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A b s t r a c t .  The Bulk-Synchronous Parallel (BSP) model of computa- 
tion reflects the capabilities and costs of communication on a wide range 
of general-purpose parallel architectuers. Thus it allows general-purpose 
parallel software and hardware to be developed independently of one 
another; much as the von Neumann model provides the same facility 
for sequential computation. This paper presents a simple programming 
notation for shared-memory programming, based upon BSP constructs. 
The notation is defined formally by its effect upon process states. Al- 
gebraic laws are given which allow program derivation. A further set of 
laws allow transformation of finite programs to a normal form. 

1 Introduct ion 

Mathematical  models and their algebraic laws provide a theoretical basis for 
correctness-preserving program transformations, either from a specification to 
an efficiently executable code or from an existing program to a program that  is 
efficiently compilable to another architecture. As an effort towards a foundation 
of these methods, we present in this paper a mathematical  model and some 
algebraic laws for BSP programming. 

The B u l k - S y n c h r o n o u s  P r o g r a m m i n g  (BSP) model was originally proposed 
by [6, 4, 1] as a machine model for general-purpose parallel architectures and 
a unified cost model for measuring the performance of both parallel computers 
and parallel programs with BSP structure. However, one can also view it as a 
programming model (see [2, 5, 7]), in which every program has the following 
two basic features: 

- S u p e r s t e p s :  The execution of a program proceeds in supersteps, in which 
concurrent components (normally called processes) compute asynchronously, 
with a global synchronisation at the end of each superstep, 

- Global c o m m u n i c a t i o n :  Processes communicate with one another asynchronously. 
All communication operations take effect at the synchronisation point. 
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2 T h e  M a t h e m a t i c a l  M o d e l  

We begin by characterising properties of a BSP process. An observation of a pro- 
cess is the record of its behaviours during execution. A process can be specified 
by the set of all possible observations that  can be made of it. If two processes have 
the same set of observations, we say that  they are equivalent - -  this provides a 
semantic basis for developing sound transformation rules. 

In a BSP program, a process interacts with its environment through com- 
munications which take effect at synchronisation points. Thus, the behaviour of 
a process can be fully captured in terms of the trace of synchronisation points, 
the record of pending communication operations, and the values of program 
variables. 

A synchronisation point is represented by a pair (out, gs), where out de- 
scribes all the outputs taking place between the previous synchronisation and 
the current one, and gs stands for the values of global variables after the current 
synchronisation. 

De f in i t i on .  The state of a BSP process consists of the following components: 

Is : LVar~  Val the state of local variables 
gs : P V a r ~  Val the state of global variables 
out : PVar--+Bag(Val) the pending output  operations taking 

place up to the moment 
tr : Seq(SYN) the sequence of synchronisation points 

occuring up to the moment 

where S Y N  ~- ( P Var-+ Bag( Val) ) x ( P Var-~ Val). 

We write s for an initial state and s' for a final state of an execution of a BSP 
process. (We also write all the values related to initial state and final state in 
the same style.) To capture the meaning of termination we introduce a boolean 
variable ok. The equation ok = t r u e  means a program starts its execution 
properly, and ok' = t r u e  indicates that  the process terminates successfully. We 
define an observation of a process as a tuple (ok, s, s', ok'). 

An obvious property of observations of BSP processes is tha t  the sequence of 
synchronisation points of the initial state is always a prefix of that  of the final 
state (i.e. tr < tr'). The set OBS consists of all possible observations of a BSP 
process. 

OBS ~ {(ok, s, s', ok') I tr < tr'} 

For convenience, we identify a process P as a predicate P(ok,  s, s'ok'), which 
is satisfied if and only if (ok, s, s', ok') is a possible observation of P.  

We wish to embed our programming language in the relational calculus, 
where the meaning of a program is defined by a pair of predicates (pre, post). 
If the program starts in an initial state s satisfying the precondition pre, it will 
terminate in a final state s' satisfying the postcondition post. 

pre ~- post ~- (okApre =~ ok' Apost) A ( t r < t r  ~) 
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In the following section we will associate each program construct of our lan- 
guage with such a pair of predicates. 

