
Implementing the Parallel Quasi-Laguerre's
Algorithm for Symmetric Tridiagonal

Eigenproblems

T. Y. Li 1. and Xiulin Zou 2

1 Department of Mathematics, Michigan State University, E. Lansing, MI48824, USA
2 Department of Math. Sciences, Oakland University, Rochester, MI 48309, USA

A b s t r a c t . In this article, a fully scalable parallel algorithm is pre-
sented for solving symmetric tridiagonal eigenvalue problems using quasi-
Laguerre's method. The algorithm is implemented using PVM and tested
on a variety of matrices with a load balancing scheme. Test results show
that the algorithm has high parallel efficiency. Compared with other ex-
isting algorithms, our algorithm seems to be the best for distributed
memory parallel architecture.

1 Introduction

Let T be a symmetric tridiagonal matr ix of the form

T = [fli-1, ai, ~i] (1)

where fl~ r 0 for i = 1 , . . . , n - 1. The eigenvalues of T are the roots of the
characteristic polynomial

f (A) = d e t (T - A I) . (2)

Laguerre's iteration for finding all the eigenvalues of T was first studied
in [7], demonstrating clear advantages over other existing algorithms for the
same problem. A parallel version of the algorithm was reported in [6]. Later,
quasi-Laguerre's algorithm was established in [3] and gained more speedup over
Laguerre's iteration. In this paper, we shall present the parallel version of the
quasi-Laguerre's iteration for solving all roots of f(A) in (2). The algorithm,
including a load balancing scheme, is implemented using PVM(Parallel Virtual
Machine [4]) on a cluster of workstations. Numerical results on a substantial
variety of matrices show that our algorithm is faster than the bisection/multi-
section method(DSTEBZ in LAPACK [1]) under any circumstances and is faster
than the root free QP~ (DSTERF in LAPACK) when four or more processors are
available.

* The research was supported in part by NSF under Grant DMS-9504953 and a
Guggenheim Fellowship.

45

2 The quasi-Laguerre's iteration formula

Let f (x) be a polynomial with only real roots�9 Assume x0 and xl are two real
points with no root of f (x) between them�9 Let qi = f ' (x i) / f (x i) , for i = 0, 1.
Then the quasi-Laguerre's iteration formula [9] with multiplicity index m is given
by

_ _
QL• - x0 + x l + 4 (3)

2 • + S2 '

w h e r e ~ q - - q l - qo, A x ---- X l - - xo a n d S = qoqz + n~-~=.
The quasi-Laguerre's iterative method converges monotonically and globally

with super-linear convergence rate if the polynomial has only real roots and
the multiplicity index matches the multiplicity of the root [2] [9]�9 A multiplicity
estimation formula is introduced in [9] to approximate the multiplicity of the
nearest root and to accelerate the convergence of the iteration.

3 The Split Merge algorithm

Let A1 < A2 < .- . < An be the zeros of f in (2). To use our quasi-Laguerre's
iteration to approximate any Ai, i = 1, 2 , . . . , n, it is essential to find a pair of
starting points x(0) and x(1), with no Aj's lying between them�9 For this purpose,
we split T into (0o)
where

=

�9 " �9 i l k - 1

, T ~ = J f l k + l ' �9 "�9 �9

�9 . . " . . t ~ n _ 1

~ n - 1 O~n /

(5)

Obviously, the eigenvalues of 2b consist of eigenvalues of To and T1. Without
loss of generality, we may assume /3i > 0, for all i -- 1, 2 , . . . , n - 1 [7]. The
following interlacing property [5, Theorem 8.6.2, p462] for this rank-one tearing
is important to our algorithm�9

T h e o r e m l . Let Az < A2 < . . . < An and ii <_ i2 <_ " " <_ An be eigenvalues of
T and T respectively�9 Then

i~ < AI < i2 < A2 < . . . < i. < A. < i.+i (6)

with the convention in+z = i~ + 2j3k.

46

The eigenvalues of T in (4) consist of eigenvalues of To and T1 in (5). To
find eigenvalues of To and Ti, the split process described above may be applied
again. Indeed, the splitting process can be applied to T recursively until 2 • 2
and 1 • 1 matrices are reached.

To merge, we use eigenvalues of T to approximate eigenvalues of T by us-
ing quasi-Laguerre's iteration. Interlacing in (6) provides good information for
picking two valid initial points for the quasi-Laguerre's iteration.

