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A b s t r a c t .  Dense linear systems arising from volume integral equations 
can be effectively solved with iterative solvers. In this article we show 
how these iterative methods can be parallelized. The performance of the 
serial code is discussed on a vector system and on a RISC processor. 
The performance depends very much on the memory architecture. The 
parallel version of the code is written using MPI. We obtain good paral- 
lel speedup when the elements of the coefficient matrix are recomputed 
during each iteration. The speedup is moderate when a special FFT al- 
gorithm is used to compute the matrix-vector product. 

1 I n t r o d u c t i o n  

Apart  from the usual technical applications, electromagnetic scattering can also 
be applied to study the scattering of light by dust particles in the atmosphere, in 
the solar system and in interstellar dust clouds [9]. These dust particles are often 
irregular, inhomogeneous and maybe also anisotropic. To model such scatterers, 
a volume integral equation formulation is needed. We have been studying the ef- 
ficient solution of dense linear systems arising from the volume integral equation. 
Iterative solution methods and special methods for computing the matrix-vector 
product have made it possible to solve systems with hundreds of thousands of 
unknowns. 

Parallel computing is becoming more and more important  in achieving high 
performance in a cost-effective way. In this article we describe the parallel so- 
lution of the systems of linear equations. First, the integral equation formalism 
and its discretization are introduced. Iterative solution methods and different 
methods to compute the matrix-vector product are considered in Sect. 3. Then 
in Sect. 4 the performance of the code is measured on two example architectures. 
Section 5 describes the parallel implementation and its performance. 

2 I n t e g r a l  E q u a t i o n s  

The volume integral equation of electromagnetic scattering is given by 

E(r) = E~.~(~) + k 3 f(m(r')  2 - 1)G(~, r'). E(r') d%', 
J v  

( i) 
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where E(r) is the electric field inside the particle, Einc(r) is the incident field, k 
is the wave number, m is the complex refractive index, G is the dyadic Green's 
function 

( V V )  
G ( r , r ' ) =  1 + - - ~  g ( l r - r ' [ )  (2) 

and 
eikr 

g ( r ) -  4~rkr" (3) 

This integral equation is a strongly singular one, where special care must be 
taken in handling the singularity. To concentrate on the solution methods for 
the linear systems, we chose a simple discretization for the integral equation and 
computed the singular terms analytically. We also considered a closely related 
technique for scattering calculations, the discrete-dipole approximation, where 
each computational cell is replaced by a dipole [9]. 

The simplest discretization of the integral equations uses cubic cells and 
assumes that the electric field is constant inside each cube. By requiring that 
the integral equation (1) be satisfied at the centers ri of the N cubes and by 
using simple one-point integration, we end up with the equation [12, 8] 

( ( ,4, 1-(m(ri) 2 - 1 )  kaM - Ei = E ~ + ~ J=, 

j#i 

where i = I,..., N, V1 is the volume of the computational box, M is given by 

2 M = ~k-~" ( ( 1 -  ikb(314rr) 1,3) e ikb(3'' 'O','- 1) ,  (5) 

b is the length of side of the computational box and Ti j  is given by 

eiPo 2 eiPiJ 
TO = ~ ( P o  + iPO - 1)1 + p--~(-p,~. - 3ipo + 3)i'Oi', j, (6) 

P u  = k l r~  - r j l .  

Here rij -" (ri - ~1. 

3 Iterative Met hods  and Matrix-vector  Products  

The computational challenge in our scattering computations is the solution of 
a large dense system of linear equations with complex coefficients. For homo- 
geneous and isotropic scatterers, the coefficient matrix is complex symmetric. 
We have studied the use of iterative methods in this setting [14] and found that 
the complex symmetric version of QMR [3] performs very well. We also tested 
the block version of QMR [1] but the computational benefit from this method 
is limited for the refractive indices used in our simulations. 



