
On-Line Algorithms for Computing Exponentials
and Logarithms

Asger Munk Nielsen 1 and Jean-Michel Muller ~

1 Dept. of Mathematics and Computer Science, Odense University, Denmark
2 Laboratoire LIP and CNRS,Ecole Normale Sup~rieure de Lyon

46 All@e d'Italie, 69364 Lyon Cedex 07, France

Abstract . We propose a new on-line algorithm for fast evaluation of
logarithms and exponentials. This algorithm is derived from the widely
studied Briggs-De Lugish iteration. We examine various compromises be-
tween the on-line delay and the size of the required comparison constants.

1 I n t r o d u c t i o n

The point at stake in this paper is the design of algorithms that rapidly evaluate
exponentials and logarithms. We focus on algorithms that belong to the shift-
and-add class. Those algorithm use very simple elementary steps: additions, and
shifts (i.e. multiplications by a power of the radix of the number system be-
ing used), and they go back to the 17th century: Briggs, a contemporary of
Neper, invented an algorithm that made it possible to build the first tables
of logarithms. For instance, to compute ln x in radix-2 arithmetic, numerous
methods (including that of Briggs, adapted to this radix) [9, 5, 10, 12] consist
of finding a sequence dk = --1, 0, 1, such that x rZk=l(ln + dk2_k) ~ 1. Then
ln(x) ~ - ~ = 1 ln(1 + dk2-k). Another method belonging to the shift-and-add
class is the C O R D I C algorithm, introduced in 1959 by J. Volder [14] and then
generalized by J. Walther [15]. Such algorithms have been implemented in many
pocket calculators or math co-processors (such as the Intel 8087 and the follow-
ing Intel chips until the 486 family).
In his Ph.D. dissertation [13], N. Takagi suggests an algorithm for computing
logarithms and exponentials that is adapted to the use of redundant number
systems (redundant number systems [2, 8] allow very fast carry-free additions,
but they may complicate the comparisons that are required to perform the it-
erations: this point will be made clearer in what follows). We propose here a
variant of that algorithm that allow on-line computation of logarithms and ex-
ponentials. On-line arithmetic was introduced by Ercegovac and Trivedi [7]. In
on-line arithmetic, the digits flow through the operators in a digit-serial fash-
ion, most significant digit first. This makes it possible to get a high throughput
by pipelining the arithmetic operators at a digit-level. On line algorithms have
been proposed for the arithmetic operatiops [7, 4, 3] as well as for computing
elementary functions [11, 6]

166

Our algorithm is based on the following iteration :

{ E~+I = E~ " ln(1 + d~2 -n)
Ln+I = L . (1 + d.2 -") (1)

if we take E1 = X and L1 = Y then (1) satisfies, E ,+ I = X-~-2~=1 ln(l+dk2 -k)
'~ 1 and L,~+I = Y YL=I(+ dk2-k)"

- - If we are able to find a sequence of digits dk E { -1 , 0, 1} such that E~ goes
to zero, then we will have L,~ -+ Ye x . Thus we have computed the product
of the number Y and the exponential of the number X. This iteration mode
will be referred to as mode zero.

- If we are able to find a sequence of digits dk E { -1 , 0, 1} such that L~ goes
to one, then we will have En -+ X + ln(Y). Thus we have computed the
logarithm of the number Y added to the number X. This iteration mode will
be referred to as mode one.

This paper is an abridged version of a longer technical report. The proofs
of the claims stated in the following sections can be found along with further
details in [1].

2 S e l e c t i o n o f D i g i t s a n d D o m a i n o f C o n v e r g e n c e

2.1 C o m p u t i n g E x p o n e n t i a l s

In the zero mode the digits dk must be chosen such that the iteration variable
E~ goes to zero. By plotting E,~+I versus E~ for all values of dn E {-1 , 0, 1}, as
according to E , + I = E, - l n (l + d , 2 - ' ~) , we get a diagram as depicted in Fig. 1.
This diagram is similar to the Robertson Diagrams frequently found in studies of
division algorithms. If we assume that E1 = X belongs to some interval Ill, Ul]

En+l

4
I i
I

. ' ,

i i
! i i
! i i
i s i
! i !

i i i

A n B n C n

Un+l

1

/ A I ~ /
l n+l D n

Fig. i . Robertson diagram for the zero mode (exponentials).

