
Algebraic Laws for BSP Programming

He Jifeng, Quentin Miller, Lei Chen*

Oxford University Computing Laboratory,
Wolfson Building, Parks Road,

Oxford OXl 3QD, U.K.

A b s t r a c t . The Bulk-Synchronous Parallel (BSP) model of computa-
tion reflects the capabilities and costs of communication on a wide range
of general-purpose parallel architectuers. Thus it allows general-purpose
parallel software and hardware to be developed independently of one
another; much as the von Neumann model provides the same facility
for sequential computation. This paper presents a simple programming
notation for shared-memory programming, based upon BSP constructs.
The notation is defined formally by its effect upon process states. Al-
gebraic laws are given which allow program derivation. A further set of
laws allow transformation of finite programs to a normal form.

1 Introduct ion

Mathematical models and their algebraic laws provide a theoretical basis for
correctness-preserving program transformations, either from a specification to
an efficiently executable code or from an existing program to a program that is
efficiently compilable to another architecture. As an effort towards a foundation
of these methods, we present in this paper a mathematical model and some
algebraic laws for BSP programming.

The B u l k - S y n c h r o n o u s P r o g r a m m i n g (BSP) model was originally proposed
by [6, 4, 1] as a machine model for general-purpose parallel architectures and
a unified cost model for measuring the performance of both parallel computers
and parallel programs with BSP structure. However, one can also view it as a
programming model (see [2, 5, 7]), in which every program has the following
two basic features:

- S u p e r s t e p s : The execution of a program proceeds in supersteps, in which
concurrent components (normally called processes) compute asynchronously,
with a global synchronisation at the end of each superstep,

- Global c o m m u n i c a t i o n : Processes communicate with one another asynchronously.
All communication operations take effect at the synchronisation point.

* {jifeng,quentin,lchen} ~comlab.ox.ac.uk

360

2 T h e M a t h e m a t i c a l M o d e l

We begin by characterising properties of a BSP process. An observation of a pro-
cess is the record of its behaviours during execution. A process can be specified
by the set of all possible observations that can be made of it. If two processes have
the same set of observations, we say that they are equivalent - - this provides a
semantic basis for developing sound transformation rules.

In a BSP program, a process interacts with its environment through com-
munications which take effect at synchronisation points. Thus, the behaviour of
a process can be fully captured in terms of the trace of synchronisation points,
the record of pending communication operations, and the values of program
variables.

A synchronisation point is represented by a pair (out, gs), where out de-
scribes all the outputs taking place between the previous synchronisation and
the current one, and gs stands for the values of global variables after the current
synchronisation.

De f in i t i on . The state of a BSP process consists of the following components:

Is : LVar~ Val the state of local variables
gs : P V a r ~ Val the state of global variables
out : PVar--+Bag(Val) the pending output operations taking

place up to the moment
tr : Seq(SYN) the sequence of synchronisation points

occuring up to the moment

where S Y N ~- (P Var-+ Bag(Val)) x (P Var-~ Val).

We write s for an initial state and s' for a final state of an execution of a BSP
process. (We also write all the values related to initial state and final state in
the same style.) To capture the meaning of termination we introduce a boolean
variable ok. The equation ok = t r u e means a program starts its execution
properly, and ok' = t r u e indicates that the process terminates successfully. We
define an observation of a process as a tuple (ok, s, s', ok').

An obvious property of observations of BSP processes is tha t the sequence of
synchronisation points of the initial state is always a prefix of that of the final
state (i.e. tr < tr'). The set OBS consists of all possible observations of a BSP
process.

OBS ~ {(ok, s, s', ok') I tr < tr'}

For convenience, we identify a process P as a predicate P(ok, s, s'ok'), which
is satisfied if and only if (ok, s, s', ok') is a possible observation of P.

We wish to embed our programming language in the relational calculus,
where the meaning of a program is defined by a pair of predicates (pre, post).
If the program starts in an initial state s satisfying the precondition pre, it will
terminate in a final state s' satisfying the postcondition post.

pre ~- post ~- (okApre =~ ok' Apost) A (t r < t r ~)

361

In the following section we will associate each program construct of our lan-
guage with such a pair of predicates.

