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Abstract .  We propose a new on-line algorithm for fast evaluation of 
logarithms and exponentials. This algorithm is derived from the widely 
studied Briggs-De Lugish iteration. We examine various compromises be- 
tween the on-line delay and the size of the required comparison constants. 

1 I n t r o d u c t i o n  

The point at stake in this paper is the design of algorithms that  rapidly evaluate 
exponentials and logarithms. We focus on algorithms that  belong to the shift- 
and-add class. Those algorithm use very simple elementary steps: additions, and 
shifts (i.e. multiplications by a power of the radix of the number system be- 
ing used), and they go back to the 17th century: Briggs, a contemporary of 
Neper, invented an algorithm that  made it possible to build the first tables 
of logarithms. For instance, to compute ln x in radix-2 arithmetic, numerous 
methods (including that  of Briggs, adapted to this radix) [9, 5, 10, 12] consist 
of finding a sequence dk = --1, 0, 1, such that  x rZk=l(ln + dk2_k) ~ 1. Then 
ln(x) ~ - ~ = 1  ln(1 + dk2-k). Another method belonging to the shift-and-add 
class is the C O R D I C  algorithm, introduced in 1959 by J. Volder [14] and then 
generalized by J. Walther [15]. Such algorithms have been implemented in many 
pocket calculators or math co-processors (such as the Intel 8087 and the follow- 
ing Intel chips until the 486 family). 
In his Ph.D. dissertation [13], N. Takagi suggests an algorithm for computing 
logarithms and exponentials that is adapted to the use of redundant number 
systems (redundant number systems [2, 8] allow very fast carry-free additions, 
but they may complicate the comparisons that  are required to perform the it- 
erations: this point will be made clearer in what follows). We propose here a 
variant of that  algorithm that  allow on-line computation of logarithms and ex- 
ponentials. On-line arithmetic was introduced by Ercegovac and Trivedi [7]. In 
on-line arithmetic, the digits flow through the operators in a digit-serial fash- 
ion, most significant digit first. This makes it possible to get a high throughput 
by pipelining the arithmetic operators at a digit-level. On line algorithms have 
been proposed for the arithmetic operatiops [7, 4, 3] as well as for computing 
elementary functions [11, 6] 
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Our algorithm is based on the following iteration : 

{ E~+I = E~ " ln(1 + d~2 -n)  
Ln+I = L . (1  + d.2 -") (1) 

if we take E1 = X and L1 = Y then (1) satisfies, E ,+ I  = X-~-2~=1 ln(l+dk2 -k) 
'~ 1 and L,~+I = Y YL=I( + dk2-k)" 

- -  If we are able to find a sequence of digits dk E { -1 ,  0, 1} such that E~ goes 
to zero, then we will have L,~ -+ Ye x .  Thus we have computed the product 
of the number Y and the exponential of the number X. This iteration mode 
will be referred to as mode zero. 

- If we are able to find a sequence of digits dk E { -1 ,  0, 1} such that L~ goes 
to one, then we will have En -+ X + ln(Y).  Thus we have computed the 
logarithm of the number Y added to the number X. This iteration mode will 
be referred to as mode one. 

This paper is an abridged version of a longer technical report. The proofs 
of the claims stated in the following sections can be found along with further 
details in [1]. 

2 S e l e c t i o n  o f  D i g i t s  a n d  D o m a i n  o f  C o n v e r g e n c e  

2.1 C o m p u t i n g  E x p o n e n t i a l s  

In the zero mode the digits dk must be chosen such that  the iteration variable 
E~ goes to zero. By plotting E,~+I versus E~ for all values of dn E {-1 ,  0, 1}, as 
according to E , + I  = E,  - l n ( l + d , 2 - ' ~ ) ,  we get a diagram as depicted in Fig. 1. 
This diagram is similar to the Robertson Diagrams frequently found in studies of 
division algorithms. If we assume that E1 = X belongs to some interval Ill, Ul] 
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Fig. i .  Robertson diagram for the zero mode (exponentials). 
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and choose the digits d~ such that  Ek+l belongs to some interval [lk+l, ttk+l], 
where the sequence of intervals is such that:  