4 T h e p a r a l l e l q u a s i - L a g u e r r e ' s m e t h o d

We implemented the parallel quasi-Laguerre's algorithm using PVM with a mas-
ter and slave program. The master program divides the spectrum into small
chunks, 1: n_l, (n_l § 1): n_2, . . . , (n_k + 1): n, where i : j denotes the eigen-
values from number i to number j . Then the master spawns the slave process to
all available machines that form the PVM machine, and sends out information
to the slaves. The information sent to the slaves includes the matrix order, the
diagonal and off diagonal entries of the symmetric tridiagonal matrix, starting
numbers and ending numbers of eigenvalue chunks, and some other administra-
tive information such as parent process ID and slave process IDs and so on. The
master program also serves as an administrator that is excluded from computa-
tion and also processes other jobs that has to be done sequentially. So we don't
spawn slave process onto the machine on which the master process is running.

The slave program spawned by the master program receives data and 'in-
structions' sent by the master program and calls split-merge Quasi-Laguerre's
subroutine to find the respective eigenvalues of the matrix, then sends the re-
sults back to the master program, and wait for another chunk of eigenvalues to
compute until an exit instruction is received.

For a slave process to compute the eigenvalue chunk i : j , it follows the
following steps.

(1). Compute the Gershgorin circle(interval) [Ib, ub] that contains all the
eigenvalue of T.

(2). Use bisection on interval [Ib, ub] and Sturm sequence to find a best inter-
val [a~, bj] that contains the i th to jth eigenvalue(s) of T. We consider an interval
'best' in the following sense: for well separated eigenvalues, [ai, bj] contains the
i th to j~h eigenvalue of T only; in case of a cluster, [ai, bj] is the smallest interval
within the error tolerance that contains the i th to jth eigenvalue of T.

(3). Split the matrix level by level, as described in section 3, until one by one
or two by two matrices are obtained.

(4). Starting from the bottom level of the tree, find the eigenvalue(s) in [hi, bj]
of each 1 • 1 or 2 • 2 matrix. Then use the quasi-Laguerre's method to compute
the eigenvalue(s) in [hi, b] of the matrices in the second level (from bottom up),
and then the third level, and so on until the top level that is the matrix T.

During this procedure, no processor needs to communicate with other proces-
sors to exchange information, therefore it constitutes a fully parallel and scalable
algorithm.

47

5 T e s t i n g m a t r i c e s

We used the following matrices to test our parallel code.

Type 1. Toeplitz matrices [b, a, hi.
Type
Type
Type
Type
Type
Type

2. al = a - b , ai = a for 2 < i < n - l , o ~ n =a--kb .~ j =b , l <_j < n - 1 .
3. ai = a for i odd, ai --- b for i even. fli = 1.

5 . . ~ = - [(2 i - 1)(n - 1) - 2(i - 1)2], Z~ = i (u - i) .
6. Wilkinson matrices W +. (see [8])
7. Random matrices. (~i's and fli's are generated by a random number gen-

erator.

6 L o a d b a l a n c i n g

For a PVM machine that is composed of a cluster of general purpose shared
workstations interconnected by Ethernet cable or FDDI cable, load balancing
seems inevitable.

Here are two experimental results that exhibit the uneven computation time
among the processors due to the shared environment and heterogeneous environ-
ment. The first experiment was done on six DEC Alpha workstations(one master
and five slaves) in a shared environment, that is, all the processes that compute
the eigenvalues of a matr ix must share CPU with other CPU-intensive processes
(mostly from other users). The second experiment was done in a heterogeneous
environment, six DEC Alpha-s and two SUN Sparcl0s(one Alpha machine served
as the master and all other 7 machines served as slaves). The CPU clock speeds
for the DEC Alpha workstations (model 3000/400) and SPARC10 workstations
used for the experiment are 133MHz and 33MHz, respectively.

In a shared environment, it is somewhat difficult to reproduce an experiment
since other user's processes come and go randomly. To make the comparison
more meaningful, both experiments were conducted during a reserved t ime pe-
riod while no other user can get onto the system. In the first experiment, a shared
environment is created by creating two CPU-intensive jobs(called dummy pro-
cesses) on one of the slave machines, then run the parallel quasi-Laguerre pro-
gram on the PVM machine. One of the slaves must share CPU with the other
two dummy processes that are running on the same host, hence it gets only 1/3
of the CPU access. Both experiments compute M1 the eigenvMues of a 5000 by
5000 type 4 matrix. The time of each slave without load balancing is plotted in
Figure 1 and Figure 2.