3 S e m a n t i c s  and  Algebra ic  Laws 

In this section, we give formal definitions of program constructs of a program- 
ming language, and examine the algebraic laws which hold for the programming 
constructs. Proofs that the laws are sound with respect to the semantics are 
straightforward and have been omitted. The laws for sequential program con- 
structs and recursion have been studied by [3]. We will add laws for synchroni- 
sations, input/output operations and parallel constructs. 

3.1 A BSP Language 

In order to formulate laws, we introduce the following programming notation. 

II skip 
CHAOS abort 
P <3 b C> Q conditional 
P; Q, P[[Q sequential, parallel composition 
vat x variable declaration 
px  := x assignment 
synch synchronisation 
get(g), put(g) input, output 
par P endpar parallel block 

Processes which are connected to one another by parallel composition are 
called parallel partners. In the program text, a group of parallel partners is 
delimited by a parallel block. Parallel partners communicate with one another 
by sharing the variables of their parent. We call variables of the parent global 
variables. 

3.2 Notational Conventions 

Let P be a process and e be an expression, var(P) and var(e) denote the set of 
variables used by P and e, respectively. We use f ,  g to denote functions, and 
dom(f), dom(g) to denote their domains. 

Let fl  and f2 be two functions, f l  �9 f2 is the function which behaves like f2 
in the domain of f2, and behaves like f l  otherwise. 

-~ Sf2(x) if x E dora(f2) /1 /2(x) 
L fl(X) if x E (dom(fl) - dom(f2)) 

The operator ~ is used to denote the union operation of bags. Let f t  and f2 
be two functions with the same domain S and mapping each element of S to a 
bag. We will write ]1 t~ f2 for the function Ax * (fl(X) ~ f2(X)).  

Let T be a set of state components. IdT stands for the identity relation on 
T. For instance, we will write Id{is,gs) for the predicate Is ~ = ls A gs I = gs. 
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3.3 L o c a l  O p e r a t i o n s  

Execution of II does nothing, but  terminates successfully. 

II ~ t r u e  k Id(ls,gs,out,tr ) 
Process CHAOS, sometimes denoted as 1 ,  is the worst process. It  may have 

any observation in OBS; thus its behaviour is totally unpredictable. 

CHAOS ~ false k t r u e  

Let P and Q be processes and b be a boolean expression which contains no 
global variables P <~ b I> Q executes P if b holds; Q otherwise. 

P <1bL>Q ~- ( b A P )  V ( - , b A Q )  

Laws.  P < ~ t r u e ~ > Q  = P 
P <~bE> P = P 
P ,~ b t> Q = Q <~ -~b t> P 
( P <~ b ~> Q ) ,~ c t> R = P ,~ b A c ~> ( Q <~ c ~> R ) 
P <~ b t> ( Q <~ c t> R ) = ( P ,~ b t> Q ) <~ c ~> ( P <~ b t> R ) 

Let P ,  Q be processes. Execution of their sequential composition begins with 
P.  If P does not terminate, Q will not start  execution. Otherwise, Q will start  
execution from the final state of P.  

P ; Q  ~ 3 o k , ~ .  P[ok ,~ /ok ' , s ' ]  A Q[ok ,~ /ok ,  s] 

Laws.  II ;P  = P;II  = P 
(P; Q); R = P; (Q; R) 
(P  <~ b I> Q); R = (P; R) <~ b I> (Q; R) 

Declaration var z declares a variable z for use in the program that  follows. 
For simplicity, we assume that  z is not already in scope. We say that  variable 
x is free in process P if it is not in the scope of any declaration of x in P ,  and 
bound otherwise. 

A declaration assigns the special value void E Val to the new variable. 

var z ~ t r u e  k Is' = (ls (9 (z ~ void)) A Id{gs,out , tr  } if z • dom(/s) 

Laws.  P;  v a r z  = varz ;  P if z not free in P 
(var z; P)IIQ = var z; (PIIQ) if z r var(Q) 

Execution of an assignment x := e assigns the value of an expression e to 
a variable x. For simplicity, we assume that  evaluation of e always delivers a 
result, so the assignment will always terminate. In a BSP program assignment 
is a local computation, i.e. operands of assignment contain no global variables. 

x := e ~ t rue  k Is' = ls ~ {x  ~ e} A Id{gs,out , tr  } . 