3 S e m a n t i c s and Algebra ic Laws

In this section, we give formal definitions of program constructs of a program-
ming language, and examine the algebraic laws which hold for the programming
constructs. Proofs that the laws are sound with respect to the semantics are
straightforward and have been omitted. The laws for sequential program con-
structs and recursion have been studied by [3]. We will add laws for synchroni-
sations, input/output operations and parallel constructs.

3.1 A BSP Language

In order to formulate laws, we introduce the following programming notation.

II skip
CHAOS abort
P <3 b C> Q conditional
P; Q, P[[Q sequential, parallel composition
vat x variable declaration
px := x assignment
synch synchronisation
get(g), put(g) input, output
par P endpar parallel block

Processes which are connected to one another by parallel composition are
called parallel partners. In the program text, a group of parallel partners is
delimited by a parallel block. Parallel partners communicate with one another
by sharing the variables of their parent. We call variables of the parent global
variables.

3.2 Notational Conventions

Let P be a process and e be an expression, var(P) and var(e) denote the set of
variables used by P and e, respectively. We use f , g to denote functions, and
dom(f), dom(g) to denote their domains.

Let fl and f2 be two functions, f l �9 f2 is the function which behaves like f2
in the domain of f2, and behaves like f l otherwise.

-~ Sf2(x) if x E dora(f2) /1 /2(x)
L fl(X) if x E (dom(fl) - dom(f2))

The operator ~ is used to denote the union operation of bags. Let f t and f2
be two functions with the same domain S and mapping each element of S to a
bag. We will write]1 t~ f2 for the function Ax * (fl(X) ~ f2(X)).

Let T be a set of state components. IdT stands for the identity relation on
T. For instance, we will write Id{is,gs) for the predicate Is ~ = ls A gs I = gs.

362

3.3 L o c a l O p e r a t i o n s

Execution of II does nothing, but terminates successfully.

II ~ t r u e k Id(ls,gs,out,tr)
Process CHAOS, sometimes denoted as 1 , is the worst process. It may have

any observation in OBS; thus its behaviour is totally unpredictable.

CHAOS ~ false k t r u e

Let P and Q be processes and b be a boolean expression which contains no
global variables P <~ b I> Q executes P if b holds; Q otherwise.

P <1bL>Q ~- (b A P) V (- , b A Q)

Laws. P < ~ t r u e ~ > Q = P
P <~bE> P = P
P ,~ b t> Q = Q <~ -~b t> P
(P <~ b ~> Q) ,~ c t> R = P ,~ b A c ~> (Q <~ c ~> R)
P <~ b t> (Q <~ c t> R) = (P ,~ b t> Q) <~ c ~> (P <~ b t> R)

Let P , Q be processes. Execution of their sequential composition begins with
P. If P does not terminate, Q will not start execution. Otherwise, Q will start
execution from the final state of P.

P ; Q ~ 3 o k , ~ . P[ok ,~ /ok ' , s '] A Q[ok ,~ /ok , s]

Laws. II ;P = P;II = P
(P; Q); R = P; (Q; R)
(P <~ b I> Q); R = (P; R) <~ b I> (Q; R)

Declaration var z declares a variable z for use in the program that follows.
For simplicity, we assume that z is not already in scope. We say that variable
x is free in process P if it is not in the scope of any declaration of x in P , and
bound otherwise.

A declaration assigns the special value void E Val to the new variable.

var z ~ t r u e k Is' = (ls (9 (z ~ void)) A Id{gs,out , tr } if z • dom(/s)

Laws. P; v a r z = varz ; P if z not free in P
(var z; P)IIQ = var z; (PIIQ) if z r var(Q)

Execution of an assignment x := e assigns the value of an expression e to
a variable x. For simplicity, we assume that evaluation of e always delivers a
result, so the assignment will always terminate. In a BSP program assignment
is a local computation, i.e. operands of assignment contain no global variables.

x := e ~ t rue k Is' = ls ~ {x ~ e} A Id{gs,out , tr } .