83 

Most of the time the iterative methods converge so quickly that  there is no 
need for preconditioning. It also seems that the possible benefit from precondi- 
tioning is limited. We tried for example the approximate inverse preconditioning 
but it did not sufficiently reduce the number of iterations to warrant for the 
extra work. For high values of the refractive index the convergence slows down 
and then preconditioning becomes an important  issue. 

An iterative solver (namely a Krylov space method) consists of four basic 
operations: a vector update (saxpy), a dot product, the matrix-vector product 
and the application of  the preconditioner. When we are solving a dense system 
of linear equation without preconditioning, the matrix-vector product takes by 
far the most CPU time in the computations. 

In our production code, the matrix-vector product can be computed using 
four methods: 

1. The matr ix  elements can be recomputed each time they are referenced. This 
method needs very little storage. 

2. The matr ix  can be precomputed and stored. The matrix-vector product  is 
computed efficiently using a BLAS routine. This method quickly exceeds the 
memory size of the machine. 

3. Using the symmetry of the matrix, the matrix can be stored in packed form 
that  takes one third of the space required for the full matrix.  

4. A special F F T  algorithm can be used. 

Let the scatterer consist of N computational cells. The system of linear equa- 
tions has 3N equations because the x, y and z components of the electric fields 
are considered. Correspondingly, the matrix has the following block structure: 

[ A l l  A12 A13 
A---- |A21  A22 A231 �9 (7) 

\A31 A32 A33]  

All the 9 N x N blocks are symmetric: AT= Aij. Furthermore, A T -- Aji. Thus 
the whole information is stored in the upper triangular parts of the blocks All ,  
A22, A33, A12, A13 and A23. 

When the computational domain is enlarged to a homogeneous cube, the 
matrix-vector product reduces to a 3D-convolution that  can efficiently be com- 
puted with the F F T  [4]. The use of F F T  is plausible when the scatterer can be 
modeled with densely packed cubic cells. 

In the F F T  algorithm, the computational domain is enlarged to a cubic lattiCe 
containing the scatterer. The computational cells of the scatterer are assumed to 
sit on the regular cubic lattice. When the scatterer consists of N computat ional  
cells, let the enlarged lattice contain Nc cells. The cubic lattice has to be doubled 
in each direction to get a 3D convolution. 

The matrix-vector product y = Ax can be computed by taking the F F T  
of the first row of the coefficient matrix, multiplying this by the F F T  of the 
vector x, and then recovering y by the inverse FFT.  Note that  here both x and 
y together with the first row of A are considered as values on the enlarged and 
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doubled cubic lattice. Also the block structure of the coefficient matrix is taken 
into account. 

One can also exploit the symmetry in the FFT calculations: only 6 of the 9 
blocks of the coefficient matrix have to be stored. Thus the storage requirements 
for x and y in the enlarged lattice is 24Nc 2 and for the row of the coefficient 
matrix is 48N~ double precision complex numbers. 

We have also considered the use of another special technique, the fast mul- 
tipole method (FMM) [5] to compute the matrix-vector product. However, this 
has not been incorporated into the production code. The fast multipole method 
is a method for computing the pairwise interactions of a large number of parti- 
cles by using truncated potential expansions. The centers of the expansions have 
to be translated during the FMM algorithm. 

In the electromagnetic scattering case the translation becomes very expensive 
as the potential expansions involve many special functions and the translation 
involves a multiple summation. Using the so called diagonal translation opera- 
tors [15] the potentials are represented in Fourier space where the translation 
is equivalent to point-wise multiplication and the potential can be recovered by 
numerical integration. We gave a simplified derivation of the diagonal translation 
operators and also derived error bounds for the FMM algorithm that take into 
account the truncation error of the potential expansions together with the error 
from the numerical integration [13]. The FMM algorithm involves fairly compli- 
cated data structures and communication patterns and thus special care has to 
be taken to ensure load balancing and data locality in the parallel implemen- 
tation [11]. The FMM is perhaps better suited to the surface integral equation 
formulation of scattering where the FFT cannot be used. 