Laws.  ( x : = x )  = II 
(x := d; x := e) = (x := e[d/x]) 
(x :-- e); (P  <~ b i> Q)) = (x := e; P )  <~ b[e/x] E> (x := e; R)  
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3.4 Synchronisation 

A synchronisation operation, denoted by synch, suspends the execution of a pro- 
cess until all of its parallel partners are ready to engage in the synchronisation, 
and all communications amongst the participating processes take effect. From 
the view of the process, synch completes its output operations performed in the 
superstep, and updates the values of global variables. However the new state 
of global variables is not determined by the process alone; it depends upon the 
output operations of all the processes which synchronise and the original values 
of the global variables. At the end of its execution, the output state is cleared 
and a new synchronisation point is appended to the trace tr. 

synch ~ true l- Id{ls} A out~ = ~px �9 0 A trt = tr ' - '<(out,  gs~)> 

where Apx �9 0 denotes a function mapping each global variable px to an empty 
bag, and ~ denotes the concatenation operator of sequences. 

Laws. (x := e);synch = synch; (x := e) 
synch; (P <3 b D Q) = (synch; P) <~ b t> (synch; Q) 

3.5 Output 

Our output operation is very general; it sends a set of bags of values to a set 
of global variables. Let g : PVar-~Bag(Val)  be a total function mapping each 
global variable to a bag (probably an empty bag) of values. The operation put(g) 
sends each global variable the bag of values which is associated with the variable 
by the function g. 

put(g) ~ t rue  K Id(ls,gs,tr } A out '= out ~ g  

BSP processes typically proceed in cycles of three phases: input, local com- 
putation, output. To make the most efficient use of the communications network 
it is usually desirable to postpone the execution of input and output operations 
until the end of the superstep; thus we would like laws which allow put (and get) 
statements to be merged and postponed: 

Laws. put(gl);put(g2) = put(g1 I~g2) 
put(g); (x := e) = (x := e); put(g) if V px E PVar �9 x ~ var(g(px)) 
put(g); (x := e) ---- var z; ( x , z  := e,x); put(Apx �9 (g(px)[z/x])) 

3.6 Input 

Let f : LVar I >PVar be a (partial) function which maps a local variable to a 
global variable from which it is going to input. The input operation get(f) is 
defined by 

II if dom(f) = 0 
get(f) ~- (II <~ out = Apx �9 0 [> synch); 

( x l , . . . , x n : = f ( x x ) , . . . , f ( x n ) )  if d o m ( f ) = { x l , . . . , x n }  
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From the definition of input operation, it follows that a synchronisation must 
take place between an output and an input, provided that the output and input 
operations are not trivial. 

Law. put(g);get(y) = put(g);synch;get(f) 
if (g ~ Apx . O) A dom(f) r 0) 

For the same reason that we merge and postpone output operations, we wish 
to merge input operations and bring them before local computations. 

Laws. get(f l ) ;get(h ) = get(f1 ~ f2) 
(x := e);get(f) = get(I) if x e dom(f) 
(x := e); get(f) = get(f); (x := e) if ({x} U var(e)) A dom(f) = 0 
( z  : =  e ) ; g e t ( y )  = var z; z :=  y; g e t ( f ) ; x  : =  e[z/y] 

where x r dom(f) A y E dom(f) 

3.7 Parallel Composi t ion 

Let P and Q be processes. The notation P[[Q describes a process which executes 
P and Q in parallel where their interactions are via shared global variables at 
the synchronisation points. Processes P and Q start their execution at the same 
environment (consisting of gs, out, tr and ok). During the execution, P and 
Q communicate with each other by sending values to global variables. At each 
synchronisation point the new value of a global variable is chosen internally from 
the bag of messages it has received from P, Q and their parallel partners at that 
moment. If ' ' 2, s2, ok2) are the observations of P and (ok1,81,81, Okl) and (ok2, s ' ' 

I I I I Q, respectively, we introduce a notation (81, Okl)&(82, ok2) to denote the set of 
possible values of final state s' and boolean variable ok' of PIIQ. 