Laws. (x : = x) = II
(x := d; x := e) = (x := e[d/x])
(x :-- e); (P <~ b i> Q)) = (x := e; P) <~ b[e/x] E> (x := e; R)

363

3.4 Synchronisation

A synchronisation operation, denoted by synch, suspends the execution of a pro-
cess until all of its parallel partners are ready to engage in the synchronisation,
and all communications amongst the participating processes take effect. From
the view of the process, synch completes its output operations performed in the
superstep, and updates the values of global variables. However the new state
of global variables is not determined by the process alone; it depends upon the
output operations of all the processes which synchronise and the original values
of the global variables. At the end of its execution, the output state is cleared
and a new synchronisation point is appended to the trace tr.

synch ~ true l- Id{ls} A out~ = ~px �9 0 A trt = tr ' - '<(out, gs~)>

where Apx �9 0 denotes a function mapping each global variable px to an empty
bag, and ~ denotes the concatenation operator of sequences.

Laws. (x := e);synch = synch; (x := e)
synch; (P <3 b D Q) = (synch; P) <~ b t> (synch; Q)

3.5 Output

Our output operation is very general; it sends a set of bags of values to a set
of global variables. Let g : PVar-~Bag(Val) be a total function mapping each
global variable to a bag (probably an empty bag) of values. The operation put(g)
sends each global variable the bag of values which is associated with the variable
by the function g.

put(g) ~ t rue K Id(ls,gs,tr } A out '= out ~ g

BSP processes typically proceed in cycles of three phases: input, local com-
putation, output. To make the most efficient use of the communications network
it is usually desirable to postpone the execution of input and output operations
until the end of the superstep; thus we would like laws which allow put (and get)
statements to be merged and postponed:

Laws. put(gl);put(g2) = put(g1 I~g2)
put(g); (x := e) = (x := e); put(g) if V px E PVar �9 x ~ var(g(px))
put(g); (x := e) ---- var z; (x , z := e,x); put(Apx �9 (g(px)[z/x]))

3.6 Input

Let f : LVar I >PVar be a (partial) function which maps a local variable to a
global variable from which it is going to input. The input operation get(f) is
defined by

II if dom(f) = 0
get(f) ~- (II <~ out = Apx �9 0 [> synch);

(x l , . . . , x n : = f (x x) , . . . , f (x n)) if d o m (f) = { x l , . . . , x n }

364

From the definition of input operation, it follows that a synchronisation must
take place between an output and an input, provided that the output and input
operations are not trivial.

Law. put(g);get(y) = put(g);synch;get(f)
if (g ~ Apx . O) A dom(f) r 0)

For the same reason that we merge and postpone output operations, we wish
to merge input operations and bring them before local computations.

Laws. get(f l) ;get(h) = get(f1 ~ f2)
(x := e);get(f) = get(I) if x e dom(f)
(x := e); get(f) = get(f); (x := e) if ({x} U var(e)) A dom(f) = 0
(z : = e) ; g e t (y) = var z; z := y; g e t (f) ; x : = e[z/y]

where x r dom(f) A y E dom(f)

3.7 Parallel Composi t ion

Let P and Q be processes. The notation P[[Q describes a process which executes
P and Q in parallel where their interactions are via shared global variables at
the synchronisation points. Processes P and Q start their execution at the same
environment (consisting of gs, out, tr and ok). During the execution, P and
Q communicate with each other by sending values to global variables. At each
synchronisation point the new value of a global variable is chosen internally from
the bag of messages it has received from P, Q and their parallel partners at that
moment. If ' ' 2, s2, ok2) are the observations of P and (ok1,81,81, Okl) and (ok2, s ' '

I I I I Q, respectively, we introduce a notation (81, Okl)&(82, ok2) to denote the set of
possible values of final state s' and boolean variable ok' of PIIQ.

PIIQ ~- 3 (Ok l , 81 , s i , ok l) , (ok2 ,82 ,8~ ,ok2) I
t ! I P [o k l , S l , S l , O k l / o k , s , s ,ok'] A Q[ok2 ,s2 , s[,ok~/ok , s ,s ' ,ok ']

A (ok : okl : ok2)

A(tr---- tr l = tr2----<>) A (out---- out1 :- out2 = 0)

^ (8 ' , o k ') e (s l , ' ' Okl)&(s2, ok~)

We leave the definition of & to Appendix A.

Laws. (PIIQ)IIR = PII(QIIR)
PIIQ = QII P
IIIIP = P
CHAOS liP = CHAOS
(P <~ b t> Q) IIn = (PIIR) < b {> (QIIR)

365

3.8 Para l l e l B l o c k and H i d i n g

In describing the behaviour of an individual process, we need to record its local
state and its synchronisations, which are the interfaces between the process and
its sequential partners and parallel partners, respectively. However, for a group
of parallel processes which are delimited in a parallel block we want to conceal
the local states of the parallel processes and the internal interactions between
them.

