
O n E x p e r i m e n t s w i t h a P a r a l l e l D i r e c t S o l v e r f o r
D i a g o n a l l y D o m i n a n t B a n d e d L i n e a r S y s t e m s

Peter Arbenz

Institute of Scientific Computing, Swiss Federal Institute of Technology (ETH),
CH-8092 Ziirich, arbenz0inf , e thz. ch

Abs t r ac t . We report on numerical experiments that we conducted with
a direct algorithm, the single width sparator algorithm, to solve diag-
onally dominant banded linear systems. With detailed estimations of
computation and communication cost we quantitatively analyze their
influence on the parallel performance of the algorithm. We report on
numerical experiments executed on an Intel Paragon XP/S-22MP.

1 I n t r o d u c t i o n

In this paper we discuss an implementat ion of a direct method based on the
single-width separator approach, also known as algebraic domain decomposition,
to solve a banded diagonally dominant system of linear equations

A:~ = 1~. (1)

The n x n mat r ix A is assumed to have lower half-bandwidth r and upper half-
bandwidth s, meaning

5ij ---- 0 for i - j > r or j - i > s. (2)

We assume that the mat r ix .4 has a narrow band, such that r + s ~ n. If this
assumption does not hold, an algorithm for full matrices adapted to the banded
mat r ix structure is bet ter suited for solving the problem.

We implemented the single-width separator algorithm on the Intel Paragon,
a multiprocessor computer with distributed memory architecture and powerful
processing nodes supporting the MIMD programming model.

To obtain speedup numbers, we will compare our implementat ion of the
parallel single-width separator algorithm with Gaussian elimination executed on
a single processor. Gaussian elimination is the method of choice for solving (1)
on serial computers [8, w Its complexity is

C~,u,,(,~, r, ~) ~ ((2~ + 3)(r + 1) - 4) n i~ops. (3)

We measure complexities in flops, i.e. floating point operations. A flop is either
an addition, a subtraction, a multiplication, or a division.

12

2 The single-width separator algorithm

The single-width separator algorithm has been investigated by many authors [4],
[6], [7], [13], [14]. Johnsson [11] discussed an implementation for the Connection
machine CM-2. The main difference to this paper is the modeling of the interpro-
cessor communication. Dongarra and Johnsson [6] report on a similar implemen-
tation for the Alliant FX-8 and Sequent Balance. Modifications are discussed by
Conroy [4] and Wright [14]. The latter is particularly interesting, as pivoting is
introduced into the algorithm. Wright's scheme gets very cumbersome, however�9
If pivoting is necessary the approach by Hegland [9] is probably to be prefered�9
The algorithm presented here is easily modified for symmetric definite matrices.

To solve (1) on a p processor multicomputer, in the single-width separator
algorithm the matrix A and the vectors ~ and b are partitioned in the form / l/x1//bl/ D, C2 ~1 /31

B2 A2 B3 x2 = b2

C2p-3 Dp-1 C2p-2 ~ 1 1
B2p- 2 Ap]

(4)

where Ai E IR,~xn~, Bi C IR ~xk , Ci E IRkx=~, Di E IRkxk, x~, bi E IRn~, t~i,
/3i E 1R k k := max(r, s), and P , ~i=1 ni + (p - 1)k = n. We assume that ni > k
which restricts the degree of parallelism, i.e. the maximal number of processor p
that can be exploited for program execution, p < (n+k)/(2k). The structure of
A and its submatrices is depicted in Fig. l(a) for the case p = 4. The diagonal
blocks Ai are band matrices with the same half-bandwidths as A itself.

Having p processors available, processor i holds matrices Ai, B2i-2, B2~-1,
C2i-2, C2i-1, Di and the vectors bi and ~i"

The single-width separator algorithm can be considered to be block-cyclic
reduction [10]. In the first step, rows and columns of A in (4) are (formally)
permuted in a block odd-even fashion,

A1
A2

C1 C~

Ca

Ap_ 1
Ap

C2p- ~ C~p_ 2

e l
B2 B3

". B2p-3
B~p_ 2

D1

D2

D~ i

X1
X2

p- 1
Xp

p-1

" b l '

b2

bp-1
= bp

&

.~p--1.

