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A b s t r a c t .  In this article, a fully scalable parallel algorithm is pre- 
sented for solving symmetric tridiagonal eigenvalue problems using quasi- 
Laguerre's method. The algorithm is implemented using PVM and tested 
on a variety of matrices with a load balancing scheme. Test results show 
that the algorithm has high parallel efficiency. Compared with other ex- 
isting algorithms, our algorithm seems to be the best for distributed 
memory parallel architecture. 

1 Introduction 

Let T be a symmetric tridiagonal matr ix  of the form 

T = [fli-1, ai,  ~i] (1) 

where fl~ r 0 for i = 1 , . . . , n  - 1. The eigenvalues of T are the roots of the 
characteristic polynomial 

f ( A )  = d e t ( T  - A I ) .  (2) 

Laguerre's iteration for finding all the eigenvalues of T was first studied 
in [7], demonstrating clear advantages over other existing algorithms for the 
same problem. A parallel version of the algorithm was reported in [6]. Later, 
quasi-Laguerre's algorithm was established in [3] and gained more speedup over 
Laguerre's iteration. In this paper, we shall present the parallel version of the 
quasi-Laguerre's iteration for solving all roots of f(A) in (2). The algorithm, 
including a load balancing scheme, is implemented using PVM(Parallel Virtual 
Machine [4]) on a cluster of workstations. Numerical results on a substantial 
variety of matrices show that our algorithm is faster than the bisection/multi- 
section method(DSTEBZ in LAPACK [1]) under any circumstances and is faster 
than the root free QP~ (DSTERF in LAPACK) when four or more processors are 
available. 

* The research was supported in part by NSF under Grant DMS-9504953 and a 
Guggenheim Fellowship. 
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2 The quasi-Laguerre's iteration formula 

Let f (x )  be a polynomial with only real roots�9 Assume x0 and xl are two real 
points with no root of f ( x )  between them�9 Let qi = f ' ( x i ) / f ( x i ) ,  for i = 0, 1. 
Then the quasi-Laguerre's iteration formula [9] with multiplicity index m is given 
by 

_ _  
QL• - x0 + x l  + 4 (3) 

2 • + S2 ' 

w h e r e  ~ q  - -  q l  - qo, A x  ---- X l  - -  xo  a n d  S = qoqz + n~-~=. 
The quasi-Laguerre's iterative method converges monotonically and globally 

with super-linear convergence rate if the polynomial has only real roots and 
the multiplicity index matches the multiplicity of the root [2] [9]�9 A multiplicity 
estimation formula is introduced in [9] to approximate the multiplicity of the 
nearest root and to accelerate the convergence of the iteration. 

3 The Split Merge algorithm 

Let A1 < A2 < .- .  < An be the zeros of f in (2). To use our quasi-Laguerre's 
iteration to approximate any Ai, i = 1, 2 , . . . ,  n, it is essential to find a pair of 
starting points x(0) and x(1), with no Aj's lying between them�9 For this purpose, 
we split T into ( 0o) 
where 

= 

�9 " �9 i l k -  1 

, T ~ =  J f l k  + l ' �9 "�9 �9 

�9 . .  " . .  t ~ n _  1 

~ n - 1  O~n / 

(5) 

Obviously, the eigenvalues of 2b consist of eigenvalues of To and T1. Without  
loss of generality, we may assume /3i > 0, for all i -- 1, 2 , . . . ,  n - 1 [7]. The 
following interlacing property [5, Theorem 8.6.2, p462] for this rank-one tearing 
is important  to our algorithm�9 

T h e o r e m l .  Let Az < A2 < . . .  < An and ii <_ i2 <_ " "  <_ An be eigenvalues of 
T and T respectively�9 Then 

i~ < AI < i2 < A2 < . . .  < i. < A. < i.+i (6) 

with the convention in+z = i~ + 2j3k. 
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The eigenvalues of T in (4) consist of eigenvalues of To and T1 in (5). To 
find eigenvalues of To and Ti, the split process described above may be applied 
again. Indeed, the splitting process can be applied to T recursively until 2 • 2 
and 1 • 1 matrices are reached. 

To merge, we use eigenvalues of T to approximate eigenvalues of T by us- 
ing quasi-Laguerre's iteration. Interlacing in (6) provides good information for 
picking two valid initial points for the quasi-Laguerre's iteration. 