Let P be a BSP process composed of a group of parallel partners, and obs be
an observation of P. A hiding operation Hide(obs) abstracts away the internal
behaviours of parallel components of P from obs.

The global state of R is updated at each synchronisation point and finally at
the termination point of P. We shall use a function choice(gs, out) to produce
a set of all possible new global states at each of these points. The definition of
choice(gs, out) is left to be decided at the implementation level. An observation
is said to be consistent if the new global state after each synchronisation lies in
the set choice(gs, out). The observations of a parallel block par P endpar must
be consistent.

A parallel block par P endpar hides the observations of P.

par Pendpar 3 ok,'g,Y, ok �9 P[ok,'g,'d', o k / o k , s ,s ' , ok']

A (ok ,s ,s ' , ok') e Hide((o~'k,~,~, o~'k'))
A consistent((~, ~))

A

obs E Hide(obs) r o k = o k A ok = o k '
A l s = g s

~ t

A ls E choice(gs', out')
^ gas ~ = ~ ^ out = o u t ^ tr = ~

consistent((~,~)) ~ tr'[1].gs E choice(gs, tr'[1].out) A
V 1 < k < # t r ' �9 tr'[k].gs e choice(tr'[k - 1].gs, tr'[k].out)

Laws. par CHAOS endpar = CHAOS
par II endpar = II

4 N o r m a l F o r m

To illustrate the power of our mathematical model, we can derive laws which
can be used to reduce every finite program text of our BSP language to a normal
form. This is a sequential program consisting of a sequence of input /compute/outpu
phases, which is probably followed by an atomic process or CHAOS if the pro-
gram diverges.

366

Def in i t i ons . Let Iv be a list of local variables and e be a list of expressions with
the same length of Iv. An atomic process A of a BSP program is a program in
the form

get(f) ; (Iv := e); put(g)
where s t : LVar I)PVar the input function
and LVar = var(lv) the set of local variables
and g : PVar-~Bag(Val) the output function.

A Phase is an atomic process followed by a synchronisation.

Phase ~ A; synch

A BSP program is said to be in normal form if it is in the form

NF = CHAOS i A] Phase I Phase; NF I if bl ~ N F [] . . . C bn -~ NF fi .

In the above definition the multi-conditional if bl -~ P1 [] . . . El b,~ -~ P~ fi
is defined as follows.

n n

i f b l - + P x [] . . . r'l bn -~ Pn fi ~ (V b, ̂ P,) v (A --,bi A.L)
i = 1 i = 1

To explain how to reduce a program text to normal form, it is sufficient to
show how each primitive operation can be written in normal form and how each
operator, when applied to operands in normal form, yields a result expressible
in normal form. Limited by space, here we will only give a t reatment to parallel
constructs. For convenience, we shall write Ai for atomic processes in the form

get(f/); (lvi := el); put(gl) .

The following four laws convert any parallel composition into normal form.

Laws. (Ax;synch)II (A2;synch) = A;synch
A1 H A2 = A
(Al;synch; P) H (A2; synch; Q) = ((Aa;synch)ll(A2; synch)); (PIIQ)
(A1; synch; P) II (A2) = ((A1; synch)ll(A2; synch)); (PHII)

where A = get(f1 (~ f2); (lvl , lV2 := e l , e2) ; put(g1 ~g2)

The next three laws show how to move a superstep out of a parallel block. Let
p v be the list of global variables of P, f be an input function and v be the list of
variables in dom(f) , where v = {Xl, . . . , xn}. We write f (v) for f (x x) , . . . , f(Xn).

Laws. par get(f); P endpar = var z; z := f (v) ; par P[z/v] endpar
par Iv := e; P endpar = par P[e/ lv] endpar
par put(g); synch; P endpar = pv := choice(pv, g(pv)); par P endpar

Two final laws complete the transformation scheme:

Laws, par A endpar = par A;synch endpar
par P <3 b(pv) E> Q endpar = par P endpar <3 b(pv) t> par Q endpar

367

5 Fu tu re Work

We have presented a mathematical model and a set of algebraic laws for BSP
programming. The main objective is to provide a semantics as general as pos-
sible, in order to ensure that the implementor has the greatest possible scope
to provide an efficient implementation on various forms of parallel architectures.
One obvious application of our laws is to transform sequential programs into
BSP programs using the normal form transformations.