(5)

13

| : | : . ; ; " ; ; ; ;
l | l l i ~ I I I , i i

i i i i
I I I I I

- - - - - - -- I - - - I q - - t
I + I !

, " , ~ : H . ~ . . " , , ' '

l l * f e l l " I l l l I I I

, , " :HWN. , , ,
I i I I I

. r-f" 1 - " f
, , __J_2

t i l t I
I I I I I
I I l I . I I
I i I I �9 I

. I L - - I " I 1 ~ ~ 1 4 1 - J

. ,,- - , , -

I l t 1 t I " ~ t t l ~

(~)

I I ~ [I I

I "~,T'l~i;I.~l ~ I t I I I

, ~ ! ! t H i ~ , , , . , I I I I
. r - - ~':~IIIL- - - ~ t - ~ -

i ! # 1 1 I . i i , ,,~

, t ~ I r i , ~,

. r" , - - t 11~ . " - - ~ - T - + ' I
, = . , ,

i I i P i l ~ t + ~ I i I
-~- i i I i

. I j l

~4E , , -~mt-:
.

T I ~ " r I f

(b)

F i g . 1. Non-zero s t ructure of (a) the original and (b) the block odd-even pe rmuted

band mat r ix wi th n = 60, p = 4, ni = 12, r = 4, and s = 3.

The structure of the matrix in (5) is depicted in Fig, l(b). We write (5) in the
form

where the respective submatriees and subvectors are indicated by the lines in
equation (5)+ An 'incomplete' LU factorization executed of A yields

where A = LR is the ordinary LU factorization of A+ The blocks in (6) are given
by

E2 Ea E2+-2 = L[1Bu+-~,
E = L - 1 B : ". "'" ' E 2 i - t = L g l B 2 { - t ,

E2p-4 E2p-3

E2v- 2 /

F=CR-I=
F, F2 i

F3 "'. F2i-2 = C 2 ~ - 2 R [1,
' F2i-1 = C 2 i - I R [1,

F2v-3 F2,p-2

]4

(u 1

T2 U2 Ti = Di - F2i- lE2i-1 - - F2iE2i ,

S = D - F E = "'. "'. "'. , Ui -'- - F 2 i E 2 i + l , (7)

"'. U p - 2 V~=-F2i-IE~i-2.

The matrices E2~-2, E2i-1, F2i-2, F2i-1, V~, ~ , Ui and the vector "/i are stored
in the memory of processor i. The matrices E2i-2, E2i-1, F2i-2, and F2,-I
overwrite B~_2, B~_~, C~_~, and C~_~, respectively. Notice, that only E~_~
and F~i-2 are full matrices. E2~_~ and F~_~ keep the structure of B~_I and
C~_1, respectively.

Using the factorization (6), we obtain

(S)

X 1 : R l 1 (C 1 - - E 1 ~ 1) ,

x~ = a~ - 1 (c~ - E ~ i - 2 ~ i - 1 - E 2 i - 1 ~ i) ,

xp = R -l(cp -
l < i < p ,

In this back substitution phase each processor can proceed independently without
interprocessor communication.

where the sections ci a n d / 3 / o f the vectors c and]9 are given by

c / = L~-lbi, "/i = f l / - F2/- lci - F2/Ci+l.

Each processor can work independently on its block row computing E~.i-2, E2i-1,

F2i-2, F2/-1, and c~. Furthermore, each processor computes its portion of the
matr ix and right hand side of the reduced system S~ = "?,

- F 2 i - l E 2 i - 2 Di - F2i - l •2 i -1 E and [~ i -- F2i - l e i J E ,

respectively. Until this point of the algorithm, there is no interprocessor com-
munication.

The matr ix S in the reduced system is a block tridiagonal matr ix of order
(p - 1)k with k • k blocks. The blocks are not full if r < k or s < k. The
reduced system is diagonally dominant and could be solved by block Gaussian
elimination. However, for good performance on multicomputers the system S{ =
~' must be solved by block cyclic reduction [2], i.e., the reduction step described
above in equations (4) to (8) is repeated until a k x k system of equations remains.
As the order of the actual system is halved in each reduction step, [log2(p - 1)J
of them are needed until a full k x k system is left which is solved by ordinary
Gaussian elimination.