[/1, Ul] D [/2, U2] D " "  D [In, ttn], (2) 

where each of these intervals contain zero and limn-+~ us  - I n  = O, then En 
will exhibit the desired convergence towards zero. From Fig. 1 we may deduce a 
proper convergence domain and digit selection procedure for the zero mode.  By 
noting that  Us+l = u,~ - / n ( l + 2  -~)  and ln+l = In - / n ( 1 - 2 - ~ ) ,  and since us and 

o o  
ls must  go to zero as n goes to infinity, we deduce that  us = ~-~k=s ln (1  + 2 -k)  
and ls = ~k~=s In(1 -- 2-k) .  From Fig. 1 we may  further deduce a valid selection 
procedure for the digits dk as: 

- 1  if E ~ < _ B .  
dk = 0 if As < E,~ < Ds (3) 

1 if C s < _ E s  

Notice tha t  the selection procedure is nonde te rmin i s t i c  in the sense tha t  for some 
values of En several choices of d~ may be valid. The constants As, Bs,  Cs and Ds 
are equal to (again these values are deduceable from the Robertson Diagram): 
A s  = l,~+1 , B,~ = Us+l + ln(1 - 2 -n )  , Cn = ls+l  + ln(1 + 2 -~)  , D~ = us+l .  
It  can be shown tha t  As < B~ < C,~ < Ds for all n _> 1. Refer to Tab. t for 
the four first values and limit of these constants. The convergence domain of the 
algori thm is given by the requirement that  E1 = X E [11, Ul], f rom which we 
deduce tha t  -1 .24206 . . . .  ll _< X _< ul = 0.86887 .... 

2"l. 12 ., I2"A. 12"B. 2 C. 2non 
1 -2.484123 1.737752 -1.097829-0.4594709 -0.2868995 0.9268231 
2 -2.195658 1.853648 -1.044930 -0.1896560 -0.1523566 0.9610720 
3 -2.089862 1.922144 -1.021611-0.0883713 -0.0793469 0.9798797 
4 -2.043223 1.959760 -1.010607-0.0428505 -0.0406114 0.9897655 

c~ -2 2 -1 0 0 1 

Table  1. First 4 values and limits of 2~l~, 2nun, 2~A~, 2~B~, 2~Cn and 2~Dn. 

The relative error is bounded by: 

o o  

- 2 - 2 - s < I I ( 1 - 2 - k ) - I  = e 1"-1 _< 
k = s  

(3O 

Ye x - L s  < e~ ._  1 = H ( 1 + 2 _ k ) _ 1 < 2 . 8 . 2 _  n (4) 
Ln 

k = s  

2.2 C o m p u t i n g  L o g a r i t h m s  

In the one mode  the digits dk must be chosen such that  the iteration variable 
Ls  goes to one. By plotting A~+I = Ls+l  - 1 versus An = Ls - 1 for all values 
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Fig.  2. Robertson diagram for the one mode (logarithms, n = 1). 

of  dn E { - 1 ,  0, 1}, according to /~n+l : L n + l  - 1 = ~ ( 1  + d . 2  - n )  + dn2 -'~, we 
get  a d i ag ram as depicted in Fig. 2. I f  we assume tha t  )h = L1 - 1 = Y - 1 
belongs to some interval  [Sl, rl],  and tha t  the digits dk are chosen such t ha t  
Ak+l = Lk+l  - 1 belongs to some interval [Sk+l, rk+l],  where these intervals 
include zero and are contract ing in the sense tha t  the width of the interval goes 
to zero, then L,~ will converge towards  one, as n approaches  infinity. From Fig. 2 
we m a y  deduce a proper  convergence domain  and selection procedure  for the one 
mode. By not ing t ha t  r,~+l = (1 - 2-n)r,~ - 2 -n  and sn+~ = (1 + 2-n)sn + 2 -n,  
and since rn and sn must  go to zero as n goes to infinity, we deduce tha t  rn = 
~--~k~_n 2 -k  l-I~=n (1 - 2 - J )  -1 and Sn = -- ~k~=n 2 -k  l'-I~=n (1 + 2 - J )  -1.  From Fig. 
2 we m a y  fur ther  deduce a selection procedure for the digits dk as: 

