
P a r a l l e l S o l u t i o n o f t h e V o l u m e I n t e g r a l
E q u a t i o n o f E l e c t r o m a g n e t i c S c a t t e r i n g

Jussi Rahola 1

Center for Scientific Computing
P.O. Box 405, FIN-02101 Espoo, Finland

A b s t r a c t . Dense linear systems arising from volume integral equations
can be effectively solved with iterative solvers. In this article we show
how these iterative methods can be parallelized. The performance of the
serial code is discussed on a vector system and on a RISC processor.
The performance depends very much on the memory architecture. The
parallel version of the code is written using MPI. We obtain good paral-
lel speedup when the elements of the coefficient matrix are recomputed
during each iteration. The speedup is moderate when a special FFT al-
gorithm is used to compute the matrix-vector product.

1 I n t r o d u c t i o n

Apart from the usual technical applications, electromagnetic scattering can also
be applied to study the scattering of light by dust particles in the atmosphere, in
the solar system and in interstellar dust clouds [9]. These dust particles are often
irregular, inhomogeneous and maybe also anisotropic. To model such scatterers,
a volume integral equation formulation is needed. We have been studying the ef-
ficient solution of dense linear systems arising from the volume integral equation.
Iterative solution methods and special methods for computing the matrix-vector
product have made it possible to solve systems with hundreds of thousands of
unknowns.

Parallel computing is becoming more and more important in achieving high
performance in a cost-effective way. In this article we describe the parallel so-
lution of the systems of linear equations. First, the integral equation formalism
and its discretization are introduced. Iterative solution methods and different
methods to compute the matrix-vector product are considered in Sect. 3. Then
in Sect. 4 the performance of the code is measured on two example architectures.
Section 5 describes the parallel implementation and its performance.

2 I n t e g r a l E q u a t i o n s

The volume integral equation of electromagnetic scattering is given by

E(r) = E~.~(~) + k 3 f(m(r') 2 - 1)G(~, r'). E(r') d%',
J v

(i)

82

where E(r) is the electric field inside the particle, Einc(r) is the incident field, k
is the wave number, m is the complex refractive index, G is the dyadic Green's
function

(V V)
G (r , r ') = 1 + - - ~ g (l r - r ' [) (2)

and
eikr

g (r) - 4~rkr" (3)

This integral equation is a strongly singular one, where special care must be
taken in handling the singularity. To concentrate on the solution methods for
the linear systems, we chose a simple discretization for the integral equation and
computed the singular terms analytically. We also considered a closely related
technique for scattering calculations, the discrete-dipole approximation, where
each computational cell is replaced by a dipole [9].

The simplest discretization of the integral equations uses cubic cells and
assumes that the electric field is constant inside each cube. By requiring that
the integral equation (1) be satisfied at the centers ri of the N cubes and by
using simple one-point integration, we end up with the equation [12, 8]

((,4, 1-(m(ri) 2 - 1) kaM - Ei = E ~ + ~ J=,

j#i

where i = I,..., N, V1 is the volume of the computational box, M is given by

2 M = ~k-~" ((1 - ikb(314rr) 1,3) e ikb(3'' 'O','- 1) , (5)

b is the length of side of the computational box and Ti j is given by

eiPo 2 eiPiJ
TO = ~ (P o + iPO - 1)1 + p--~(-p,~. - 3ipo + 3)i'Oi', j, (6)

P u = k l r~ - r j l .

Here rij -" (ri - ~1.

3 Iterative Met hods and Matrix-vector Products

The computational challenge in our scattering computations is the solution of
a large dense system of linear equations with complex coefficients. For homo-
geneous and isotropic scatterers, the coefficient matrix is complex symmetric.
We have studied the use of iterative methods in this setting [14] and found that
the complex symmetric version of QMR [3] performs very well. We also tested
the block version of QMR [1] but the computational benefit from this method
is limited for the refractive indices used in our simulations.

83

Most of the time the iterative methods converge so quickly that there is no
need for preconditioning. It also seems that the possible benefit from precondi-
tioning is limited. We tried for example the approximate inverse preconditioning
but it did not sufficiently reduce the number of iterations to warrant for the
extra work. For high values of the refractive index the convergence slows down
and then preconditioning becomes an important issue.