, E ,

167

and choose the digits d~ such that Ek+l belongs to some interval [lk+l, ttk+l],
where the sequence of intervals is such that:

[/1, Ul] D [/2, U2] D " " D [In, ttn], (2)

where each of these intervals contain zero and limn-+~ us - I n = O, then En
will exhibit the desired convergence towards zero. From Fig. 1 we may deduce a
proper convergence domain and digit selection procedure for the zero mode. By
noting that Us+l = u,~ - / n (l + 2 -~) and ln+l = In - / n (1 - 2 - ~) , and since us and

o o
ls must go to zero as n goes to infinity, we deduce that us = ~-~k=s ln (1 + 2 -k)
and ls = ~k~=s In(1 -- 2-k) . From Fig. 1 we may further deduce a valid selection
procedure for the digits dk as:

- 1 if E ~ < _ B .
dk = 0 if As < E,~ < Ds (3)

1 if C s < _ E s

Notice tha t the selection procedure is nonde te rmin i s t i c in the sense tha t for some
values of En several choices of d~ may be valid. The constants As, Bs, Cs and Ds
are equal to (again these values are deduceable from the Robertson Diagram):
A s = l,~+1 , B,~ = Us+l + ln(1 - 2 -n) , Cn = ls+l + ln(1 + 2 -~) , D~ = us+l .
It can be shown tha t As < B~ < C,~ < Ds for all n _> 1. Refer to Tab. t for
the four first values and limit of these constants. The convergence domain of the
algori thm is given by the requirement that E1 = X E [11, Ul], f rom which we
deduce tha t -1 .24206 ll _< X _< ul = 0.86887

2"l. 12 ., I2"A. 12"B. 2 C. 2non
1 -2.484123 1.737752 -1.097829-0.4594709 -0.2868995 0.9268231
2 -2.195658 1.853648 -1.044930 -0.1896560 -0.1523566 0.9610720
3 -2.089862 1.922144 -1.021611-0.0883713 -0.0793469 0.9798797
4 -2.043223 1.959760 -1.010607-0.0428505 -0.0406114 0.9897655

c~ -2 2 -1 0 0 1

Table 1. First 4 values and limits of 2~l~, 2nun, 2~A~, 2~B~, 2~Cn and 2~Dn.

The relative error is bounded by:

o o

- 2 - 2 - s < I I (1 - 2 - k) - I = e 1"-1 _<
k = s

(3O

Ye x - L s < e~ ._ 1 = H (1 + 2 _ k) _ 1 < 2 . 8 . 2 _ n (4)
Ln

k = s

2.2 C o m p u t i n g L o g a r i t h m s

In the one mode the digits dk must be chosen such that the iteration variable
Ls goes to one. By plotting A~+I = Ls+l - 1 versus An = Ls - 1 for all values

168

I
I
i
i
i

I " . /
, I i i

I
I

S n+ j I

F.

r n+ l

I i I
I i i

,,

I I / ! i
,

', ,
! i

i, I

G . H n I .

r n

b ~ , n

Fig. 2. Robertson diagram for the one mode (logarithms, n = 1).

of dn E { - 1 , 0, 1}, according to /~n+l : L n + l - 1 = ~ (1 + d . 2 - n) + dn2 -'~, we
get a d i ag ram as depicted in Fig. 2. I f we assume tha t)h = L1 - 1 = Y - 1
belongs to some interval [Sl, rl], and tha t the digits dk are chosen such t ha t
Ak+l = Lk+l - 1 belongs to some interval [Sk+l, rk+l], where these intervals
include zero and are contract ing in the sense tha t the width of the interval goes
to zero, then L,~ will converge towards one, as n approaches infinity. From Fig. 2
we m a y deduce a proper convergence domain and selection procedure for the one
mode. By not ing t ha t r,~+l = (1 - 2-n)r,~ - 2 -n and sn+~ = (1 + 2-n)sn + 2 -n,
and since rn and sn must go to zero as n goes to infinity, we deduce tha t rn =
~--~k~_n 2 -k l-I~=n (1 - 2 - J) -1 and Sn = -- ~k~=n 2 -k l'-I~=n (1 + 2 - J) -1. From Fig.
2 we m a y fur ther deduce a selection procedure for the digits dk as:

1 if L , ~ - I < G n
d k = 0 if F . _< L~ - 1 < I,~ (5)

- 1 i f H ~ < L n - 1

Again this selection procedure is nondeterminis t ic . The constants Fn, G~, Hn
and In are equal to:

[in = 8n+l Gn rn+l - 2 - n ' 1 + 2 -'~ , H a s n + l + 2 -n - - - - 1 - 2 - n , I , ~ = r n + l (6)

I t can be shown tha t Fn < Gn < Ha < In for all n > 1. Refer to Tab. 2 for
the first four values and l imit of these constants . The convergence domain of the
a lgor i thm is given by the requi rement tha t)~1 = L1 - 1 = Y - 1 E [sa, rl] , f rom
which we deduce t ha t 0.4194... = sl + 1 _< Y < Ul + 1 = 3.4627

The absolute error is given by:

- - 2 . 2 - n < In(sn + l) < (X + l n (Y)) - En < ln(rn + l) < r12 -'~ < 2 .5 .2 - n (7)

3 O n - L i n e A l g o r i t h m s

By definition, an on-line a lgor i thm should be able to deduce the n th digit of the
result, based on ~ + n digits of the operands, where the integer 8 is referred to as

169

nil 2"sn 1 2 ~ 1 7 6 2"Fo
1 -1.161155 4.925493-0.7417327
2 -1.483465 2.925493 -0.8543317
3 -1.708663 2.388240 -0.9222463
4 -1.844493 2.179420 -0.9597734

oo -2 2 -1

2nGn

0.3084977
0.1552959 !
0.0797421
0.0406645

0

2"H~ [2nI~

0.5165347 1.462747
0.1942244 1.194120
0.0888614 1.089710
0.0429084 1.043206

0 1

n r 2n~ onr4 and 2nIn. Table 2. First 4 values and fimits of 2nsn, 2 ,,, 2"Fro ~ n , , ,,,,

the on-line delay [7]. Thus in order to compute the exponential and logarithm
of a number, in an on-line manner, we must develop algorithms that compute
the desired value based on limited knowledge of the input operands X and Y.

We will devise such an algorithm, and prove that it emulates a run of the
nondeterministic algorithms described in the previous section. The algorithm is
based on two scaled iteration variables /~n = 2n(Xn+5 - n-1 E k = l In(1 + dk2-k))
and L,, = 2"(Y,~+~ . - i H~=~ (1 + d'~2 -~) - m), where m is set to either zero or
one, corresponding to the desired mode of computation. Based on these itera-
tion variables the proper digits dk can be selected, as specified by the following
algorithm.

A l g o r i t h m l . On-line Exponentials and Logarithms.
St imulus: m : Boolean (zero or one mode), X E [ll, ul] = [-1.24206..., 0.86887...]
(i f m = 0), Y E [Sl + 1 ,r l + 1] = [04194..., 3.4627...] (i f m = 1).
Response: I f rn = 0 then l im~_~ 2-'L. = Y e x . I f m = 1 then l i m ~ - ~ 2-n/~n =
X + l n (Y) .

1. Initialize: Eo = xo .x l . . . x ~ , Lo = Y- lYo.Yl " "Y5 - rn, Po = 1 and do = O.
2. iterate: (for n = 1, 2, ...)

E. = 2 E . - 1 + x.+~2 -~ - 2"tn(1 + s

P,, = P~-1(1 + d~-12 -~+1)

Ln --- (2Ln-1 + yn+6Pn-12-~)(1 + d . -12 -n+l) + 2mdn-1

I f m = 0 then compute F"n = t r u n c (E n , p) and dk = ~, else Ln = t r u n c (L n , q)

and dk = 7 where
- 1 / f / ~ . _ < A { 1 / f L . < _ C

a = 0 i f A <_E. <_B , 7 = 0 i f C <_Ln <_D

1 i f B<_[~,~ - 1 i f D<_L,~

The function t r u n c (x , p) referred to in the algorithm, truncates the value
x to p fractional digits. Rather than actually computing the term 2~ln(1 +
c1~_12-n+1), this term should be accessible by means of a table lookup. The
following lemma gives bounds on the comparison constants A, B, C and D, for
which Alg. 1 selects the digits elk correctly.