As soon as the vectors {i, 1 < i < p, are known, each processor can compute
its section of x,

15

Assuming for simplicity that k := r = s << n, the parallel complexity of the
single width separator algorithm is [2]

CPs~r ,~ 8k 2 n- + (2@ k 3 + 4cr + 4k 2 [log 2 (P-1)] + ~ k 3 - ~(p-1)4k 3 flops, (9)

where
1, 2[log2(p)J < p < 3 . 2[log2(p)J

~'(P) = o, ~ �9 2~~ _< p < 2.2t~og~(;)J.

If ~(p) = 1, the root node in the cyclic reduction receives (and processes) data
only from one node. The influence of ~(p) is clearly visible in the timings,
cf. Fig. 4. In (9), we assumed that the time for the transmission of a message of
length n floating point numbers from one to another processor can be represented
in the form

cr + nv.

c~ denotes the startup time relative to the time of a floating point operation, i.e.
the number of flops that can be executed during the startup time. r denotes the
number of floating point operations that can be executed during the transmis-
sion of one (8-Byte) floating point number. On the Paragon the transmission of
m bytes takes about 0.11 + 5.9-10-5m msec. The bandwidth between applica-
tions is thus about 68 MB/s. Comparing with the 10 Mflop/s performance for
the LINPACK benchmark [5] we get c~ = 1100 and r = 4.7 for the Paragon.
Dividing (3) by (9) and dropping lower order terms, the speedup becomes

CGauss(n, k) p
S s w s (n , k , p) - .~par, ~ (lak ~o pllog~(p-1)J pk(1-6~(v-1))'

t ~ s tn , k,p) 4 + ~ 3 "}-2T~-'k'-ff) n + 3n

The processor number for which highest speedup is observed is O(n/k)[2].
Speedup and efficiency are relatively small, however, due to the high redundancy
of the parallel algorithm.

3 E x p e r i m e n t s

3.1 S ing le n o d e p e r f o r m a n c e

Most of the work on a single processor i, say, goes into the factorization of Ai,
Ai = LiRi, the forward substitutions E2i-2 = LilB2i-2 and F2i-2 = Cei-2R.'[1,
and in the local portion F2iE2i of Ti. Each of these computations costs approx-
imately 2k2ni flops, ni ~ n/p.

To get performance estimates, we measured the times for solving the linear
system A X = Y with k right-hand sides stored in Y. Here, A is a banded,
diagonally dominant matr ix with equal lower and upper half-bandwidth k = r = s.
We timed each of the three steps of the algorithm: factorization A = LU of
A, simultaneous forward and backward substitution. The Fortran codes were
optimized for the 150-processor Intel Paragon XP/S-22MP at ETH Zurich.

16

LapacK

.......... Mod 1 /

/
. Mod2 ?

. . . . MOd 3 j,/ '

10 20 30 40 50 60 70 80 90 100

(a)

3C

LEIp@ck

. Mod2 # ~ l

i �9 j ' -

1(t . .~"
s l . - '

(110 210 310 4~ 510 6; 7; 810 910 tO0

(b)

Fig. 2. Times in seconds (a) and performance in Mflop/s (b) for solving a banded
system of order 2000 with varying band width/number of right sides k, 5 < k < 100.

In a first approach, we used LAPACK [1] subroutines (dgb t f2 , d t b s v) in
a straightforward way. Unfortunately, there is no special routine for factoring
banded diagonally dominant matrices in LAPACK. All non-symmetric matrices
are factored by the same routine. For diagonally dominant matrices this leads
to overhead due to pivot searching and unneeded memory space. Furthermore,
there are no routines for forward and backward substitution with multiple right
hand sides. A loop over the right hand sides is performed instead. The whole
matr ix is fetched from memory over and over again causing unnecessary memory
traffic and possibly degradation of performance.

In a first modification, we replaced the LAPACK routines by hand-written
Fortran programs. The new subroutine handled multiple right hand sides. Fae-
torization and forward substitution were performed in one sweep. This tight
integration was found to be advantageous only for very small half-bandwidths
in which case the complete 'active part ' of the matr ix Ai could be hold in cache.
For larger half-bandwidths it was better to separate the factorization from the
computation of E2i-~ and F~i-2.