An iterative solver (namely a Krylov space method) consists of four basic
operations: a vector update (saxpy), a dot product, the matrix-vector product
and the application of the preconditioner. When we are solving a dense system
of linear equation without preconditioning, the matrix-vector product takes by
far the most CPU time in the computations.

In our production code, the matrix-vector product can be computed using
four methods:

1. The matr ix elements can be recomputed each time they are referenced. This
method needs very little storage.

2. The matr ix can be precomputed and stored. The matrix-vector product is
computed efficiently using a BLAS routine. This method quickly exceeds the
memory size of the machine.

3. Using the symmetry of the matrix, the matrix can be stored in packed form
that takes one third of the space required for the full matrix.

4. A special F F T algorithm can be used.

Let the scatterer consist of N computational cells. The system of linear equa-
tions has 3N equations because the x, y and z components of the electric fields
are considered. Correspondingly, the matrix has the following block structure:

[A l l A12 A13
A---- |A21 A22 A231 �9 (7)

\A31 A32 A33]

All the 9 N x N blocks are symmetric: AT= Aij. Furthermore, A T -- Aji. Thus
the whole information is stored in the upper triangular parts of the blocks All ,
A22, A33, A12, A13 and A23.

When the computational domain is enlarged to a homogeneous cube, the
matrix-vector product reduces to a 3D-convolution that can efficiently be com-
puted with the F F T [4]. The use of F F T is plausible when the scatterer can be
modeled with densely packed cubic cells.

In the F F T algorithm, the computational domain is enlarged to a cubic lattiCe
containing the scatterer. The computational cells of the scatterer are assumed to
sit on the regular cubic lattice. When the scatterer consists of N computat ional
cells, let the enlarged lattice contain Nc cells. The cubic lattice has to be doubled
in each direction to get a 3D convolution.

The matrix-vector product y = Ax can be computed by taking the F F T
of the first row of the coefficient matrix, multiplying this by the F F T of the
vector x, and then recovering y by the inverse FFT. Note that here both x and
y together with the first row of A are considered as values on the enlarged and

84

doubled cubic lattice. Also the block structure of the coefficient matrix is taken
into account.

One can also exploit the symmetry in the FFT calculations: only 6 of the 9
blocks of the coefficient matrix have to be stored. Thus the storage requirements
for x and y in the enlarged lattice is 24Nc 2 and for the row of the coefficient
matrix is 48N~ double precision complex numbers.

We have also considered the use of another special technique, the fast mul-
tipole method (FMM) [5] to compute the matrix-vector product. However, this
has not been incorporated into the production code. The fast multipole method
is a method for computing the pairwise interactions of a large number of parti-
cles by using truncated potential expansions. The centers of the expansions have
to be translated during the FMM algorithm.

In the electromagnetic scattering case the translation becomes very expensive
as the potential expansions involve many special functions and the translation
involves a multiple summation. Using the so called diagonal translation opera-
tors [15] the potentials are represented in Fourier space where the translation
is equivalent to point-wise multiplication and the potential can be recovered by
numerical integration. We gave a simplified derivation of the diagonal translation
operators and also derived error bounds for the FMM algorithm that take into
account the truncation error of the potential expansions together with the error
from the numerical integration [13]. The FMM algorithm involves fairly compli-
cated data structures and communication patterns and thus special care has to
be taken to ensure load balancing and data locality in the parallel implemen-
tation [11]. The FMM is perhaps better suited to the surface integral equation
formulation of scattering where the FFT cannot be used.

4 S i n g l e N o d e P e r f o r m a n c e

In the rest of the article we will consider spherical particles of various sizes
where the side length of the computational cell is kept at 0.3 (the wave number
is assumed to be 1). In all the experiments, the refractive index is 1.6 -4- 0.05i.
The code uses double precision throughout.

The integral equation solver is currently implemented for a Cray C94 vec-
tor computer and for an IBM SP2 distributed memory parallel computer at the
Center for Scientific Computing (CSC). The SP equipment consists of both the
so-called thin and wide nodes. The thin nodes are allocated for parallel comput-
ing. In the future the code will be ported to the Cray T3E parallel computer
that will be installed at CSC during the summer of 1996.

The code is written using the Fortran 90 programming language. The matrix-
vector products and the Fourier transforms are computed using optimized sub-
routines in the Cray and IBM mathematical libraries. We are working with a
single source code which contains cpp preprocessor directives. Serial and parallel
versions for the Cray and IBM are created on compile time.

