
1 - 1In k for any constant k:

C o n d i t i o n 4 . a) o (Xk~) keys of set X are stored in each processor group.

b) Each processor group stores o (SJ-~ + l o g n) keys of a random subset S of X .

This somewhat artificial condition is later needed in order to guarantee block-
wise communication. It is fulfilled if we choose, for example, for each key a
processor at random. Thus, Select may be applied in many situations.
Algorithm Select: Beginning with X, we recursively choose a small subset Y of
X containing the key with rank r. We repeat this until Y has size x/~. Then,
the key with rank r is determined by sorting the ~ keys.

The crucial part is the way we choose set Y. Let Xl be the subset of X
considered in round l. We use the technique over-sampling presented by Valiant
and Gerbessiotis in [7] to determine a small subset Y of Xe containing the key
with rank r. Therefore, we choose a random subset S of Xt of size [x / ~ , the

samples, by marking every key with probability 1 / [x /T~ . We sort the sample set
S. The samples s~i, i E {1, ..., 4 - 1 } , partit ion X! into ~ buckets of size O([Xt]/~)
with high probability, for suitable ~ and g. Thus, we can determine a constant
number of buckets which contain the key with rank r with high probability. The
keys h := s~i and t2 := sgj bound these buckets. The keys of Xe which are
greater than tl and smaller than t2 form Y. We prove that with high probability
Y is small (_< [Xl[a with a < 1) and the key with rank r is in Y.

The crucial observation for the efficiency of this algorithm is the following.
The algorithm needs only constantly many recursive rounds and the "random
distribution" of X yields an almost even distribution of each subset of X among
the processors. Therefore, all sets, we sort, are evenly distributed to the proces-
sors and thus the communication time is small.

L e m m a 5. For every k > O, if n is sufficiently large, the following holds with
probability at least 1 - l ink : (a) the set S has size of O([X/-~[), (b) the key with
rank r is in Y and (c)]Y[< IXt[~ with a < 1 and a constant.

Proof. Part (a) can easily be proved by Chernoff bounds. To prove (b) and (c)
we use the following fact proved in [7]: If you have a chosen sample of size $~ of
set X~ and look at each s-th key ri (with ri = si~,i E {1, . . . , ~ - 1}) of this sorted
sample set, these keys separate set X~ into buckets Bi = {x E X~iri < x <_ ri+l}
(r0 = - c % re = c~) which are with high probability nearly of the same size
(_< [(1 + e)(iXtl + 1)/~],e < 1). We have to choose ~ and ~ that ~ = c [x / ~
holds. []

373

The operations we use in Algorithm Select are Broadcast, Parallel Prefix
(see [3]) and Ranking (modify a PRAM algorithm from Nassimi and Sahni [8]).
With Cond. 4 and Lemma 5 we get the running times of Result 3.

Algorithm Select can easily be extended to an algorithm that works on d sets
and searches one key in each set. We only have to execute every step for all d
sets concurrently. Therefore, we can extend the block size and do not need more
synchronizations.

3 T h e B l o c k D i s t r i b u t i o n

In this section we want to solve the following distribution problem: Input: (a)
Set M, distributed among the processors such that each subset of size n is
distributed according to Cond. 4. (b) Set S of size n, distributed evenly among
the processors. Aim: Distribute S among the processors such that each subset
of size n of M U S is distributed according to Cond. 4.

The following algorithm for this problem communicates the keys in a block-
wise fashion, therefore we call it block distribution. With Si we denote the subset
of S of size n ip at processor P~. Algorithm block distribution (s) works, for each
Si, as follows: (1) Choose randomly one out of s buckets for each key. (2) Store
the keys belonging to the j - th bucket (1 _< j <_ s) on a randomly chosen proces-
sor.

The following two lemmas show that Cond. 4 holds for the block distribution.
Furthermore, the first one is used by the priority queue algorithms. By Lemma 7
we know that we need assumption n = ~2(plog 4 n) to fulfil Cond. 4 in Result 3.

L e m m a 6. I f t > O, n >_ ps log t, and k is an arbitrary constant, then with
probability at least 1 - 1 / t k : (a) the bucket size of an arbitrary bucket is 0 (~) and

(b) each processor has O (t) of t arbitrarily chosen keys from M U S, assuming

additionally t = ~ (~ s)"

Proof. Part (a): Use Chernoff bounds. Part (b): We investigate how many keys
a given processor P gets. The t arbitrary keys are distributed to at most t
buckets B~ by Step 1 of the block distribution. We conclude from part (a), that
IB~I = O(~),n Vi E {1, ...,t}, with probability at least 1 - t / t k' for any constant

k'. Let Xt , ..., Xn be independent random variables. Set Xi = IB~I, if B~ is placed
= ~ i = t X~ be random variable which on processor P and X~ = 0 else. Let X n a

represents the number of keys placed on processor P. We have Xi E {0, ..., c ~ }
for a constant c, Prob(X~ = IBil) = l iP and E X = t/p. By Hoeffding bound
holds for a constant a >__ e: Prob(X > a t) < e x p (- ~L~'~) _< t - k with t >_/~nlo~t
and constant/~ >_ c . k . [:]