4 S i n g l e  N o d e  P e r f o r m a n c e  

In the rest of the article we will consider spherical particles of various sizes 
where the side length of the computational cell is kept at 0.3 (the wave number 
is assumed to be 1). In all the experiments, the refractive index is 1.6 -4- 0.05i. 
The code uses double precision throughout. 

The integral equation solver is currently implemented for a Cray C94 vec- 
tor computer and for an IBM SP2 distributed memory parallel computer at the 
Center for Scientific Computing (CSC). The SP equipment consists of both the 
so-called thin and wide nodes. The thin nodes are allocated for parallel comput- 
ing. In the future the code will be ported to the Cray T3E parallel computer 
that will be installed at CSC during the summer of 1996. 

The code is written using the Fortran 90 programming language. The matrix- 
vector products and the Fourier transforms are computed using optimized sub- 
routines in the Cray and IBM mathematical libraries. We are working with a 
single source code which contains cpp preprocessor directives. Serial and parallel 
versions for the Cray and IBM are created on compile time. 

Table 1 shows the execution times and MFLOPS rates on a single processor 
of the Cray C94 for several problem sizes. Note that the execution time is given 



85 

for a single solve of the system of linear equations. In the actual production code 
the system of linear equations has to be solved twice, once for each incident 
polarization state. Table 2 shows the same information for a single thin node 
processor of the IBM SP2. The theoretical peak MFLOPS rates are 952 for the 
Cray C94 and 264 for the SP2 processor. 

Table 1. The performance of the scattering code on a single processor of the Cray C94. 
The first column gives the number of computational cells in the scatterer, the second 
column gives the number of iterations for the QMR solver. Note that the number 
of equations is three times the number of computational cells. The CPU times t (in 
seconds) and MFLOPS rates r M F  are reported for four methods of computing the 
matrix-vector products At (1--recomputation of the matrix entries, 2--use of the full 
matrix, 3=use of the packed matrix, 4=FFT algorithm). A dash indicates that the 
problem could not be run due to insufficient memory 

Size Iterations 
32 8 0.12 22 

136 11 0.11 182 
304 12 0:75 233 

1064 16 7.4 425 
2330 20 39 461 

A t  = i A t  = 2 

t 7"MF t I 'MF t 

0.004 17[ 
0.02 150 
0.09 376 
1.5 664 

A t = 3  A t = 4  
rMF t r M F  

0.006 15 0.08 23 
0.05 128 '0.2 57 
O.3 2O8 0.3 81 
3.5 360 1.2 132 

37 282 2.2 203 

Table 2. Same as Table 1 but for the IBM SP2 thin node processor. 

At = l A t = 2  A t = 3  A t = 4  
Size Iterations t rMF t FMF t rMF t rMF 

32 8 0.03 41 0.01 37 0.01 40 0.07 29 
136 11 0.88 48 0.17 49 0.43 33 0.33 30 
304 12 4.9 49 0.89 39 2.95 27 1.1 35 

1064 16 117 34 -- -- 4.2 35 

Table 3 gives the performance of the code using the FFT algorithm for the 
Cray and for the SP2 thin and wide node processors. The MFLOPS numbers 
are acquired from the hpm command on the Cray and from the rs2hpm tool 
developed by Jussi Miiki for the IBM SP2 [10]. 

For large problems the performance of a wide node is almost double the 
performance of a thin node because of the improved memory bandwidth of the 
wide nodes. In the Cray implementation the arrays holding the FFT  data were 
enlarged by one position in each dimension in order to avoid memory bank 
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Table  3. Performance on a single CPU of the Cray C90 and on a thin and wide node 
of the SP2 for large problems when the matrix-vector product is computed with the 
FFT algorithm. 

Size Iterations 
2320 20 
5232 29 

10048 38 
20336 65 

137376 264 

Cray 
t rMF 
2.2 203 
9 319 

18 381 
60 418 

1233 446 

IBM thin node 
t rMF 

IBM wide node 
t rMF 

II 47 
34 77 
98 76 

270 82 

17 32 
75 35 

176 42 
541 41 

conflicts. For large problems this improved the performance of the code by a 
factor of three. 