In a second modification, the n x k matrices B2i and E2i were stored in
transposed form. As these matrices are accessed row-wise, the transposition sped
up the simultaneous forward and backward substitution as contiguous memory
locations are accessed [3]. The transposition was found to be beneficial for the
computat ion Ti = f2iE2i as well. For similar reasons, A was stored in transposed
form, although performance improved only little.

In a third modification, doubly nested do-loops in the factorization and
the forward/backward steps were replaced by calls to BLAS-2 routines (dger,
dgemv).

Figure 2(a) shows plots of measurements of the performance of the foul" ap-
proaches for solving A X = Y . The order of A was held fixed at n = 2000. k, the
half-bandwidth of A and at the same time number of right sides, varies from 5
to 100 in steps of 5. It was found that the times behave ahnost linear in n as

]7

long as n is not too small. The plots show that the compiler can produce very
effective code if the da ta is distributed properly. To get highest performance,
calls to the BLAS seem to be indispensable. We at tr ibute the good performance
of the LAPACK implementat ion to the high-performing BLAS they are calling.

The Mflop/s rates in Fig. 2(b) are obtained by assuming a flop count of 6k2n
for solving A X = Y . The nominal peak performance of an Intel Paragon pro-
cessor is 50 Mflop/s. (An MP node has two compute processors but we only
used one of them.) To get more insight how the three steps, factorization, for-
ward and backward substitution, behave we t imed them independently with our
fastest implementat ion, cf. Fig. 3. Compared with other machines the curves for

Fig. 3. Mflop/s rates for solving banded systems on the Intel Paragon. Highest perfor-
mance is obtained with forward substitution, lowest performance for the factorization.
The numbers are obtained with parameters n = 1500 and k ranging from 1 to 200.

the Paragon are quite smooth. The Mflop/s rates for forward and backward sub-
st i tution tend to the processor's peak performance, however very slowly. In the
factorization only about half of this performance is observed. The reason is the
higher number of memory accesses caused by the rank-1 updates (LAPACK's
dger) which were used in the LU factorization. Each call of dge r causes the up-
date of k 2 numbers. Forward and backward substitution were coded with calls
to the LAPACK matr ix-vector multiply dgemv, which has the same operation
count as alger but stores only one k-vector per invocation. (If forward or back-
ward solve are implemented with calls to dge r the performance is reduced to
the one of factorization.)

We modeled the Mfiop/s rate r(k) by

k
r (k) = . (10)

cl + c2k�89 + c3k

The constants ci are obtained from a least squares fit, ~(k)(cl+cukl/2+cak) ~ k,

]8

where ~(k) = 2nk2/[(k) is ob t a ined d i rec t ly f rom the t ime m e a s u r e m e n t s t (k) ,
cf. Tab. 1. The execut ion t ime is then e s t ima ted by

t(n, k) = 2nk2/r(k) = 2nk(cl + c2k�89 + c3k) msec. (11)

T h e k �89 in (10) is not present in the wel l -known pe r fo rmance mode l s [10,
w We found the t e rm useful in s i tua t ions where r (k) was not mono ton ica l ly
increasing. I t is poss ible to der ive such numbers as roo or kl/2. Figure 3 indica tes
t h a t the Mf lop / s ra tes behave differently for ks and k~16. This is p r o b a b l y
due to the i m p l e m e n t a t i o n of the BLAS rout ines . The numbers in Tab. 1 show

factorization k < 16
factorization k > 16
forward solve k < 14
forward solve k > 14
backward solve k < 14
backward solve k >14
backward solve (1 rhs)
dgemm k < 24
dgemm k > 24

c, c2 c3 r(200)
[msec/flop]i[msec/flop] [msec/flop] [Mflop/s]
4.83" 10 -3
1.56 - 10 -3
4.29- 10 -3
1.18- 10 -3
4.96 �9 10 -3
1.48 �9 1 0 - 3

4.05 �9 10 -4
5.86- 10 -4
9.25 �9 10 -3

- 1 . 9 4 . 1 0 -3
-2.31 �9 10 -4
- 1 . 7 4 . 1 0 -3

1.84.10 - s
- 2 . 0 1 �9 10 -3
- 3 . 4 3 ' 10 -5

1.65' 10 -4
- 1 . 4 5 . 1 0 -4
- 5 . 5 5 ' 10 -6

3.50' 10 -4
5.74" 10 -5
2.78" 10 -4
1.75" 10 -5
3.15" 10 -4
1.99' 10 -5
1.50 - 10 -4
3.45" 10 -5
2.20' 10 - s