The following ideas are implemented in designing the load balancing scheme
for our parallel quasi-Laguerre method.

- Create uneven loads so that earlier distributed load has slightly large chunk
size than later distributed loads. This method has an effect of balancing the
job as a whole. Also the process which gets the last job won't take too long
to finish since the last job is the smallest in chunk size.

48

6

E

6O

so [
40

30 "

20 "

10 "

0
0

before load balance

I
1 2 3 5

PE number

1200

1000

.~ 800
U.I
"5 600

~= 400

200

0

before load balance

0 3 4 5
PE number

Fig. 1. Before load balancing in shared environment, other CPU intensive jobs are
running on PE # 2 also. Left: Execution time of each Alpha workstation on type 4
matrix of size 5000. Right: Number of eigenvalues computed by each Alpha workstation.

6

W
.e_
I -

60

50

40

30

20

10

0
0

before load balance

53
"5
=tl=

1000

800

600

before load balance

400

200

0
0

l l i l l
1 2 3 4 5 7 8 3 4 5 6

PE number PE number
7 8

F ig . 2. Before load balancing in Heterogeneous environment, PE ~ # 1-5 are Alpha
workstations, PE # # 6-7 are SUN Sparcl0s. Left: Execution time of each worksta-
tion on type 4 matr ix of size 5000. Right: Number of eigenvalues computed by each
workstation

- Create more subtasks than the number of available host machines so that
faster processes can finish more jobs.

- Spawn more process to each host to gain more CPU favor.
- Reset process priority level to a lower level for courtesy of the actual work-

stat ion owners. Lower process priority number means less CPU access, hence
less intrusion to the actual workstation owners.

Our algori thm incorporated all of the above features, and the user can control the
si tuation by choosing appropriate parameter values to run the program. We only
discuss the first two items here, create more and uneven loads, since the other two
items are more situation dependent. We used two parameters, n_rounds(number
of rounds to distribute the subtasks) and diff_size(chunk size difference between
successive processes), to determine how many rounds (each round has n_hosts
subtasks) of subtasks to create and how much difference in chunk size between
the successive chunks. First of all, the total number of eigenvalues is split into
nearly equal chunks(with difference of at most one), then use the value n_rounds
to further divide the chunks into smaller ones and use the value of diff_size to

49

" 2 ,
0

E

60

50

40

30

20

10

0
0

after load balance

2 3 4
PE number

1200

1000

.~ 800
W

600

400

20O

0

after Ioar balance

I
2 4
PE number

5 6

Fig. 3. After load balancing in shared environment, other jobs are running on PE #
2 also. Left: Execution time of each workstation on type 4 matrix of size 5000. Right:
Number of eigenvalues computed by each Alpha workstation.

create difference among the chunk sizes. In this way, a job queue is established
with chunk sizes in descending order. The rest of the program distributes the
chunks from this queue to the slave processes until the queue is empty.

Since the whole job is divided into many small chunks to create more and
smaller subtasks, each job takes less t ime to finish and the processors that finish
earlier can get more subtasks to process. As a whole, every host contributes and
the hosts that have less load(from other users) or faster CPU speed contribute
more. Hence, an overall balanced t iming distribution is achieved. The experiment
results with this load balancing scheme is plotted in Figures 3 and 4. Notice that
t ime(in seconds) spent on computing is balanced among the part icipat ing pro-
cesses while the number of eigenvalues computed by each host becomes different.

Experiments showed that more subtasks create more overheads. In a homo-
geneous environment, uniform subdivision works slightly better than the nonuni-
form subdivision method. But in a heterogeneous environment or a shared plat-
form, this load balancing scheme demonstrates a great advantage.

o $
Q)

E

60

50

40

30

20

10

0
0

after load balance

L U

"6

1000

800

600

400

1[I =
2 3 4 5 6 7 8 0

PE number

after load balance
i i i i i i i

3 4 5 6
PE number

7 8

Fig. 4. After load balancing in Heterogeneous environment, PE # # 1-5 are Alpha
workstations, PE # # 6-7 are SUN Sparcl0s. Left: Execution time of each worksta-
tion on type 4 matrix of size 5000. Right: Number of eigenvalues computed by each
workstation.