1 if L , ~ - I < G n  
d k = 0 if F .  _< L~ - 1 < I,~ (5) 

- 1  i f  H ~  < L n - 1  

Again this selection procedure  is nondeterminis t ic .  The  constants  Fn, G~, Hn 
and In are equal  to: 

[in = 8n+l Gn rn+l  - 2 - n  ' 1 + 2  -'~ , H a  s n + l + 2  -n - -  - -  1 - 2  - n  , I , ~ = r n + l  (6)  

I t  can be shown tha t  Fn < Gn < Ha  < In for all n > 1. Refer to Tab.  2 for 
the first four values and l imit  of these constants .  The  convergence domain  of the 
a lgor i thm is given by the requi rement  tha t  )~1 = L1 - 1 = Y -  1 E [sa, rl] ,  f rom 
which we deduce t ha t  0.4194... = sl  + 1 _< Y < Ul + 1 = 3.4627 .... 

The  absolute  error is given by: 

- - 2 . 2  - n  < In(sn + l) < (X  + l n ( Y ) ) -  En < ln(rn + l) < r12 -'~ < 2 .5 .2  - n  (7) 

3 O n - L i n e  A l g o r i t h m s  

By definition, an on-line a lgor i thm should be able to deduce the n th  digit of  the 
result,  based on ~ + n digits of  the operands,  where the integer 8 is referred to as 
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nil 2"sn 1 2 ~ 1 7 6  2"Fo 
1 -1.161155 4.925493-0.7417327 
2 -1.483465 2.925493 -0.8543317 
3 -1.708663 2.388240 -0.9222463 
4 -1.844493 2.179420 -0.9597734 

oo -2 2 -1 

2nGn 

0.3084977 
0.1552959 ! 
0.0797421 
0.0406645 

0 

2"H~ [ 2nI~ 

0.5165347 1.462747 
0.1942244 1.194120 
0.0888614 1.089710 
0.0429084 1.043206 

0 1 

n r 2n~ onr4 and 2nIn. Table 2. First 4 values and fimits of 2nsn, 2 ,,, 2"Fro ~ n , ,  ,,,, 

the on-line delay [7]. Thus in order to compute the exponential and logarithm 
of a number, in an on-line manner, we must develop algorithms that  compute 
the desired value based on limited knowledge of the input operands X and Y. 

We will devise such an algorithm, and prove that  it emulates a run of the 
nondeterministic algorithms described in the previous section. The algorithm is 
based on two scaled iteration variables /~n = 2n(Xn+5 - n-1 E k = l  In(1 + dk2-k)) 
and L,,  = 2"(Y,~+~ . - i  H~=~ (1 + d'~2 -~ )  - m), where m is set to either zero or 
one, corresponding to the desired mode of computation. Based on these itera- 
tion variables the proper digits dk can be selected, as specified by the following 
algorithm. 

A l g o r i t h m l .  On-line Exponentials and Logarithms. 
St imulus:  m : Boolean  (zero or one mode), X E [ll, ul] = [-1.24206..., 0.86887...] 
( i f  m = 0), Y E [Sl + 1 ,r l  + 1] = [04194..., 3.4627...] ( i f  m = 1). 
Response: I f  rn = 0 then l im~_~  2-'L. = Y e x . I f  m = 1 then l i m ~ - ~  2-n/~n = 
X + l n ( Y ) .  