5 P a r a l l e l i z a t i o n  

As almost  all computat ional  work in the scattering calculations goes into the 
solution of the systems of linear equations, we concentrate on the parallelization 
of the iterative solver. The pre- and postprocessing stages can be executed on 
one processor only. Because in a typical scattering calculation many  orientational 
averages are taken, the calculation could trivially be parallelized by calculating 
each orientational average independently in different processors. Here we are 
aiming at the solution of large scattering problems for which a truly parallel 
solver is necessary. A parallel solver for the discrete-dipole approximation was 
also given in [6, 7]. 

The scattering code is parallelized using the MPI (Message Passing Interface) 
communicat ion library. More exactly, the MPICH implementat ion from Argonne 
National Laboratory is used. 

All the vectors in the parallel version of the QMR iterative solver are dis- 
t r ibuted across the processors. Tile vector update  (x = x + ay)  can be done 
totally indenpendently. To compute dot products, each processor computes a 
partial  sum, broadcasts this value to all other processors who can then compute 
the global sum. In the code the broadcast  and the reduce operations can be 
accomplished with a single MPI call, MPI_ALLREDUCE. 

Now we consider the parallelization of the four different methods to compute 
the matrix-vector  product y -= Ax. Initially the vector x is distributed and the 
result vector y should also be. For the method 2 (use of the full matr ix) ,  blocks 
of rows of the mat r ix  are assigned to each processor (see Fig. 1). The matr ix  
elements are precomputed in parallel. To compute y = Ax, the whole vector 
x is first gathered and broadcast to all processors (MPI_ALLGATHERV) who can 
then independently compute their slices of the result vector y. These slices will 
conform to the distribution of other vectors in the QMR algorithm. 
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Fig. 1. Decomposition of the full coefficient matrix for the matrix-vector product 
among four processors. The distributed vector x is gathered and broadcast to all proces- 
sors. After the local matrix-vector operations the result vector y is distributed between 
the processors. 

In the matrix-vector product 3 (packed form) tile rows each of the three 
packed matr ix blocks are distributed cyclically in order to obtain load balancing. 
In the method 1 (recomputation), rows and columns of the coefficient matr ix  are 
assigned cyclically to each processor so that  it uses the elements from the rows in 
the upper triangular parts of the matr ix blocks and elements from the columns 
in the lower triangular parts. In the methods 1 and 3, the processors each first 
need the whole vector x whereafter each processor computes a partial sum of 
the result vector. In the end the vectors are summed to obtain y which is then 
scattered and distributed among the processors (MPI_REDUCE_SCATTER). 

The method 4, matrix-vector product with the 3D Fourier transform, can 
be parallelized as follows. First the enlarged computational cube is evenly par- 
titioned in the z direction between the processors, i.e. in Nproc slices. In the 
enlarged cube, elements of the original vector x correspond to elements in the 
first octant of the cube. Thus, within QMR this distribution would leave half 
of the processors idle. To ensure load balance, within the QMR algorithm the 
vectors obey another distribution. Some parts of the vectors will be mapped in 
the same processor for both distributions, other require communication. 

Another possibility is to divide the whole computational  cube into 2Nproc 
slices and use the distribution implied by the first octant inside the QMR algo- 
rithm. If the computational  elements are very unevenly distributed within the 
F F T  cube, there can be some load balancing problems for the QMR algorithm. 

Now the matrix-vector product with the F F T  is computed as follows. First lo- 
cal parts of the QMR vector x are mapped to the local parts of the enlarged com- 
putational cube, implying communication. Each processor holds initially blocks 
of x-y planes so that  the cube is sliced in the z direction. 