L e m m a T . Let n = /2(plog4n), s = { 9 (V ~ / p l o g n), k an arbitrary constant
and X an arbitrarily chosen subset of M U S of size n. With probability at least
1 - 1/nk: (a) every processor group owns O (n / v ~) keys of set X and (b) every
processor group owns O (m a x { ~ / - ~ , log n}) keys of a random subset of Z of size

374

Proof. We prove (a) in the same way as Lemma 6 (b). To bound the bucket size
we use Lemma 6 (a) and set t = n, n = $2(plog4 n) and s = (9 (v / ~ l o g n) to
fulfil the assumptions of Lemma 6. Par t (b): Chernoff bounds and (a). []

4 A l g o r i t h m s f o r t h e R a n d o m i z e d H e a p

The algorithms of this section are based on Sanders' heap algorithm [13]. In
contrast to the algorithm of Sanders, which uses a s tandard heap, we use a
search tree or a leftist heap as local da ta structure which either allow a faster
extraction of the O(m/p) smallest elements or a faster insertion of O(n/p) new
keys. Our algorithm also differs from Sanders' algorithm in the way we distribute
the new keys. We use the block distribution, which allows to communicate the
new keys blockwise.

Each processor Pi possesses its own local data structure. Now we present the
algorithms Insert and DeleteMin without using a specific da ta structure.
Algorithm Insert: The n keys are distributed by block distribution and then
inserted into the local da ta structure.
Algorithm DeleteMin: Each processor repeats removing from its local data struc-
ture a m / p keys until the altogether best m keys are taken. Then, the key with
rank m from these removed keys is selected. The best m keys are distributed
among the processors and the others are added back to the local data structures.

The following lemma tells us how keys are distributed to the processors and
tha t the removal of a m / p keys, a constant, is sufficient to have the best m
keys. Furthermore, it is easy to prove that every processor owns nearly the same
number of the N priority queue keys.

_
L e m m a S . Let n > splogn, s > logn, m = , s N = $2(nlogn) and k
an arbitrary constant. For one insert operation, the following holds with proba-
bility at least 1 - l ink: (a) every bucket Si,j at the block distribution has a size of
0 (~) and (b) every processor gets O(s) buckets. (c) With the same probability
every processor holds O(N/p) of the total N priority queue keys and (d) with
probability at least 1 - 1 /m k each processor holds O(m/p) keys of the best m
keys.

Proof. Use Lemma 6 and Chernoff bounds. []

Now, we investigate the influence of different local da ta structures on the
running times of our parallel priority queue. With Lemma 8 follows Result 1.

Le f t i s t H e a p : Beside Insert and DeleteMin the leftist heap supports the op-
eration Meld which constructs a new leftist heap out of two leftist heaps, refer
to [14]. Meld can be used in the operation Insert.

S e a r c h Tree : We use a search tree (e.g. a B-tree or Red-black-tree [14]) which
supports the operations Split and Join beside the operations DeleteMin and
Insert, where Split divides a search tree into two search trees and Join merges
two search trees to one. One can use these operations in routine DeleteMin to
access and to reinsert the keys.

375

5 Algorithms for the Parallel Heap

This section describes another randomized heap algorithm. It is based on a
PRAM algorithm from Deo and Prasad [5] which uses a parallel data structure
similar to the usual heap, the parallel heap. We introduce a novel way to map
the parallel heap to the processors, to reduce the communication costs. This
mapping is crucial for the efficiency of our algorithm and allows us to implement
the PRAM algorithm of Deo and Prasad so that it needs asymptotically less
communication than computation time.

A parallel heap is a binary tree, where each node stores n keys. A parallel
heap which represents N keys has N/n nodes and height O(log N). We now
sketch the operations Insert and DeleteMin like they are presented by Deo and
Prasad [5]. Then we point out how the keys are distributed among the processors
and prove that this distribution works well.

Algorithm Insert: In order to insert n new keys we process the nodes along the
insert-path, the path from root to the first node without keys at the leaf-level.
At every level we have to merge the new keys with the appropriate node of the
level.

Algorithm DeleteMin: Remove the n keys stored in the root and place the keys
stored in the last node (a node of the leaf-level) in the root. Now, we let the keys
move down the parallel heap. At every level we have to merge three nodes.

Insertion and removing are made in a pipelined fashion. Each new opeation
modifies the root and afterwards the parallel heap is updated. After such an
update, the root is up-to-date, so that the next operation can take place.