50

7 C o m p a r i s o n w i t h p a r a l l e l b i s e c t i o n a n d s e q u e n t i a l r o o t

f r e e Q R

We tested type 1 to 7 matrices of order 5000 on six DEC Alpha workstations.
We run the parallel program(quasi-Laguerre and bisection) on different number
of host machines to compute all the eigenvalues of the seven types of matrices
of order 5000. We also run the root free QR program from LAPACK. The total
time for each run is recorded and the results are plotted in Figure 5. Root free
QR method could not take advantage of all availabZe machines. For matrices of
types 1-5, our parallel quasi-Laguerre's algorithm beats root free QK with three
or more machines, whereas for type 6 matrix and type 7 matrix we need four
and five machines respectively to lead in speed. In all cases, the quasi-Laguerre's
iteration outperforms bisection method.

.E_
I - -

800

700

600

500

400

300

200

100

0

Type I matrix
, , , , ,

~ k B/M --,,----
NQL ::::::

~ - . : : : r , - - - m . . ~ a : : -D a

i = ~ 1 " i

1 2 3 4 5
Number of PEs

800

700

600

~, 500

400

E 300

2O0

100

0

Type 2 matrix
, , , , ,

RIM -,,---- -
" , NQL -~---

1 2 3 4 5 6
Number of PEs

.e
p -

800

700

600

3OO

2OO

100

0

Type 3 matrix

B/M --*,--
NQL : : : : :

1 2 3 4 5
Number of PEs

800

700

600

~- 400

E 300

2OO

100

Type 4 matdx

' ~ ' ' ' B/M' - '-~,
\ NQL --~---

, , "", 1- 1"
1 2 3 4 5 6

Number of PEs

References

I. E. ANDERSON, Z. BAI, C. BISCHOF, J. DEIVIMEL, J . DONGARRA, J. Du CROZ, A.
GREENBAUM, S. HAMMARLINO, A. McKENNEY, S. OSTROUCHOV, and D. SOREN-
SON, LAPACK User's Guide, S I A M , P h i l a d e l p h i a , 1992 .

51

W-

8OO

700

600

500

400

300

200

100

0
0

Type 5 matrix

B/M --*--
\ NQL -~---.

+-...

= i ~ | l

1 2 3 4 5
Number of PEs

8O

70

60

--v. 50

~ 30

20

10

0

800

700 1

600 1

"~ 500
r "~ 400

300

2OO

IO0

0
6 0

Type 7 matrix

B/M --*--.
NQL -§
RQR .a

1 2 3 4 5
Number of PEs

Type 6 matrix

B/M
NQL
RQR .-o

?§ . ~ - -r ?

l 2 3 4 5
Number of PEs

Fig . 5. Comparison between bisection - B/M, quasi-Laguerre - NQL, and root free
QR - RFQR, on seven types of matrices of order 5000

2. Q. Du, M. JIN, T. Y. LI AND Z. Z E N G , The Quasi-Laguerre iteration, to appear:
Math. Comp.

3. Q. Du, M. JIN, T.Y. L[AND Z. ZENG Quasi-Laguerre iteration in solving symmetric
tridiagonal eigenvalue problems, to appear: SIAM J. Sci. Comput.

4. A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG, R. MANCHEK, V. SUNDERAM,
PVM 3 User's Guide and Reference Manual, September, 1994.

5. G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd Ed., The Johns
Hopkins University Press, Baltimore, MD, 1989.

6. C. TREFFTZ, P. McKINLEY, T. Y. LI, AND Z. ZENG, A scalable eigenvalue solver
for symmetric tridiagonal matrices, Parallel Computing, 21(1995), pp. 1213-1240.

7. T. Y. LI AND Z. Z E N G , Laguerre's iteration in solving the symmetric tridiagonal
eigenproblem - - revisited, SIAM J. Sci. Comput. , Vol. 15, No. 5 (1994), pp. 1145-
1173.

8. J. H. W I L K I N S O N , The Algebraic Eigenvalue Problem, Oxford University Press, Ox-
ford, 1965.

9. X. Zou, Quasi-Laguerre's method and its parallel implementation on solving sym-
metric tridiagonal eigenvalue problems, Ph.D thesis, Michigan State University,
1995.