Our goal is to develop a comprehensive theory for specification, refinement
and implementation of BSP programs.

6 Acknowledgements

The authors wish to acknowledge W.F. McColl and C.A.R. Hoare for their dis-
cussions and encouragements. The comments given by the members of Oxford
Parallel were also helpful for an earlier version of this paper.

References

1. R. H. Bisseling and W. F. McColl: Scientific Computing on Bulk Synchronous Par-
allel Architectures. Technical Report 836, Department of Mathematics, University
of Utrecht, December 1993.

2. T. Cheatham, A. Fahmy, D. C. Stefanescu, and L. G. Valiant: Bulk Synchronous
Parallel Computing - A Paradigm for Transportable Software. Technical Report
TR-36-94, Harvard University, Computer Science Department, 1994.

3. C. A. R. Hoare, I. J. Hayes, J. He, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Svrensen, J. M. Spivey, and B. A. Sufrin: Laws of Programming. Communica-
tions of the ACM, 30(8):672-687, August 1987. see Corrigenda in Communications
of the ACM, 30(9): 770.

4. W. F. McColh General Purpose Parallel Computing. In A. M. Gibbons and
P. Spirakis, editors, Lectures on Parallel Computation. Proc. 1991 ALCOM Spring
School on Parallel Computation, pages 337-391. Cambridge University Press, 1993.

5. W. F. McColh BSP Programming. In G Blelloch, M Chandy, and S Jagannathan,
editors, Proc. DIMACS Workshop on Specification of Parallel Algorithms, Prince-
ton, May 1994. American Mathematical Society.

6. Leslie G. Valiant: A bridging model for parallel computation. Communications of
the ACM, 33(8):103-111, August 1990.

7. Leslie G. Valiant: BSP Computing. Technical report, Harvard University, Com-
puter Science Department, January 1995.

A State Combination

Let P and Q be a pair of parallel partners. The state of their parallel composition
PHQ is a combination of the states of P and Q. PIIQ takes both of the local
states of P and Q as its local state. Formally, it can be stated as

lsPii Q ~-- Isp ~ ~SQ .

368

The global state of PIIQ is the global state shared by P and Q, i.e.

gSpiiQ = gSp = gSQ .

The combinations of two output states or two traces of synchronisation points
is a bit more complex. For the initial state, since no output operations and syn-
chronisations have been performed, the output state and trace of synchronisa-
tions are empty. During the execution of P and Q, the output state of PIIQ is
the union of output states of P and Q, which can be formulated as

OUtPiiQ ~ outp ~J OUtQ .

We overload the operator & to denote the combination of the output states.

outpiiQ ~-- outp&outQ
outp W outQ if (# trp = # f ro)

where outp&outQ _G outp if (# t rp > #trQ)
outQ if (# t rp < #~rQ)

The combination of two traces of synchronisation points combines the corre-
sponding synchronisation points of the two traces. If one trace is shorter than
the other - - which is the circumstance when one of the process terminates ear-
lier than the other - - the excess synchronisation points of the longer trace are
copied to the result of the combination. Again we overload the operator &.

trPll Q ~- trp&trQ
where V i ~_ max(#trp , #trQ) �9 (((trp[i].out trQ[i].out), trp[i].gs)

if (i < min(# trp , #trQ))
(trp&trQ)[i] ~- trp[i] if (#trQ < i <_ # t rp)

trQ[i] if (# t rp < i ~ #trQ)

If P or Q diverges, PIIQ also diverges. The state after the divergence is
arbitrary. Let tr be a sequence, # t r >_ n. We define t r ~ as the prefix of tr with
length n. The definition of the combination of two states is as follows.

Defini t ion. Let (sp, okp) and (so, okQ) represent the states of a pair of par-
allel partners P and Q respectively at a given moment. The pair (s, ok) is a
combination of (sp, okp) and (sQ, okq) iff

(Is = lsp $ lsQ A gs = gsp = gSQ A out = outp~outQ A Sr E trp~trQ
A ok = t rue)

okp A OkQ ~>
(((-~okp =~ tr > (t rp&trQ)~trp) V (-~okQ =~ tr > (trp&trQ)t#trQ)) .