4 T h e  p a r a l l e l  q u a s i - L a g u e r r e ' s  m e t h o d  

We implemented the parallel quasi-Laguerre's algorithm using PVM with a mas- 
ter and slave program. The master program divides the spectrum into small 
chunks, 1: n_l, (n_l § 1): n_2, . . . ,  (n_k + 1): n, where i :  j denotes the eigen- 
values from number i to number j .  Then the master spawns the slave process to 
all available machines that form the PVM machine, and sends out information 
to the slaves. The information sent to the slaves includes the matrix order, the 
diagonal and off diagonal entries of the symmetric tridiagonal matrix, starting 
numbers and ending numbers of eigenvalue chunks, and some other administra- 
tive information such as parent process ID and slave process IDs and so on. The 
master program also serves as an administrator that is excluded from computa- 
tion and also processes other jobs that  has to be done sequentially. So we don't 
spawn slave process onto the machine on which the master process is running. 

The slave program spawned by the master program receives data  and 'in- 
structions' sent by the master program and calls split-merge Quasi-Laguerre's 
subroutine to find the respective eigenvalues of the matrix, then sends the re- 
sults back to the master program, and wait for another chunk of eigenvalues to 
compute until an exit instruction is received. 

For a slave process to compute the eigenvalue chunk i : j ,  it follows the 
following steps. 

(1). Compute the Gershgorin circle(interval) [Ib, ub] that contains all the 
eigenvalue of T. 

(2). Use bisection on interval [Ib, ub] and Sturm sequence to find a best inter- 
val [a~, bj] that  contains the i th to jth eigenvalue(s) of T. We consider an interval 
'best' in the following sense: for well separated eigenvalues, [ai, bj] contains the 
i th to j~h eigenvalue of T only; in case of a cluster, [ai, bj] is the smallest interval 
within the error tolerance that contains the i th to jth eigenvalue of T. 

(3). Split the matrix level by level, as described in section 3, until one by one 
or two by two matrices are obtained. 

(4). Starting from the bottom level of the tree, find the eigenvalue(s) in [hi, bj] 
of each 1 • 1 or 2 • 2 matrix. Then use the quasi-Laguerre's method to compute 
the eigenvalue(s) in [hi, b] of the matrices in the second level (from bottom up), 
and then the third level, and so on until the top level that  is the matrix T. 

During this procedure, no processor needs to communicate with other proces- 
sors to exchange information, therefore it constitutes a fully parallel and scalable 
algorithm. 
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5 T e s t i n g  m a t r i c e s  

We used the following matrices to test our parallel code. 

Type 1. Toeplitz matrices [b, a, hi. 
Type 
Type 
Type 
Type 
Type 
Type 

2. al  = a - b ,  ai = a  for 2 < i < n - l , o ~ n  =a--kb .~ j  =b ,  l <_j < n - 1 .  
3. ai = a for i odd, ai --- b for i even. fli = 1. 

5 . . ~  = - [ ( 2 i  - 1)(n - 1) - 2(i  - 1)2], Z~ = i ( u  - i ) .  
6. Wilkinson matrices W +.  (see [8]) 
7. Random matrices. (~i's and fli's are generated by a random number gen- 

erator. 

6 L o a d  b a l a n c i n g  

For a PVM machine that  is composed of a cluster of general purpose shared 
workstations interconnected by Ethernet cable or FDDI cable, load balancing 
seems inevitable. 

Here are two experimental results that exhibit the uneven computation time 
among the processors due to the shared environment and heterogeneous environ- 
ment. The first experiment was done on six DEC Alpha workstations(one master 
and five slaves) in a shared environment, that  is, all the processes that  compute 
the eigenvalues of a matr ix must share CPU with other CPU-intensive processes 
(mostly from other users). The second experiment was done in a heterogeneous 
environment, six DEC Alpha-s and two SUN Sparcl0s(one Alpha machine served 
as the master and all other 7 machines served as slaves). The CPU clock speeds 
for the DEC Alpha workstations (model 3000/400) and SPARC10 workstations 
used for the experiment are 133MHz and 33MHz, respectively. 