PIIQ ~- 3 (Ok l , 81 , s i , ok l ) , ( ok2 ,82 ,8~ ,ok2 ) I  
t ! I P [ o k l , S l , S l , O k l / o k ,  s , s  ,ok'] A Q[ok2 ,s2 , s[ ,ok~/ok ,  s ,s ' ,ok ']  

A (ok : okl : ok2) 

A(tr---- tr l  = tr2----<>) A (out---- out1 :- out2 = 0 )  

^ ( 8 ' , o k ' )  e ( s l ,  ' ' Okl)&(s2, ok~) 

We leave the definition of & to Appendix A. 

Laws. (PIIQ)IIR = PII(QIIR) 
PIIQ = QII P 
IIIIP = P 
CHAOS liP = CHAOS 
(P <~ b t> Q) IIn = (PIIR) < b {> (QIIR) 



365 

3.8 Para l l e l  B l o c k  and  H i d i n g  

In describing the behaviour of an individual process, we need to record its local 
state and its synchronisations, which are the interfaces between the process and 
its sequential partners and parallel partners, respectively. However, for a group 
of parallel processes which are delimited in a parallel block we want to conceal 
the local states of the parallel processes and the internal interactions between 
them. 

Let P be a BSP process composed of a group of parallel partners, and obs be 
an observation of P. A hiding operation Hide(obs) abstracts away the internal 
behaviours of parallel components of P from obs. 

The global state of R is updated at each synchronisation point and finally at 
the termination point of P.  We shall use a function choice(gs, out) to produce 
a set of all possible new global states at each of these points. The definition of 
choice(gs, out) is left to be decided at the implementation level. An observation 
is said to be consistent if the new global state after each synchronisation lies in 
the set choice(gs, out). The observations of a parallel block par P endpar must 
be consistent. 

A parallel block par P endpar hides the observations of P.  

par Pendpar 3 ok,'g,Y, ok �9 P[ok,'g,'d', o k / o k ,  s ,s ' ,  ok'] 

A (ok ,s ,s ' ,  ok') e Hide((o~'k,~,~, o~'k')) 
A consistent((~, ~)) 

A 

obs E Hide(obs) r o k = o k  A ok = o k '  
A l s = g s  

~ t  

A ls E choice(gs', out') 
^ gas ~ = ~  ^ out = o u t  ^ tr = ~  

consistent((~,~)) ~ tr'[1].gs E choice(gs, tr'[1].out) A 
V 1 < k < # t r '  �9 tr'[k].gs e choice(tr'[k - 1].gs, tr'[k].out) 

Laws.  par CHAOS endpar = CHAOS 
par II endpar = II 

4 N o r m a l  F o r m  

To illustrate the power of our mathematical model, we can derive laws which 
can be used to reduce every finite program text of our BSP language to a normal 
form. This is a sequential program consisting of a sequence of input /compute/outpu 
phases, which is probably followed by an atomic process or CHAOS if the pro- 
gram diverges. 
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Def in i t i ons .  Let Iv be a list of local variables and e be a list of expressions with 
the same length of Iv. An atomic process A of a BSP program is a program in 
the form 

get(f) ;  (Iv := e); put(g) 
where s t : LVar I)PVar the input function 
and LVar = var(lv) the set of local variables 
and g : PVar-~Bag(Val) the output  function. 

A Phase is an atomic process followed by a synchronisation. 

Phase ~ A; synch 

A BSP program is said to be in normal form if it is in the form 

NF = CHAOS i A ] Phase I Phase; NF  I if bl ~ N F  [] . . .  C bn -~ NF  fi . 

In the above definition the multi-conditional if bl -~ P1 [] . . .  El b,~ -~ P~ fi 
is defined as follows. 

n n 

i f b l - + P x  [] . . .  r'l bn -~ Pn fi ~ (V  b, ̂  P,) v (A  --,bi A.L) 
i = 1  i = 1  

To explain how to reduce a program text  to normal form, it is sufficient to 
show how each primitive operation can be written in normal form and how each 
operator,  when applied to operands in normal form, yields a result expressible 
in normal form. Limited by space, here we will only give a t reatment  to parallel 
constructs. For convenience, we shall write Ai for atomic processes in the form 

get(f/);  (lvi := el); put(gl) . 