170

L e m m a 2. Correctness of digit selection.
I f A, B and C, D are p respectively q fractional digit constants satisfying for all
n > l :

2'~A,~ + 2 -p -}- 2 -6 <_ A <_ 2'~B,~ - 2 -p - 2 -~

and

respectively

2'~Cn + 2 -p + 2 -'~ <_ B <_ 2nD,~ - 2 -p - 2 -~

(8)

(9)

n - 1 n- -1

2'~F,~+2 - q + 2 - ~ H (l + 2 -k) < C _ < 2 ~ G . - 2 - q - 2 - ~ H (l + 2 -k) (10)
k = l k = l

and

n--i n--i

2'~H'~ + 2-q + 2-~ l-I (1 + 2 -k) _ D _< 2nI,~ - 2 -q - 2 -`~ H (1 + 2 -k) (111
k----1 k = l

then given the input X and Y , Alg. 1 will emulate a run of the nondeterminist ic
parallel algorithm (in the sense that the nondeterminist ic algorithm may choose
the same digits as the ones chosen by the on-line algorithm, i.e. dk = dk), when
supplied with the same input.

Corol lary 3. Under assumption of the hypothesis of Lemma 2, we have:

n - 1

Ln - 2-".L,~ < (1~(1 + 2-k))2 -n-`~ and E,~ - 2-nJEn < 2 -"- '~.
k = l

(12)

for mode zero respectively one.

3.1 Hardware Requirements

The algorithm requires the storage of the constants 2Jln(1 + dj_12 - j+l) for
dj-1 E {-1, 0,1}, thus to obtain an accuracy of the result of approximately n
binary digits, we need to store 3n constants. This result can be improved by
using the fact that for j >_ n /2 , ln(1 + dj2-J) can be replaced by dj2-J with

3 accuracy 2 -n. Thus we only need to store ~n constants.
The updating of the iteration variables, as specified by (8), can be done

efficiently using only shifts and additions. If the step time of each iteration of
the algorithm is to be independent of the desired accuracy, e.g. the number of
binary digits, the additions must be performed using redundant arithmetic, and
the variables En, Pn and L, should be represented in a redundant representation,
like borrow-save. One inherent drawback of redundant arithmetic is that when
comparing two redundant numbers, we are forced to examine all digits of both
numbers. By designing the digit selection of Alg. t, such that the comparisons
are based on truncated redundant numbers, this drawback has been eliminated,
in the sense that we only need to examine a constant number of digits of both
operands.

171

4 C h o i c e o f C o n s t a n t s a n d O n - l i n e D e l a y

In this section we will discuss how to choose the comparison constants A, B, C
and D, used when selecting the digits dk in the on-line algorithm. The lower and
upper bounds for the constants A and B, as given by Lemma 2, are depicted in
Fig. 3.

2 n D ~

. -, . 2 " O . . 2 v . 2 ~

A
. ' . 2 " c . + 2 ~ + 2 6

2 nB n -2 -p -2 -~

2 n c n . . ' ' - " u

2 nB

if" A

. -~- 2"a.+F+5 ~

2 " A ~

Fig. 3. Lower and upper bound for constants A and B.