20.6

40.2

39.8
6.1

45.2

kl/2

17

41

43
6

12

T a b l e 1. Constants ci in (10) for an i860 node of the Intel Paragon. kl/2 is the smallest
integer such that r(kl/2) > r(200)/2.

t h a t the pe r fo rmance for forward and backward subs t i t u t i on and in pa r t i c u l a r
for m a t r i x mu l t i p l i c a t i on is close to the nomina l peak pe r fo rmance of the node.
On RISC works ta t ions , the pe r fo rmance drops by a fac tor 2 or 3 if the size of
the ' ac t ive p a r t ' o f the d a t a exceeds the cache size. A l t h o u g h the Pa ra gon has a
cache, in o p t i m i z e d code, pa r t s of the d a t a can ' s t r e a m ' a round it d i rec t ly into
the registers. (Cache s t r e a m i n g is not possible in the Pa ragon mul t ip rocessor
mode .)

The m u l t i p l i c a t i o n F 2 i f 2 i is pe r fo rmed in the BLAS subrou t ine dgerm. Both
ma t r i ce s E2 i -2 and F2i-2 are s to red in a k x n array, the former in t r ansposed
form. As n is qu i te large in our examples , n > 100, the pe r fo rmance of dgerm
depends only on k. In Tab. 1 we also give cons tan t s for backward subs t i t u t ion
wi th one ins tead of k r ight sides. W i t h t hem it is easy to verify tha t the ra t io of
the execot ion t imes for the two tasks is much smal le r t han k [12].

3 .2 C y c l i c r e d u c t i o n

T h e difficult pa r t of the a lgo r i t hm is the block-cycl ic reduc t ion of the reduced
sys t em S~ = % cf. (7). This is the only pa r t of the a lgo r i t hm wi th in terprocessor

19

communication. We measured the plain cyclic reduction on a varying number of
processors p. The size of the blocks of the reduced system was k. The size pk of
the problem increased with the number of processors. The matrices Ti, ~ and U~
together with the right side -'q are stored in one array of dimension k • 3 k + l in
the form [Ti, Vi, %, Ui]. With this arrangement, data that has to be sent always
resides in contiguous memory locations. Therefore, messages do not have to be
collected in a buffer before being sent. In Fig. 4 timings of measurements with

250

200

~',150

E

"~- 100

o;,

- _ k=40

t i i i i i
10

250

2O0

150
x'--

190

k = 3 o , -

5 0

k=lO

20 00 40 50 60 ;~0 8'0 ~ I ;00
p rocessor n u m b e r

Fig. 4. Times in msec vs. processor number p for cyclic reduction of a system of order
pk.

k = 10, 20, 30, 40, and 50 are shown. They have been obtained on the Paragon
using the MPI message passing library. We model the execution time by

t(p, k) = (c4 + c5 k3)[log2(p)j + c6k3~a(p) + cTk 3. (12)

A least squares fit with the data depicted in Fig. 4 gave the constants [msec]

c 4 = 3 . 8 2 , c 5 = 3 . 1 7 . 1 0 -4 , c 6 = - 3 . 9 0 . 1 0 -5 , c 7 = - 1 . 2 8 . 1 0 -4 . (13)

3.3 T h e ove ra l l p r o b l e m

To get a rough estimate for the solution time of the overall system we sum the
times obtained from equations (11) and (12) with the constants given in Tab. 1
and in (13). For p = 1 only factorization and the backward substitution with one
right side are taken into account. Notice, that the time for forward substitution
of b has been neglected. Forward substitution takes place during faetorization
such that the matrix Ai is traversed onle once. Furthermore, the times do not
comprise the summation of parts of the diagonal blocks ~ of S in (7) which have
been formed by different processors.