Table 1 shows the execution times and MFLOPS rates on a single processor
of the Cray C94 for several problem sizes. Note that the execution time is given

85

for a single solve of the system of linear equations. In the actual production code
the system of linear equations has to be solved twice, once for each incident
polarization state. Table 2 shows the same information for a single thin node
processor of the IBM SP2. The theoretical peak MFLOPS rates are 952 for the
Cray C94 and 264 for the SP2 processor.

Table 1. The performance of the scattering code on a single processor of the Cray C94.
The first column gives the number of computational cells in the scatterer, the second
column gives the number of iterations for the QMR solver. Note that the number
of equations is three times the number of computational cells. The CPU times t (in
seconds) and MFLOPS rates r M F are reported for four methods of computing the
matrix-vector products At (1--recomputation of the matrix entries, 2--use of the full
matrix, 3=use of the packed matrix, 4=FFT algorithm). A dash indicates that the
problem could not be run due to insufficient memory

Size Iterations
32 8 0.12 22

136 11 0.11 182
304 12 0:75 233

1064 16 7.4 425
2330 20 39 461

A t = i A t = 2

t 7"MF t I 'MF t

0.004 17[
0.02 150
0.09 376
1.5 664

A t = 3 A t = 4
rMF t r M F

0.006 15 0.08 23
0.05 128 '0.2 57
O.3 2O8 0.3 81
3.5 360 1.2 132

37 282 2.2 203

Table 2. Same as Table 1 but for the IBM SP2 thin node processor.

At = l A t = 2 A t = 3 A t = 4
Size Iterations t rMF t FMF t rMF t rMF

32 8 0.03 41 0.01 37 0.01 40 0.07 29
136 11 0.88 48 0.17 49 0.43 33 0.33 30
304 12 4.9 49 0.89 39 2.95 27 1.1 35

1064 16 117 34 -- -- 4.2 35

Table 3 gives the performance of the code using the FFT algorithm for the
Cray and for the SP2 thin and wide node processors. The MFLOPS numbers
are acquired from the hpm command on the Cray and from the rs2hpm tool
developed by Jussi Miiki for the IBM SP2 [10].

For large problems the performance of a wide node is almost double the
performance of a thin node because of the improved memory bandwidth of the
wide nodes. In the Cray implementation the arrays holding the FFT data were
enlarged by one position in each dimension in order to avoid memory bank

86

Table 3. Performance on a single CPU of the Cray C90 and on a thin and wide node
of the SP2 for large problems when the matrix-vector product is computed with the
FFT algorithm.

Size Iterations
2320 20
5232 29

10048 38
20336 65

137376 264

Cray
t rMF
2.2 203
9 319

18 381
60 418

1233 446

IBM thin node
t rMF

IBM wide node
t rMF

II 47
34 77
98 76

270 82

17 32
75 35

176 42
541 41

conflicts. For large problems this improved the performance of the code by a
factor of three.

5 P a r a l l e l i z a t i o n

As almost all computat ional work in the scattering calculations goes into the
solution of the systems of linear equations, we concentrate on the parallelization
of the iterative solver. The pre- and postprocessing stages can be executed on
one processor only. Because in a typical scattering calculation many orientational
averages are taken, the calculation could trivially be parallelized by calculating
each orientational average independently in different processors. Here we are
aiming at the solution of large scattering problems for which a truly parallel
solver is necessary. A parallel solver for the discrete-dipole approximation was
also given in [6, 7].

The scattering code is parallelized using the MPI (Message Passing Interface)
communicat ion library. More exactly, the MPICH implementat ion from Argonne
National Laboratory is used.

All the vectors in the parallel version of the QMR iterative solver are dis-
t r ibuted across the processors. Tile vector update (x = x + ay) can be done
totally indenpendently. To compute dot products, each processor computes a
partial sum, broadcasts this value to all other processors who can then compute
the global sum. In the code the broadcast and the reduce operations can be
accomplished with a single MPI call, MPI_ALLREDUCE.

Now we consider the parallelization of the four different methods to compute
the matrix-vector product y -= Ax. Initially the vector x is distributed and the
result vector y should also be. For the method 2 (use of the full matr ix) , blocks
of rows of the mat r ix are assigned to each processor (see Fig. 1). The matr ix
elements are precomputed in parallel. To compute y = Ax, the whole vector
x is first gathered and broadcast to all processors (MPI_ALLGATHERV) who can
then independently compute their slices of the result vector y. These slices will
conform to the distribution of other vectors in the QMR algorithm.