By inspection of Fig. 3 we note that:

2~A,~+2-P+2-~_< lim 2'~A,~+2-P+2-~< A < 21B1-2-P-2 -~ _< 2'~B,~-2-v-2 -~ (13)
n - - + OO

thus the p fractional digit constant A, must be chosen such that it belongs to
the interval

[lim 2~An + 2 -p + 2 -e,21B1 - 2 -p - 2-~].
n ---)- ~

The best choice of A, will be the midpoint of this interval truncated to p fractional
digits, e.g. A = trunc(l im"~ 2"A~+2-P+2-~i'2B1-2-P-2-~2 , p) = trunc(B1 - �89
In this way we have:

A - (B1 - 1)l < 2-P. (14)

From (13) and (14) we get the requirement: A < 2 -p +B1 - � 8 9 < 2 B 1 - 2 -p - 2 -~,
from which we deduce:

1

Similarly we choose the constant B as the midpoint of the interval [l i l n ~ 2nC~+
2 -P+2 -~, 2 1 D 1 - 2 - P - 2 - ~] , e.g. B = t runc (2Dl+lim~-+~176 2~c~ p) = trunc(Dl , p),

2

and deduce that:
1

172

Since ~A _~ 6B the lower bound on-line delay when computing in mode zero is
given by (15), e.g. ~ > 5A.

For mode one, a similar analysis can be performed, thereby determining val-
ues for the constants C, D and a lower bound on the on-line delay ~D (see [1] for
details). Examples of values of A, B, C, D and the on-line delays 8A and 5D, are
given in Tab. 3 for various values of p and q.

~ A

~ -0.101
-0.1011
-0.10111
-0.101110
-0.1011101
-0.10111010
-0.1011101011...

B lL4c
0.011 [5-"~-
0 .0111 141-0.0110
0.01110 141-0.01101
0.011101 131-0.011101
0.0111011 131-0.0111010
0.01110110 131-0.01110101
0.0111011010... 3L3_._[-0.0111010100...

D

0.1011
0.10110
0.101010
0.1010101
0.10101011
0.1010101111...

Table 3. Truncated comparison comparison constants (in binary), and lower bound on
on-line delay, for various values of p and q.

5 Digitization

The output of Alg. 1 is a sequence of approximations L~ or /~n, to the exact
result Ye X respectively X + ln(Y) . If our algorithm for computing elementary
functions is to be an on-line algorithm, we must produce the output as well as
consume the input in an on-line manner. In order to produce the output in an
on-line fashion, we will use a technique known as digitization.

Assume that we have computed a sequence of approximations < Z~ > to a
number Z, such that 12-nZ~ - Z I _< 2 -n+p, and that the numerical value of the
exact result is bounded by IZI _< 2 q. We will then perform an on-line digitization
of the value Z based on the sequence of approximations < Zn > producing the
result Sn in on-line mode. In each iteration of the algorithm, the (output) digit
sn is chosen such that the residual error IZ,~ - Snl = I,~n - 2Sn-1 + s~2Cl is
minimized.

A l g o r i t h m 4 . On-line Digitization.

Stimulus: A sequence of approximations <Zn> satisfying: 2-~ 2~ - Z <_2 -~+p.

Response: Sn = 2 c+l+n E~._-I sJ 2- j .

1. Initialize: So = 0

173

2. iterate: (for n = 1, 2, ...)
Tn = t r u n c ((Z n - 2Sn-1)2 -c, k) , Sn = 2Sn--1 + S n 2 c

i / < -�89
s . = o

1 /f � 8 9

The following l emma gives a bound on the residual error.

L e m m a 5 . If the scaling constant c is chosen such that

c > max p + log 2 3 2-k ,P + log~ x 2-k
- ~ + ~ -

!

then the va~ue Sj computed by Alg.4 satisfies: Vj > 1: ~ j - SjI<- 2r189 + 2-k) .

From L e m m a 5 we may deduce the following bound on the absolute error,
made by approximat ing Z by 2-~S,~.

< 2-'~+P + 2~(1 + 2-k)2 -r~ < 2c+ 1-n

Since the least significant digit of 2-~S~ is of weight 2 c+1-~, we conclude tha t
2 - ~ S . is within one ulp (unit last place) of the exact result Z.

Since the selection procedure is based on a k fractional digit est imation of
Zn - 2Sn-1, it is not necessary to perform the full precision subtraction. Fur-
thermore we only need to store Sn to k fractional digits. Consequently Alg. 4
can be implemented efficiently, with a hardware cost that is independent on the
desired precision (the number of binary digits of the result).