In a shared environment, it is somewhat difficult to reproduce an experiment 
since other user's processes come and go randomly. To make the comparison 
more meaningful, both experiments were conducted during a reserved t ime pe- 
riod while no other user can get onto the system. In the first experiment, a shared 
environment is created by creating two CPU-intensive jobs(called dummy pro- 
cesses) on one of the slave machines, then run the parallel quasi-Laguerre pro- 
gram on the PVM machine. One of the slaves must share CPU with the other 
two dummy processes that  are running on the same host, hence it gets only 1/3 
of the CPU access. Both experiments compute M1 the eigenvMues of a 5000 by 
5000 type 4 matrix. The time of each slave without load balancing is plotted in 
Figure 1 and Figure 2. 

The following ideas are implemented in designing the load balancing scheme 
for our parallel quasi-Laguerre method. 

- Create uneven loads so that earlier distributed load has slightly large chunk 
size than later distributed loads. This method has an effect of balancing the 
job as a whole. Also the process which gets the last job won't take too long 
to finish since the last job is the smallest in chunk size. 
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Fig. 1. Before load balancing in shared environment, other CPU intensive jobs are 
running on PE # 2 also. Left: Execution time of each Alpha workstation on type 4 
matrix of size 5000. Right: Number of eigenvalues computed by each Alpha workstation. 
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F ig .  2. Before load balancing in Heterogeneous environment, PE ~ #  1-5 are Alpha 
workstations, PE # #  6-7 are SUN Sparcl0s. Left: Execution time of each worksta- 
tion on type 4 matr ix  of size 5000. Right: Number of eigenvalues computed by each 
workstation 

- Create more subtasks than the number  of available host machines so that  
faster processes can finish more jobs. 

- Spawn more process to each host to gain more CPU favor. 
- Reset process priority level to a lower level for courtesy of the actual work- 

stat ion owners. Lower process priority number means less CPU access, hence 
less intrusion to the actual workstation owners. 

Our algori thm incorporated all of the above features, and the user can control the 
si tuation by choosing appropriate  parameter  values to run the program. We only 
discuss the first two items here, create more and uneven loads, since the other two 
items are more situation dependent. We used two parameters,  n_rounds(number 
of rounds to distribute the subtasks) and diff_size(chunk size difference between 
successive processes), to determine how many rounds (each round has n_hosts 
subtasks) of subtasks to create and how much difference in chunk size between 
the successive chunks. First of all, the total  number of eigenvalues is split into 
nearly equal chunks(with difference of at most  one), then use the value n_rounds 
to further divide the chunks into smaller ones and use the value of diff_size to 
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Fig. 3. After load balancing in shared environment, other jobs are running on PE # 
2 also. Left: Execution time of each workstation on type 4 matrix of size 5000. Right: 
Number of eigenvalues computed by each Alpha workstation. 

create difference among the chunk sizes. In this way, a job queue is established 
with chunk sizes in descending order. The rest of the program distributes the 
chunks from this queue to the slave processes until the queue is empty.  

Since the whole job is divided into many  small chunks to create more and 
smaller subtasks, each job takes less t ime to finish and the processors that  finish 
earlier can get more subtasks to process. As a whole, every host contributes and 
the hosts that  have less load(from other users) or faster CPU speed contribute 
more. Hence, an overall balanced t iming distribution is achieved. The experiment 
results with this load balancing scheme is plotted in Figures 3 and 4. Notice that  
t ime(in seconds) spent on computing is balanced among the part icipat ing pro- 
cesses while the number of eigenvalues computed by each host becomes different. 

Experiments showed that  more subtasks create more overheads. In a homo- 
geneous environment,  uniform subdivision works slightly better  than  the nonuni- 
form subdivision method.  But in a heterogeneous environment or a shared plat-  
form, this load balancing scheme demonstrates a great advantage. 
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Fig. 4. After load balancing in Heterogeneous environment, PE # #  1-5 are Alpha 
workstations, PE # #  6-7 are SUN Sparcl0s. Left: Execution time of each worksta- 
tion on type 4 matrix of size 5000. Right: Number of eigenvalues computed by each 
workstation. 
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7 C o m p a r i s o n  w i t h  p a r a l l e l  b i s e c t i o n  a n d  s e q u e n t i a l  r o o t  

f r e e  Q R  

We tested type 1 to 7 matrices of order 5000 on six DEC Alpha workstations. 
We run the parallel program(quasi-Laguerre and bisection) on different number 
of host machines to compute all the eigenvalues of the seven types of matrices 
of order 5000. We also run the root free QR program from LAPACK. The total 
time for each run is recorded and the results are plotted in Figure 5. Root free 
QR method could not take advantage of all availabZe machines. For matrices of 
types 1-5, our parallel quasi-Laguerre's algorithm beats root free QK with three 
or more machines, whereas for type 6 matrix and type 7 matrix we need four 
and five machines respectively to lead in speed. In all cases, the quasi-Laguerre's 
iteration outperforms bisection method. 