1. Initialize: Eo = xo .x l  . . . x ~ ,  Lo = Y- lYo.Yl  " "Y5  - rn, Po = 1 and do = O. 
2. iterate: ( for  n = 1, 2, ...) 

E. = 2 E . - 1  + x.+~2 -~ - 2"tn(1 + s  

P,, = P~-1(1 + d~-12 -~+1) 

Ln --- (2Ln-1 + yn+6Pn-12-~)(1  + d . -12  -n+l )  + 2mdn-1  

I f m  = 0 then compute F"n = t r u n c ( E n , p )  and dk = ~, else Ln = t r u n c ( L n ,  q) 

and dk = 7 where 
- 1  / f / ~ . _ < A  { 1 / f L . < _ C  

a =  0 i f  A <_E.  <_B , 7 =  0 i f  C <_Ln <_D 

1 i f  B<_[~,~ - 1  i f  D<_L,~ 

The function t r u n c ( x , p )  referred to in the algorithm, truncates the value 
x to p fractional digits. Rather than actually computing the term 2~ln(1 + 
c1~_12-n+1), this term should be accessible by means of a table lookup. The 
following lemma gives bounds on the comparison constants A, B, C and D, for 
which Alg. 1 selects the digits elk correctly. 
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L e m m a  2. Correctness of digit selection. 
I f  A,  B and C, D are p respectively q fractional digit constants satisfying for  all 
n > l :  

2'~A,~ + 2 -p -}- 2 -6 <_ A <_ 2'~B,~ - 2 -p - 2 -~ 

and 

respectively 

2'~Cn + 2 -p + 2 -'~ <_ B <_ 2nD,~ - 2 -p - 2 -~ 

(8) 

(9) 

n - 1  n- -1  

2'~F,~+2 - q + 2  - ~ H ( l + 2  -k) < C _ < 2 ~ G . - 2  - q - 2  - ~ H ( l + 2  -k) (10) 
k = l  k = l  

and 

n--i n--i 

2'~H'~ + 2-q + 2-~ l-I (1 + 2 -k) _ D _< 2nI,~ - 2 -q - 2 -`~ H (1 + 2 -k ) (111 
k----1 k = l  

then given the input X and Y ,  Alg. 1 will emulate a run of  the nondeterminist ic  
parallel algorithm (in the sense that the nondeterminist ic algorithm may choose 
the same digits as the ones chosen by the on-line algorithm, i.e. dk = dk), when 
supplied with the same input. 

Corol lary  3. Under assumption of  the hypothesis of  Lemma 2, we have: 

n - 1  

Ln - 2-".L,~ < (1~(1 + 2-k))2 -n-`~ and E,~ - 2-nJEn < 2 -"- '~.  
k = l  

(12) 

for  mode zero respectively one. 

3.1 Hardware Requirements 

The algorithm requires the storage of the constants 2Jln(1 + dj_12 - j+l)  for 
dj-1 E {-1,  0,1}, thus to obtain an accuracy of the result of approximately n 
binary digits, we need to store 3n constants. This result can be improved by 
using the fact that for j >_ n /2 ,  ln(1 + dj2-J)  can be replaced by dj2-J  with 

3 accuracy 2 -n. Thus we only need to store ~n constants. 
The updating of the iteration variables, as specified by (8), can be done 

efficiently using only shifts and additions. If the step time of each iteration of 
the algorithm is to be independent of the desired accuracy, e.g. the number of 
binary digits, the additions must be performed using redundant arithmetic, and 
the variables En, Pn and L,  should be represented in a redundant representation, 
like borrow-save. One inherent drawback of redundant arithmetic is that when 
comparing two redundant numbers, we are forced to examine all digits of both 
numbers. By designing the digit selection of Alg. t, such that the comparisons 
are based on truncated redundant numbers, this drawback has been eliminated, 
in the sense that we only need to examine a constant number of digits of both 
operands. 