In the following we describe how we map the nodes of the parallel heap to
the processors: Every node is divided into p buckets, where Pi owns bucket i,
i E {0, ...,p - 1}. These buckets store the keys. The n keys of each node are
distributed randomly (use block distribution, Sect. 3). The main idea is that
after distributing the keys at random to the processors no key ever leaves its
processor until it is removed from the heap by a DeleteMin operation. If a key
(in bucket i) changes the node of the parallel heap, it does not change the
processor. It is always stored in bucket i of an arbitrary node, thus on Pi. Every
processor has a portion of every node of the parallel heap.

New e,c~es
Parallel Heap

v Tags

l••
Insert

No operation

I DeleteMin

Fig. 1. Mapping of the parallel heap, including the buckets. The fat buckets
are the ones stored in Po.

376

To merge nodes of the parallel heap, we use algorithm Select (Sect. 2) instead
of a merging algorithm. This guarantees the small amount of communication.
Since we perform O(log N) updates at the same time (because of pipelining)
we select from O(log N) sets, concurrently. For analyzing the computation and
communication times it is necessary to show that each processor has nearly the
same number of keys of every node and thus each processor has nearly the same
number of keys of log g arbitrary nodes, each one chosen from a different level.

L e m m a 9 . Let k and fl be arbitrary constants, n >_ splogn, N <_ fin and s =
~(logn). Then the following holds with probability at least 1 - 1/nk: (a) every

O n processor holds (-~) keys of an arbitrary node and (b) every processor holds
OZn 10 N~ N ~-~ g-~) keys of log -~ arbitrarily chosen nodes.

Proof. Par t (a): Use L e m m a 6 (b) with t = n, s = ~2(logn) and the fact t ha t no
key leaves its processor. []

To prove Result 2, we use s = cv/~-p/plogn with c constant, n = ~2(plog 4 n)
and Lemma 9. The least block size is given by algorithm Inser t : B < n <

- - p S - -

R e f e r e n c e s

1. D. A. Bader, J. J~Js Pract ical Parallel Algorithms for Dynamic Data Redistribution, Median
Finding and Selection. Technical report, Ins t i tu te for Advanced Computer Studies and Depart-
ment of Electrical Engineering, University of Maryland, 1995.

2. A. B~umker, W. Dittrich, F. Meyer auf der Heide, and I. Rieping. Realistic Parallel Algorithms:
Priori ty Queue Operations and Selection for the BSP* Model. Technical Report University of
Paderborn, 1996, h t tp : / /www.uni-paderborn .de /cs / inr i .h tml .

3. A. B~umker; W. Dittrich, and F. Meyer auf der Heide. Truly Efficient Parallel Algorithms: c-
Optimal Multisearch for an Extension of the BSP model. Proc. of European Symposium on
Algorithms, 1995.

4. R. J . Cole. An Optimally Efficient Selection Algorithm. Information Processing Letters, no. 26,
pp. 295-299, 1987/88.

5. N. Deo, S. Prasad. Parallel Heap: An Optimal Parallel Priority Queue. Journal of Supercomput-
ing, 1992, vol. 6, no. 1, pp. 87-98, 1992.

6. A. V. Gerbessiotis and C. J. Siniolakis. Determinist ic Sorting and Randomized Median Finding
on the BSP model. Proc. of the 8th Symposium on Parallel Algorithms and Architectures, 1996.

7. A. V. Gerbessiotis and L. Valiant. Direct Bulk-Synchronous Parallel Algorithms. Journal of Par-
allel and Distr ibuted Computing, 1994.

8. D. Nassimi and S. Sahni . Parallel Permutat ion and Sorting Algori thms and a new generalized
Connection Network. Journal of the ACM, 29:3, pp. 642-667, 1982.

9. M.C. Pinott i , G. Pucci. Parallel Priori ty Queues. Information Processing Letters, no. 40, 1991.
10. S. Rajasekaran. Randomized Parallel Selection. Foundations of Software Technology and Theo-

retical Computer Science, 10: pp. 215-224, 1990.
11. A. Ranade, S. Chang, E. Deprit, J. Jones, and S. Shih. Paral lel ism and Locality in Priori ty

Queues. Proc. of the 6th IEEE Symp. on Parallel and Distr ibuted Processing (SPDP), IEEE
Society Press, 1994.

12. I. Rieping. Reali t~tsnahe parallele Priori ty Queues, Analyse und experimentelle Untersuchungen.
Diploma Thesis, University of Paderborn, January, 1996.

13. P. Sanders. Fast Priori ty Queues for Parallel Branch-and-Bound. Workshop on Algorithms for
Irregularly Structured Problems, LNCS, Lyon, 1995.

14. R. E. Tarjan. Data Structures and Network Algorithms. Society for Industr ial and applied
Mathematics, Philadelphia, Pennsylvania, 1983.