87

A

li!!i!i!i!iii!iii!iiii!iiiii!iiiiiiiiiiiiiiiiiiiiiiiiii!iiiiill

P4

x y

P2
, D

P3

P4

All
processors

Fig. 1. Decomposition of the full coefficient matrix for the matrix-vector product
among four processors. The distributed vector x is gathered and broadcast to all proces-
sors. After the local matrix-vector operations the result vector y is distributed between
the processors.

In the matrix-vector product 3 (packed form) tile rows each of the three
packed matr ix blocks are distributed cyclically in order to obtain load balancing.
In the method 1 (recomputation), rows and columns of the coefficient matr ix are
assigned cyclically to each processor so that it uses the elements from the rows in
the upper triangular parts of the matr ix blocks and elements from the columns
in the lower triangular parts. In the methods 1 and 3, the processors each first
need the whole vector x whereafter each processor computes a partial sum of
the result vector. In the end the vectors are summed to obtain y which is then
scattered and distributed among the processors (MPI_REDUCE_SCATTER).

The method 4, matrix-vector product with the 3D Fourier transform, can
be parallelized as follows. First the enlarged computational cube is evenly par-
titioned in the z direction between the processors, i.e. in Nproc slices. In the
enlarged cube, elements of the original vector x correspond to elements in the
first octant of the cube. Thus, within QMR this distribution would leave half
of the processors idle. To ensure load balance, within the QMR algorithm the
vectors obey another distribution. Some parts of the vectors will be mapped in
the same processor for both distributions, other require communication.

Another possibility is to divide the whole computational cube into 2Nproc
slices and use the distribution implied by the first octant inside the QMR algo-
rithm. If the computational elements are very unevenly distributed within the
F F T cube, there can be some load balancing problems for the QMR algorithm.

Now the matrix-vector product with the F F T is computed as follows. First lo-
cal parts of the QMR vector x are mapped to the local parts of the enlarged com-
putational cube, implying communication. Each processor holds initially blocks
of x-y planes so that the cube is sliced in the z direction.

We parallelized the 3D FFT using the transpose-based algorithm [2]. The 1D
FFT ' s in the x and y directions can be done independently. Then the da ta is
transposed so that each processor holds a number of x-z planes (cube sliced in
the y direction). Now the 1D FFT 's in the z direction can be done in parallel.
Figure 2 clarifies the situation.

X Ii!!iiii!i!!iiiiiiiii!i!i iiiiiiiiiiiiililili ili iii ii
P1

y

Transpose
P1 P2 P3 P4

88

Fig. 2. Decomposition of the computation cube for the FFT method. In the left figure,
the 1D FFT's can be done in parallel in the x and y directions. After a transposition,
the 1D FFT's in the z direction can be done in parallel, too.

The first row of the coefficient matrix is transformed similarly in the ini-
tialization phase and left in the transposed position. It can now be multiplied
by the FFT of x. The inverse Fourier transform is accomplished by an inverse
FFT in the z direction, transposition and then by inverse FFT ' s in the x and
y directions. The actual vector y is gathered from the enlarged computational
box.

Our first parallel experiments are run on the SP2 at CSC. The methods 2
and 3 for computing the Ax did not show much parallel speedup because we
could not run large enough problems or use enough processors.

Tables 4 and 5 give the execution times (wall-clock time) for some of the
largest configurations and for 1 to 4 processors when the matrix elements are
recomputed and the FFT algorithm is used, respectively. Currently it is difficult
to get more than 4 processors to a single user in CSC's production environment.
We also list the execution time for the serial version. Note that there is some
overhead in the parallel code on one processor that result from copying of data.

Table 4. Execution times (in elapsed seconds) for the serial code (t~,ri~) and for the
parallel code on one, two and four processors. The matrix elements are recomputed
when they are needed

Size tserial p = 1 p = 2 p = 4

1064 123 127 64 34
2320 843 848 427 212

Our initial parallel version of the code only used the parallel matrix-vector
product so that the QMR algorithm was run on a single processor. The com-

89

Table 5. Same as Table 4 except the matrix-vector product is computed using the
FFT algorithm.

