
A n O b j e c t - O r i e n t e d and Paral le l S imula t ion
of a Power -P lant

Klaus Wolf 1 , Ant6nio Mano 2, S6rgio Pra ta dos Santos 2, Jean-Marc Letteron 3

1 G M D - German National Research Center for Computer Science
Schlofl Birlinghoven, D-53754 Sankt Augustin, GERMANY

Phone: ,4,49-2241-14 2557, Fax: ,4,49-2241-14 2181, Emalh klaus.wolf@gmd.de

2 EDP - Electricidade de Portugal, S.A./PROET;
Av. Estados Unidos America, 55; 1700 Lisboa, PORTUGAL

Phone: ,4,351 1 847 0180, Fax: ,4,351 1 840 9419, Emalh sergio@softpar.edinfor.pt

3 SEMA GROUP, 16 Rue Barbes, F-92126 Montrouge cedex, FRANCE
Phone: -4-33 1 40 92 40 92, Fax: -4-33 1 46 56 96 53

Email: Jean-marc.Letteron@sema-taa.fr

Abs t r ac t . The simulation of complex physical systems using realistic
models is still a challenge to the design of the simulation program as well
as to it's performance. While former simulation-environments were either
well structured but slow or hard-coded and fast, the SOFTPAR Esprit
Project 8451 environment offers a real solution for both requirements.
The simulation of a coal fired power generation plant profits from this
software factory. Designed in the standard HOOD method and coded in
paradise C + + style, the simulator can run on a wide range of parallel
machines. A performance evaluation shows the profit in clear numbers
of gained performance-speedup.

1 I n t r o d u c t i o n

The simulation of complex physical systems using realistic models can provide
us a wealth of information and experimentat ion possibilities, some of which are
impossible to safely perform on a real system.

However, the large execution times necessary for complex model simulati-
ons using standard sequential techniques can severely impair the usefulness of
the model. Parallel computing is a possible way to address this issue but it rai-
ses several questions regarding, for instance, model decomposition, information
distribution, synchronization and data consistency.

The simulator described in this article deals with such topics and was de-
veloped at P R O E T / E D P in the scope of the SOFTPAR ESPRIT project 8451
[Softpar]. The tools implemented in the Softpar project provide parallel appli-
cation programmers with a complete software factory Concerto supporting all
life-cycle activities f rom design to code and test. The high performance parallel
s imulation of a coal fired unit model of a power plant, developed in a joint pro-

260

gram between EDP and INESC to test the effects of different types of controllers
on the energy generation process, was used as a demonstrator.

2 P o w e r P l a n t S i m u l a t i o n R e q u i r e m e n t s

The need for a specific power plant model simulation led to the project to use
parallel computing in that context. The model concerns a 314MW coal fired unit
of a power generation plant and is non-linear, concentrated parameters type and
time invariant with a special focus on the boiler-turbogenerator coordinated con-
trol problem. The simulation of other similar models and configuration flexibility
is also part of the requirements. The key specifications guiding the simulator de-
velopment are:

- S i m u l a t i o n A c c u r a c y : The simulations outputs must be well within the
models error tolerance.

- P e r f o r m a n c e : The simulation performance must be greatly increased and
make good use of the available parallel environment. Simulation times close
to real-time for the main submodules of the model are expected using an
8-node X'plorer parallel machine.

- Flex ib i l i ty" Experimentation with different controllers and configurations is
part of the simulator development motivation and it is important to handle
these features in a user-oriented way since they are expected to be fully used.

- R u n - T i m e I n t e r a c t i o n " Provided that the simulation time is increased to
real-time magnitude, the model use and development can benefit from a user
on-line interaction with the simulator, allowing the modification of variables
and parameters to be instantly expressed in the simulation results. This
feature creates new possibilities to the use and usefulness of the simulator.

The development of a user-friendly interface transmitting the simulator ca-
pabilities is also part of the project specifications.

The power plant model was previously implemented in MATRIXx. It is struc-
tured into several modules, the main ones being: Fuel feeding, Air Gas Circuit,
Water boiling circuit, Steam circuit and Turbo Generator. It has been run on a
Sparc UNIX workstation. Due to the high number of equations and the comple-
xity of the model, only a subset of the entire model could be run at the same
time. The simulation tool took about 3 days to complete the simulation of 2
hours of operation for a model subset corresponding to 1/4 of the entire model.

The running time of the model subsets was considerably long in part due of
the nature of the simulation. Because some of the components of the model have
short t ime constants, a very small t ime step needed to be used in order to provide
a reasonable simulation accuracy. Because the MATRIXx system package can
only provide a common time step for all the system, the time step used for this
fast running components was used also for slower components that would not
require it.