5.1 A p p l y i n g D i g i t i z a t i o n to t h e O u t p u t o f O n - l i n e E x p / L o g
A l g o r i t h m .

In what follows we will briefly argue that Alg. 4 can be used to digitize the
output of Alg. 1. For mode zero, by assuming IYI <: 1, we deduce from (7) and
Corollary 3 that: 12-~L~ - yeXl < 2 -n+3 = 2 -~+p. The absolute value of the
exact result can be estimated to: IyeX i < IYI e ul < 2 2 = 2q. Thus with p = 3
and q = 2, we get from Lemma 5 that the scaling constant c must satisfy, c > 7
for k = 2 and c > 6 for k > 2.

For modeone , we get from (4) and Corollary 3 tha t 2,~E~ - (X + ln(Y)) <

2 - ' + 2 = 2 - "+v , and by assuming that IX[< 1 we get iX + l n (Y) l <_ IX[+
[In(u1 + 1)[< 2 2 = 2 q. Thus with p = 2 and q = 2, we get from Lemma 5 that
the scaling constant c must satisfy, c > 6 for k = 2 and c _> 5 for k > 2.

174

6 C o n c l u s i o n

We have proposed a new on-line algorithm for evaluating logarithms and expo-
nentials. This algorithm is suitable for VLSI implementation. One should notice
that in our presentation we rarely use the fact that the exponentials and loga-
r i thms are base e exponentials and logarithms, thus if one replaces the constants
ln(1 + dk2 -k) by log a (1 + dk2 -k) then (by modifying the comparison constants),
one will obtain an algorithm for computing X + logaY and Y a x .

R e f e r e n c e s

1. Nielsen, A.M., Muller, J.M.: On-line Algorithms for Computing Exponentials and
Logarithms. Technical report, available at "http://www.imada.ou.dk/Research/"

2. Avizienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE
Trans. on electronic comp., 10 (1961) 389-400

3. Bajard, J.C., Duprat, J., Kla, S., Muller, J.M.: Some operators for on-line radix 2
computations. Jour. of Parallel and Dist. Computing 22(2) (1994) 336-345.

4. R.H. Brackert, R.H., Ercegovac, M.D., Willson, A.N.: Design of an on-line multiply-
add module for recursive digital filters. In proc. of 9th Symp. on Computer Arith-
metic, Santa Monica, USA, (1989) 34-41.

5. Chen, T.C.: Automatic computation of logarithms, exponentials, ratios and square
roots. IBM J. of Res. and Dev. 16 (1972) 380-388.

6. Ercegovac, M.D., Lang, T.: On-line scheme for computing rotation factors. Jour. of
Parallel and Dist. Comput., Special Issue on Parallelism in Computer Arithmetic
(1988)

7. Ercegovac, M.D., Trivedi, K.S.: On-line algorithms for division and multiplication.
IEEE Trans. on Comp. C-26(7) (1977) 681-687.

8. Koren, I.: Computer arithmetic algorithms Prentice-Hall (1993).
9. Lugish, B.De: A Class of Algorithms for Automatic Evaluation of Functions and

Computations in a Digital Computer. PhD thesis, Dept. of Comp. Sci. Univ. of
Illinois Urbana (1970).

10. Muller, J.M.: Discrete basis and computation of elementary functions. IEEE Trans.
on Comp. C-34(9) (1985).

11. Oklobdzija, V.G., Ercegovac, M.D.: An on-line square root algorithm. IEEE Trans.
on Comp. C-31 (1982) 70-75.

12. Specker, W.H.: A class of algorithms for ln(x), exp(x), sin(x), cos(x), tan-l(x)
and cot-l(x). IEEE Trans. on Elec. Comp. EC-14 (1965)

13. Takagi, N.: Studies on hardware algorithms for arithmetic operations with a redun-
dant binary representation. Ph.D thesis, Dept. Info. Sci., Kyoto Univ.1 (1987).

14. Volder, J. The cordic computing technique. IRE Trans. on Elect. Comp. (1959)
15. Walther, J.: A unified algorithm for elementary functions. In proc. of Joint Comp.

Conf., (1971)