The following four laws convert any parallel composition into normal form. 

Laws.  (Ax;synch)II (A2;synch) = A;synch 
A1 H A2 = A 
(Al;synch; P )  H (A2; synch; Q) = ((Aa;synch)ll(A2; synch)); (PIIQ) 
(A1; synch; P) II (A2) = ((A1; synch)ll(A2; synch)); (PHII) 

where A = get(f1 (~ f2); ( lvl , lV2 := e l , e2 ) ;  put(g1 ~g2) 

The next three laws show how to move a superstep out of a parallel block. Let 
p v  be the list of global variables of P,  f be an input function and v be the list of 
variables in dom(f ) ,  where v = {Xl, . . .  , xn}. We write f ( v )  for f ( x x ) , . . . ,  f(Xn). 

Laws.  par get(f); P endpar = var z; z := f (v ) ;  par P[z/v]  endpar 
par Iv := e; P endpar = par P[e/ lv]  endpar 
par put(g); synch; P endpar = pv := choice(pv, g(pv)); par P endpar 

Two final laws complete the transformation scheme: 

Laws, par A endpar = par A;synch endpar 
par P <3 b(pv) E> Q endpar = par P endpar <3 b(pv) t> par Q endpar 
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5 Fu tu re  Work  

We have presented a mathematical model and a set of algebraic laws for BSP 
programming. The main objective is to provide a semantics as general as pos- 
sible, in order to ensure that  the implementor has the greatest possible scope 
to provide an efficient implementation on various forms of parallel architectures. 
One obvious application of our laws is to transform sequential programs into 
BSP programs using the normal form transformations. 

Our goal is to develop a comprehensive theory for specification, refinement 
and implementation of BSP programs. 
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A State Combination 

Let P and Q be a pair of parallel partners. The state of their parallel composition 
PHQ is a combination of the states of P and Q. PIIQ takes both of the local 
states of P and Q as its local state. Formally, it can be stated as 

lsPii Q ~-- Isp ~ ~SQ . 
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The global state of PIIQ is the global state shared by P and Q, i.e. 

gSpiiQ = gSp = gSQ . 

The combinations of two output states or two traces of synchronisation points 
is a bit more complex. For the initial state, since no output operations and syn- 
chronisations have been performed, the output state and trace of synchronisa- 
tions are empty. During the execution of P and Q, the output state of PIIQ is 
the union of output states of P and Q, which can be formulated as 

OUtPiiQ ~ outp ~J OUtQ . 

We overload the operator & to denote the combination of the output states. 

outpiiQ ~-- outp&outQ 
outp W outQ if (# trp  = # f ro )  

where outp&outQ _G outp if (# t rp  > #trQ) 
outQ if (# t rp  < #~rQ) 

The combination of two traces of synchronisation points combines the corre- 
sponding synchronisation points of the two traces. If one trace is shorter than 
the other - -  which is the circumstance when one of the process terminates ear- 
lier than the other - -  the excess synchronisation points of the longer trace are 
copied to the result of the combination. Again we overload the operator &. 

trPll Q ~- trp&trQ 
where V i ~_ max(#trp ,  #trQ) �9 ( ((trp[i].out trQ[i].out), trp[i].gs) 

if (i < min(# trp ,  #trQ)) 
(trp&trQ)[i] ~- trp[i] if (#trQ < i <_ # t rp)  

trQ[i] if (# t rp  < i ~ #trQ) 

If P or Q diverges, PIIQ also diverges. The state after the divergence is 
arbitrary. Let tr be a sequence, # t r  >_ n. We define t r ~  as the prefix of tr with 
length n. The definition of the combination of two states is as follows. 

Defini t ion.  Let (sp, okp) and (so, okQ) represent the states of a pair of par- 
allel partners P and Q respectively at a given moment. The pair (s, ok) is a 
combination of (sp, okp) and (sQ, okq) iff 

(Is = lsp $ lsQ A gs = gsp = gSQ A out = outp~outQ A Sr E trp~trQ 
A ok = t rue)  

okp A OkQ ~> 
(((-~okp =~ tr > ( t rp&trQ)~trp)  V (-~okQ =~ tr > (trp&trQ)t#trQ)) . 