171 

4 C h o i c e  o f  C o n s t a n t s  a n d  O n - l i n e  D e l a y  

In this section we will discuss how to choose the comparison constants A, B, C 
and D, used when selecting the digits dk in the on-line algorithm. The lower and 
upper bounds for the constants A and B, as given by Lemma 2, are depicted in 
Fig. 3. 

2 n D ~  

. . . . . . . . . . . . . . . . . . . . . .  -, . . . . . . . . . . . . . . . . . . . .  2 " O . . 2 v  . 2 ~  

A 
. . . . . . . . . . . . . .  ' . . . . . . . . . . . . . . . . . . . .  2 " c . + 2 ~ + 2  6 

2 nB n -2 -p -2 -~ 

2 n c n  . . ' ' - "  u 

2 nB 

if" A 

. . . . . . . . . . . . . . . . . . . . . .  -~- . . . . . . . . . . . . . . . . . . .  2"a.+F+5 ~ 

2 " A ~  

Fig. 3. Lower and upper bound for constants A and B. 

By inspection of Fig. 3 we note that: 

2~A,~+2-P+2-~_< lim 2'~A,~+2-P+2-~< A < 21B1-2-P-2 -~ _< 2'~B,~-2-v-2 -~ (13) 
n - - +  OO 

thus the p fractional digit constant A, must be chosen such that  it belongs to 
the interval 

[ lim 2~An + 2 -p + 2 -e,21B1 - 2 -p - 2-~]. 
n ---)- ~ 

The best choice of A, will be the midpoint of this interval truncated to p fractional 
digits, e.g. A = trunc( l im"~  2"A~+2-P+2-~i'2B1-2-P-2-~2 , p) = trunc(B1 - �89 
In this way we have: 

A -  (B1 - 1)l < 2-P. (14) 

From (13) and (14) we get the requirement: A < 2 -p +B1 - � 8 9  < 2 B 1 - 2  -p - 2  -~, 
from which we deduce: 

1 

Similarly we choose the constant B as the midpoint of the interval [ l i l n ~  2nC~+ 
2 -P+2  -~, 2 1 D 1 - 2 - P - 2 - ~ ] ,  e.g. B = t runc (  2Dl+lim~-+~176 2~c~ p) = trunc( Dl , p), 

2 

and deduce that: 
1 
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Since ~A _~ 6B the lower bound on-line delay when computing in mode zero is 
given by (15), e.g. ~ > 5A. 

For mode one, a similar analysis can be performed, thereby determining val- 
ues for the constants C, D and a lower bound on the on-line delay ~D (see [1] for 
details). Examples of values of A, B, C, D and the on-line delays 8A and 5D, are 
given in Tab. 3 for various values of p and q. 

~ A  

~ -0.101 
-0.1011 
-0.10111 
-0.101110 
-0.1011101 
-0.10111010 
-0.1011101011... 

B  lL4c 
0.011 [5-"~- 
0 .0111  141-0.0110 
0.01110 141-0.01101 
0.011101 131-0.011101 
0.0111011 131-0.0111010 
0.01110110 131-0.01110101 
0.0111011010... 3L3_._[-0.0111010100... 

D 

0.1011 
0.10110 
0.101010 
0.1010101 
0.10101011 
0.1010101111... 

Table 3. Truncated comparison comparison constants (in binary), and lower bound on 
on-line delay, for various values of p and q. 

5 Digitization 

The output of Alg. 1 is a sequence of approximations L~ or /~n, to the exact 
result Ye  X respectively X + ln(Y) .  If our algorithm for computing elementary 
functions is to be an on-line algorithm, we must produce the output as well as 
consume the input in an on-line manner. In order to produce the output in an 
on-line fashion, we will use a technique known as digitization. 