Size $seria! p = 1 p = 2 p = 4
2320 17 23 17 12
5232 76 95 61 33

10048 178 228 142 93
20336 558 376 237

putational results were quite similar, indicating that here one could indeed only
concentrate on the matrix-vector product. However, when large systems are
solved on hundreds of processors, the QMR vector operations take a consid-
erable amount of time and have thus to be parallelized. Also, the parallelization
reduces the memory requirements of the master processor.

6 C o n c l u s i o n

We have shown how to solve the systems of linear equations arising from integral
equations of electromagnetic scattering in parallel. The iterative methods QMR
and the matrix-vector product is parallelized using the MPI library. The most
important case is when the matrix-vector product can be computed with a 3D
FFT. We showed performance of the serial code on a Cray C90 and on thin and
wide nodes on an IBM SP2. The Cray gets much closer to its peak performance
due to better memory bandwidth. On the SP, the performance also depends on
the memory bandwidth, as shown by the differences of the two node types.

If the elements of the coefficient matr ix are recomputed each time they are
needed, the code needs very little memory and parallelizes very well. On the
other hand, if the matrix-vector product is computed using the F F T algorithm,
the speedup is initially not as great.

The final target system for the scattering code is the Cray T3E. Some of the
message-passing calls might have to be replaced by shared-memory calls of the
T3E to get high performance. The use of a vendor-tuned parallel F F T library
code will also be examined.

The parallelization of the solver is fairly straightforward. One can concentrate
on the computationally important routines and thus only a small amount of
code has to be changed for the parallel implementation. The assortment of high-
level communication subrout ines in MPI proved to be very helpful in coding
the program. We used the routines for gathering a distributed vector to all
processors, computing the componentwise sum of vectors in different processors
and simultaneously scattering the vector to the processors, together with the
routine to add up partial sums and to broadcast the result to all processors.
Many of the MPI routines can work with vectors of variable size which is very
useful when the dimensions of the problem are not divisible with the number of
processors.

90

R e f e r e n c e s

1. W. E. Boyse and A. A. Seidl. A block QMR method for computing multiple si-
multaneous solutions to complex symmetric systems. SIAM J. Sci. Comput. 17,
263-274, 1996.

2. Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, Reading,
Massachusetts, 1995.

3. R. W. Freund. Conjugate gradient-type methods for linear systems with complex
symmetric coefficient matrices. SIAM J. Sci. Star. Comput. 18, 425-448, 1992.

4. J . J . Goodman, B.T. Draine, and P.J . Flatau. Application of fast-Fourier-
transform techniques to the discrete-dipole approximation. Optics Letters 16,
1198-1200, 1991.

5. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp.
Phys. 73, 325-348, 1987.

6. A. Hoekstra. Computer Simulations of Elastic Light Scattering, Implementation
and Applications. PhD thesis, University of Amsterdam, 1994.

7. A. G. Hoekstra and P. M. A. Sloot. Coupled dipole simulations of elastic light
scattering on parallel systems. Int. J. Modern Phys. C 6,663-679, 1995.

8. A. Lakhtakia and G. W. Mulholland. On two numerical techniques for light scat-
tering by dielectric agglomerated structures. J. Res. Natl. Inst. Stand. Technol.
98, No. 6, 699-716, 1993.

9. K. Lumme and J. Rahola. Light scattering by porous dust particles in the discrete-
dipole approximation. Astrophys. J. 425,653-667, 1994.

10. J. Ms Power2 hardware performance monitor tools, http://www.csc.fi/~jmaki/-
rs2hpm.html.

11. J. Pal Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load balancing and
data locality in adaptive hierarchical N-body methods: Barnes-Hut, fast multipole
and radiosity. J. Parallel Distr. Comput. 27, 118-141, 1995.

12. J. Rahola. Solution of dense systems of linear equations in electromagnetic scat-
tering calculations. Licenciate's thesis, Helsinki University of Technology, 1994.

13. J. Rahola. Diagonal forms of the translation operators in the fast multipole algo-
rithm for scattering problems. BIT 36, 333-358, 1996.

14. J. Rahola. Solution of dense systems of linear equations in the discrete-dipole
approximation. SIAM J. Sci. Comput. 17, 78-89, 1996.

15. V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in
three dimensions. Applied and Comptltational Harmonic Analysis 1, 82-93, 1993.