261

3 A p p l i c a t i o n D e v e l o p e m e n t

3.1 Func t iona l Descr ip t ion

The mathematical model of the power-plant was taken from the existing imple-
mentation in MATRIXx and was re-implemented using the SOFTPAR tools.

An important requirement for the simulator was also its modifiability and
configurability in order to assist the further development of the models. During
the design phase it was noticed that a generalized concept for the simulator
was possible without implying substantial changes for adaptation of the general
concept to the dedicated subsystems included in the applications. This included
the necessity to develop a general translator to generate code from the MATRIXx
descriptions.

The specifications for the application were changed in order to accommodate
this possibility. This change greatly increased the simulator flexibility without
increasing significantly the complexity of the system. The configurability inten-
ded for the simulator was considered as a way to improve the performance of the
simulation in run-time. The possibility of a good parametrization of the system
was considered as essential for optimization of the task of each system compo-
nent. By sufficient abstraction of a component's task it can be represented by
its physical and mathematical properties and unnecessary work for separate im-
plementation is saved. Another important requirement in view of very complex
models was the possibility to simulate only some parts of the system. The in-
teraction with the user required also the development of an application running
on the user host machine. This application was also developed using HOOD
[HOOD].

The application primarily requires a way to decompose the model equations
in order to efficiently distribute and execute the solving work in parallel. The un-
certainty regarding the execution environment (potentially heterogeneous) and
the model equations characteristics led to the creation in run-time of the si-
mulation structure responsible for the simulation work and distribution. This
structure is built by the engine at startup time according to the user specifi-
cations and permits to deal with heterogeneous environments and unbalanced
equation decompositions. Working with general models requires that the simu-
lator engine contains no information regarding any concrete model. The actual
model data is given by an external translator that generates code from the model
equations in the form of engine-derived objects. These modules form the main
building blocks of the simulation structure.

The execution of the simulation is performed by dividing the simulation time
in time steps and executing the simulation procedures for that time in each of the
model components. The time steps can be of different sizes for different modules
and corresponds to their information exchange rate with the rest of the system.

262

3.2 HOOD-Des ign

The main structure of the simulator engine core is presented in the HOOD dia-
gram in figure 1. The engine controller active object is responsible for keeping
the system working and attending to the user external requests either on confi-
guration or simulation time. The name server object keeps the mapping between
the model variable names and their internal representation. The heartbeat mo.
dule provides the simulation structure with the execution pulses for each time
step, feeding the external model inputs into the system. The run-time simula-
tion structure module contains the base and initial context for the simulation

I ppl�9169
A I ~ ~EI our

hier~ ~!=e

h,,.k ~,,,,L~, l

hs�9 irdtiMiz~ ~a t ~ t l ~,hoot
r-------..hs~ m_~St=p tern~atc Jill f - - - - - - - - -~ , q~=7_,im~ f--=" runtime_con~j was~d

h~cr| sct_drneStop ~s =~==
hser~ query_gimu!ato] --~t ~ r/ it, ~l~ter_amr

~r~ ~ .~,=~ . , ~ ,
haerq wait~irn~m [A]r*tm~_c~aok j==~ ~=~

~.rm'urLini - ~ ~at==_ran

Fig. 1. Top level Design Structure of the application

structure and the pps_main module contains its main building blocks. Ode sol-
vers module contains the objects with the differential equation solvers used in
the solving steps.

The runtime-simulation structure consists basically on three types of HOOD
objects: the Subsystems, which contain the simulation support and interface
code with the model objects; the Systems or administration objects, which are
responsible for grouping sets of Subsystems or other administration blocks; and
the active context objects which provide the machine contexts to spawn the
structure in the parallel environment and can transparently encapsulate either

263

one of the passive objects. The structure objects are all true HOOD class objects
deriving from a common ancestor, giving the system a very flexible and efficient
way to deal with distribution by transparently handling out-of-context structure
members. The creation of remote objects is done through the instantiation of lo-
cM interface objects and remotely spawned HOOD active objects, which means
that the actual code for the distribution process is left to the HOOD generator
tool. The communication primitives are also transparently handled by the same
tool. The remote evocation of simulation related methods uses the RASER (Re-
ported Asynchronous Execution Request) protocol in order to allow the sender
to keep working (or make other calls) until the replys are collected.

The simulation execution step is performed by feeding the structure root
with the model external input variables and distributing that information, to-
gether with the variable values from the previous step, through the structure.
The equation solving work is executed in the structure leafs (model Subsystems)
and the result values are retrieved again through the administration interme-
diate objects. All the information paths are calculated and prepared during the
structure start-up in order to optimize the execution during simulation time.
Administration objects are aware of the in-context or out-of-context character
of their sons, and use that information for the parallelization Of the simulation
algorithms.