Assume that  we have computed a sequence of approximations < Z~ > to a 
number Z, such that  12-nZ~ - Z  I _< 2 -n+p, and that  the numerical value of the 
exact result is bounded by IZI _< 2 q. We will then perform an on-line digitization 
of the value Z based on the sequence of approximations < Zn > producing the 
result Sn in on-line mode. In each iteration of the algorithm, the (output) digit 
sn is chosen such that  the residual error IZ,~ - Snl = I,~n - 2Sn-1 + s~2Cl is 
minimized. 

A l g o r i t h m 4 .  On-line Digitization. 

Stimulus: A sequence of approximations <Zn> satisfying: 2-~  2~ - Z <_2 -~+p. 

Response: Sn = 2 c+l+n E~._-I sJ 2- j .  

1. Initialize: So = 0 
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2. iterate: (for n =  1, 2, ...) 
Tn  = t r u n c ( ( Z n  - 2Sn-1)2 -c, k) , Sn = 2Sn--1 + S n 2  c 

i /  < -�89 
s . =  o 

1 /f � 8 9  

The following l emma gives a bound on the residual error. 

L e m m a 5 .  If the scaling constant c is chosen such that 

c > max  p + log 2 3 2-k ,P + log~ x 2-k 
- ~ +  ~ -  

! 

then the va~ue  Sj computed by Alg.4 satisfies: Vj > 1: ~ j  - SjI<- 2r189 + 2-k) . 

From L e m m a  5 we may deduce the following bound on the absolute error, 
made by approximat ing Z by 2-~S,~. 

< 2-'~+P + 2~( 1 + 2-k)2 -r~ < 2c+ 1-n 

Since the least significant digit of 2-~S~ is of weight 2 c+1-~, we conclude tha t  
2 - ~ S .  is within one ulp (unit last place) of the exact result Z. 

Since the selection procedure is based on a k fractional digit est imation of 
Zn - 2Sn-1,  it is not necessary to perform the full precision subtraction. Fur- 
thermore we only need to store Sn to k fractional digits. Consequently Alg. 4 
can be implemented efficiently, with a hardware cost that  is independent on the 
desired precision (the number  of binary digits of the result). 

5.1 A p p l y i n g  D i g i t i z a t i o n  to  t h e  O u t p u t  o f  O n - l i n e  E x p / L o g  
A l g o r i t h m .  

In what  follows we will briefly argue that  Alg. 4 can be used to digitize the 
output  of Alg. 1. For mode zero, by assuming IYI <: 1, we deduce from (7) and 
Corollary 3 that:  12-~L~ - yeXl  < 2 -n+3 = 2 -~+p. The absolute value of the 
exact result can be estimated to: IyeX i < IYI e ul < 2 2 = 2q. Thus with p = 3 
and q = 2, we get from Lemma 5 that  the scaling constant c must satisfy, c > 7 
for k = 2 and c > 6 for k > 2. 

For modeone ,  we get from (4) and Corollary 3 tha t  2,~E~ - (X + ln(Y)) < 

2 - ' + 2  = 2 - "+v ,  and by assuming that  IX[ < 1 we get iX + l n ( Y ) l  <_ IX[ + 
[In(u1 + 1)[ < 2 2 = 2 q. Thus with p = 2 and q = 2, we get from Lemma 5 that  
the scaling constant c must  satisfy, c > 6 for k = 2 and c _> 5 for k > 2. 
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6 C o n c l u s i o n  

We have proposed a new on-line algorithm for evaluating logarithms and expo- 
nentials. This algorithm is suitable for VLSI implementation.  One should notice 
that  in our presentation we rarely use the fact that  the exponentials and loga- 
r i thms are base e exponentials and logarithms, thus if one replaces the constants 
ln(1 + dk2 -k) by log a (1 + dk2 -k) then (by modifying the comparison constants), 
one will obtain an algorithm for computing X + logaY and Y a  x . 
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