.E_ 
I - -  

800 

700 

600 

500 

400 

300 

200 

100 

0 

Type I matrix 
, , , , , 

~ k  B/M --,,---- 
NQL :::::: 

~ - . : : : r , - - - m . . ~ a : :  . . . . . . . . . .  -D . . . . . . . . .  a 

i = ~ . . . . . . . .  1 . . . . . . . .  " i  

1 2 3 4 5 
Number of PEs 

800 

700 

600 

~, 500 

400 

E 300 

2O0 

100 

0 

Type 2 matrix 
, , , , , 

RIM -,,---- - 
" ,  NQL -~--- 

1 2 3 4 5 6 
Number of PEs 

.e 
p -  

800 

700 

600 

3OO 

2OO 

100 

0 

Type 3 matrix 

B/M --*,-- 
NQL : : : : :  

1 2 3 4 5 
Number of PEs 

800 

700 

600 

~- 400 

E 300 

2OO 

100 

Type 4 matdx 

' ~  ' ' ' B/M' - '-~, 
\ NQL --~--- 

, , "", ........ 1- ........ 1" 
1 2 3 4 5 6 

Number of PEs 

References  

I. E. ANDERSON, Z. BAI, C. BISCHOF, J. DEIVIMEL, J .  DONGARRA, J. Du CROZ, A. 
GREENBAUM, S. HAMMARLINO, A. McKENNEY, S. OSTROUCHOV, and D. SOREN- 
SON, LAPACK User's Guide, S I A M ,  P h i l a d e l p h i a ,  1992 .  



51 

W- 

8OO 

700 

600 

500 

400 

300 

200 

100 

0 
0 

Type 5 matrix 

B/M --*-- 
\ NQL -~---. 

+-... 

= i ~ | . . . .  l 

1 2 3 4 5 
Number of PEs 

8O 

70 

60 

--v. 50 

~ 30 

20 

10 

0 

800 

700 1 

600 1 

"~ 500 
r "~ 400 

300 

2OO 

IO0 

0 
6 0 

Type 7 matrix 

B/M --*--. 
NQL -§ 
RQR .a ..... 

1 2 3 4 5 
Number of PEs 

Type 6 matrix 

B/M 
NQL ...... 
RQR .-o ..... 

?§ . . . . . . . . . . . . . . . . . . . .  ~ - -r  ? 

l 2 3 4 5 
Number of PEs 

Fig .  5. Comparison between bisection - B/M, quasi-Laguerre - NQL, and root free 
QR - RFQR, on seven types of matrices of order 5000 

2. Q. Du, M. JIN, T. Y. LI AND Z. Z E N G ,  The Quasi-Laguerre iteration, to appear: 
Math. Comp. 

3. Q. Du, M. JIN, T.Y. L[ AND Z. ZENG Quasi-Laguerre iteration in solving symmetric 
tridiagonal eigenvalue problems, to appear: SIAM J. Sci. Comput.  

4. A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG, R. MANCHEK, V. SUNDERAM, 
PVM 3 User's Guide and Reference Manual, September, 1994. 

5. G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd Ed., The Johns 
Hopkins University Press, Baltimore, MD, 1989. 

6. C. TREFFTZ, P. McKINLEY, T. Y. LI, AND Z. ZENG, A scalable eigenvalue solver 
for symmetric tridiagonal matrices, Parallel Computing, 21(1995), pp. 1213-1240. 

7. T. Y. LI AND Z.  Z E N G ,  Laguerre's iteration in solving the symmetric tridiagonal 
eigenproblem - -  revisited, SIAM J. Sci. Comput. ,  Vol. 15, No. 5 (1994), pp. 1145- 
1173. 

8. J. H. W I L K I N S O N ,  The Algebraic Eigenvalue Problem, Oxford University Press, Ox- 
ford, 1965. 

9. X. Zou, Quasi-Laguerre's method and its parallel implementation on solving sym- 
metric tridiagonal eigenvalue problems, Ph.D thesis, Michigan State University, 
1995. 