We parallelized the 3D FFT  using the transpose-based algorithm [2]. The 1D 
FFT ' s  in the x and y directions can be done independently. Then the da ta  is 
transposed so that  each processor holds a number of x-z planes (cube sliced in 
the y direction). Now the 1D FFT 's  in the z direction can be done in parallel. 
Figure 2 clarifies the situation. 
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Fig. 2. Decomposition of the computation cube for the FFT method. In the left figure, 
the 1D FFT's can be done in parallel in the x and y directions. After a transposition, 
the 1D FFT's in the z direction can be done in parallel, too. 

The first row of the coefficient matrix is transformed similarly in the ini- 
tialization phase and left in the transposed position. It can now be multiplied 
by the FFT of x. The inverse Fourier transform is accomplished by an inverse 
FFT in the z direction, transposition and then by inverse FFT ' s  in the x and 
y directions. The actual vector y is gathered from the enlarged computational 
box. 

Our first parallel experiments are run on the SP2 at CSC. The methods 2 
and 3 for computing the Ax did not show much parallel speedup because we 
could not run large enough problems or use enough processors. 

Tables 4 and 5 give the execution times (wall-clock time) for some of the 
largest configurations and for 1 to 4 processors when the matrix elements are 
recomputed and the FFT algorithm is used, respectively. Currently it is difficult 
to get more than 4 processors to a single user in CSC's production environment. 
We also list the execution time for the serial version. Note that there is some 
overhead in the parallel code on one processor that result from copying of data. 

Table 4. Execution times (in elapsed seconds) for the serial code (t~,ri~) and for the 
parallel code on one, two and four processors. The matrix elements are recomputed 
when they are needed 

Size tserial p = 1 p =  2 p = 4 

1064 123 127 64 34 
2320 843 848 427 212 

Our initial parallel version of the code only used the parallel matrix-vector 
product so that the QMR algorithm was run on a single processor. The com- 
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Table 5. Same as Table 4 except the matrix-vector product is computed using the 
FFT algorithm. 

Size $seria! p = 1 p = 2 p = 4 
2320 17 23 17 12 
5232 76 95 61 33 

10048 178 228 142 93 
20336 558 376 237 

putational results were quite similar, indicating that  here one could indeed only 
concentrate on the matrix-vector product. However, when large systems are 
solved on hundreds of processors, the QMR vector operations take a consid- 
erable amount  of time and have thus to be parallelized. Also, the parallelization 
reduces the memory requirements of the master processor. 

6 C o n c l u s i o n  

We have shown how to solve the systems of linear equations arising from integral 
equations of electromagnetic scattering in parallel. The iterative methods QMR 
and the matrix-vector product is parallelized using the MPI library. The most 
important  case is when the matrix-vector product can be computed with a 3D 
FFT.  We showed performance of the serial code on a Cray C90 and on thin and 
wide nodes on an IBM SP2. The Cray gets much closer to its peak performance 
due to better memory bandwidth. On the SP, the performance also depends on 
the memory bandwidth, as shown by the differences of the two node types. 

If the elements of the coefficient matr ix are recomputed each time they are 
needed, the code needs very little memory and parallelizes very well. On the 
other hand, if the matrix-vector product is computed using the F F T  algorithm, 
the speedup is initially not as great. 

The final target system for the scattering code is the Cray T3E. Some of the 
message-passing calls might have to be replaced by shared-memory calls of the 
T3E to get high performance. The use of a vendor-tuned parallel F F T  library 
code will also be examined. 

The parallelization of the solver is fairly straightforward. One can concentrate 
on the computationally important  routines and thus only a small amount  of 
code has to be changed for the parallel implementation. The assortment of high- 
level communication subrout ines  in MPI proved to be very helpful in coding 
the program. We used the routines for gathering a distributed vector to all 
processors, computing the componentwise sum of vectors in different processors 
and simultaneously scattering the vector to the processors, together with the 
routine to add up partial sums and to broadcast the result to all processors. 
Many of the MPI routines can work with vectors of variable size which is very 
useful when the dimensions of the problem are not divisible with the number of 
processors. 
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