The decomposition of the model into true HOOD objects that are distin-
guished only on run-time and their transparent interchangeability creates the
opportunity to give the system a very high flexibility regarding specific and lo-
cal configurations. This is used to allow, for instance, different time steps for
structure branches, local defined and configured differential equation solving
methods, and run-time setup and query of specific modules or variables.

3.3 Addit ional Fine-Coding in paradise CA-+

The target language independence of the design phase is not particularly import-
ant or visibie in the automatically generated paradise C++ [HPC++] [SwEng]
code because HOOD provides a good mapping of its structures in this language.
The generated code, although more mechanical, is natural enough to be consi-
dered modifiable. The user inserted code is well integrated inside the generated
structure and since only the structure and the interface is automatically genera-
ted, the code efficiency is close to hand generated code and the interface is fast
and efficient.

The simulator run-time configuration was implemented through the HOOD
active classes which can be spawned in run-time and allow the application to
expand according to its needs. This flexibility is supported by paradise C++
possibility to create and delete new processes in run-time and connect them with
the existing structure. The flexible mapping of the application virtual nodes to
physical nodes is also the result of explicit paradise C++ support.

264

4 Simulat ion Performance Evaluation

The performance obtained so far, both in terms of accuracy and computation
times, meets the simulation expectations. Simulation times for sub-models were
boosted to real-time magnitude operation with an accuracy well within the model
error tolerances.

The simulation performance depends on a set of dependent parameters and
configurations and a balance between them must be achieved in order to have
the simulation executing with the intended profile. Factors determining the per-
formance of the simulation include specific model properties (like fast dynamics),
user model organization, time step values, local configurations and precision set-
tings of differential solvers and mapping of active contexts into physical nodes.

The accuracy for the entire power plant model is still under evaluation since
the previous system did not allowed the full model to be run and no previous
results for complex combined tests exits. Global accuracy is however, expected
to be within the model tolerance since the sub-models execution yielded a very
good accuracy. Global performance for the entire model, using worst case con-
figurations from the sub-models for 20 seconds of simulation time and different
hardware configurations was nearly linear up to 8 processors used. A speedup of
6.14 using 8 nodes and comparing with execution on 1 node (where no message
passing is used due to local optimizations) indicates the distribution effectiven-
ess of the system. A gain of around fifty times on the sub-models execution,
when comparing with the previous system, and the possible on-line interactivity
with the simulation, defines new ways to deal and experiment with the model
expression. Tests on a 8 node workstation cluster yielded similar speedup values
but with less absolute performance, mainly due to inferior performance of the
computational nodes.

5 Conclusion

The automatic handling, by HOOD/paradise C++ , of the process management
and remote method evocation protocols allows the designer to focus on the real
application problems, leaving the complexity of distribution details to be auto-
matically generated. Moreover, paradise C++ close support to HOOD design
features and distribution in general, assures that the generated interface and
management code is small, efficient, well localized and easy to be understood.

The large improvement in performance obtained with the present simulator,
supports an increased interest in working with complex model simulations in the
power generation field. Faster access to simulation results and on-line interaction
creates new possibilities to develop and work with new models.

The implementation of the simulator using high level tools like HOOD and
paradise C + + is uncommon in the high performance computing world, but
demonstrates, in our opinion, that a realistic approach to automatic code ge-
neration, focusing on the distribution system management, can greatly reduce
development work and complexity in distributed environments.

265

R e f e r e n c e s

[Goncalvesl] A.J. Goncalves Modelo Para o Controlo Coordenado Caldeira-
Turboalternador de urea Central Termoelectrica; IST Lisboa, 1993

[Goncalves2] A.J. Goncalves Modelo Para o Controlo Coordenado Caldeira-
Turboalternador de urea Central Termoelectrica - Codigo e resultados de simulacao;
IST Lisboa, 1993

[HPC++] Wolf, Lang, Holtz (GMD), HPC++ - High Performance C-I-+ HPCN95
Proceedings May 1995, Springer LNCS 919

[SwEng] Lang, Wolf (GMD), Letteron (SEMA Group) Software-Engineering and Par-
allel Object-Oriented Programming Parallel Computing: State-of-the-Art Perspec-
tive, Proceedings of the International Conference ParCo95, Elsevier Science Editor

[HOOD] Letteron, Bancroft (Sema Grp), Gerlich, Debus (DORNIER) Wolf, Lang,
Holtz (GMD) HOOD and Parallelism in the Softpar project, HPCN95 Proceedings
May 1995, Springer LNCS 919

[Softpar] CEC ESPRIT PROJECT 8451. Softpar A Software Factory for the develop-
ment o] Parallel Applications Softpar Project Report, SOFTPAR-S-29.2, January
1996