20

900

800

700

SO0

500

~ 400

2OO

100

450O(

~00(

35OO(

300O(

250C(

.~ 2 o o c ~

1500(

lOO0(

50C~

lo 20 30 40 50 eo 70 ~ ~o 10o
ploc.essor numbar

(at

,32

,~ 2B

.~" 12

4

~o ~o 3o 4o 50 so ,'o Bo ~o 1oo
proces~r number

(c)

S Boo(

7o0~

~oo~

5co~

e

2ool 4

2 1001

40

25

~o~
15

5

t , , I , | , , |

Io ~0 ~0 40 50 ~o 7o so BO ioo
processor number

(b)

Fig. 5. Measured (--) and estimated
(- - -) execution times and speedups
for the Intel Paragon for the prob-
lem sizes (a) (n,k) -= (10000,10) ,
(b) (n,k) = (100000,10), and (c)
(n, k) = (100000, 50). p is ranging from
1 to 100.

In Fig, 5 the actual timings t(n, k,p) on the Intel Paragon XP/S-22MP for
three different problem sizes are compared with the corresponding estimated
times test(n, k, p). Also the estimated speedups

sost (~, k,p) := tost (n, k, 1)/tos,(n, k,p)

are included. As the largest problem was too large to be solved on a single
processor we approximated t(100000, 50, 1) ~ 4 . t(25000, 50, 1).

The estimated times are quite good, in particular those for the higher proces-
sor numbers. However, the one-processor time was in all cases underestimated
by 10 to 20%. This seems to be the principal reason for the too low speedup
estimations. Neglecting the forward substitution accounted for only a few per-
cents of the error. Nevertheless, time and speedup estimation reflect the true
behavior of the algorithm very well. The only exception is the too prominent
appearance of the log(p) term of the cyclic reduction for the small problem size
(n, k) = (10000, 10).

4 C o n c l u s i o n s

We have shown that the execution time of the single width separator algorithm
for solving banded systems of linear equations can be estimated reasonably well

21

by a careful ana lys is of the i m p o r t a n t componen t s of the a lgo r i thm. This makes
i t poss ible to pred ic t the speedup t ha t is to be expec ted if a ce r ta in n u m b e r
of processors is employed to solve a p rob lem of a cer ta in size. As the speedup
canno t increase u n b o u n d e d l y for a fixed p rob l em size, these e s t ima te s make i t
poss ib le to de t e rmine the processor number wi th which the p rob l e m is solved
fas tes t or wi th a desired speedup or t u r n a r o u n d t ime .

R e f e r e n c e s

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users' Guide. SIAM, Philadelphia, PA, 1992.

2. P. Arbenz and W. Gander. A survey of direct parallel algorithms for banded linear
systems. Tech. Report 221, ETH Ziirich, Computer Science Department, November
1994. ftp://ftp, inf .ethz. ch/pub/publicat ions/tech-reports/2xx/221 .ps.

3. David H. Bailey. RISC microprocessors and scientific computing. In Supercomput-
ing '93, pages 645-654, Los Alamitos, CA, 1993. IEEE Computer Society Press.

4. J. M. Conroy. Parallel algorithms for the solution of narrow banded systems. Appl.
Numer. Math., 5:409-421, 1989.

5. J. J. Dongarra. Performance of various computers using s tandard linear equa-
tion software equations software. Tech. Report CS-89-85, University of Tennessee,
Computer Science Department, Knoxville, TN, November 1995.

6. J. J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor.
Parallel Computing, 5:219-246, 1987.

7. J. J. Dongarra and A. H. Sameh. On some parallel banded system solvers. Parallel
Computing, 1:223-235, 1984.

8. G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD, 2nd edition, 1989.

9. M. Hegland. Divide and conquer for the solution of banded linear systems. Re-
search report, Computer Sci. Lab. and Centre Math. Appl, Australian National
University, Canberra, Australia, 1995. To be published in the Proceedings of the
4th EuroMicro Workshop on Parallel and Distributed Processing, Braga, Portugal,
24-26 January, 1996.

10. R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, Bristol,
1988.

11. S. L. Johnsson. Solving narrow banded systems on ensemble architectures. ACM
Trans. Math. Softw., lh271-288, 1985.

12. A. Sameh. Parallel algorithms for structured sparse linear systems. Talk at the
ICIAM'95, Hamburg, 3.-7. July 1995.

13. A. Sameh and D. Kuck. On stable parallel linear system solvers. J. ACM, 25:81
91, 1978.

14. S. J. Wright. Parallel i go r i t hms for banded linear systems. SIAM d. Sci. Stat.
Comput., 12:824-842, 1991.

