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Abs t r ac t .  We report on numerical experiments that we conducted with 
a direct algorithm, the single width sparator algorithm, to solve diag- 
onally dominant banded linear systems. With detailed estimations of 
computation and communication cost we quantitatively analyze their 
influence on the parallel performance of the algorithm. We report on 
numerical experiments executed on an Intel Paragon XP/S-22MP. 

1 I n t r o d u c t i o n  

In this paper  we discuss an implementat ion of a direct method based on the 
single-width separator approach, also known as algebraic domain decomposition, 
to solve a banded diagonally dominant  system of linear equations 

A:~ = 1~. (1) 

The n x n mat r ix  A is assumed to have lower half-bandwidth r and upper half- 
bandwidth s, meaning 

5ij ---- 0 for i -  j > r or j - i > s. (2) 

We assume that  the mat r ix  .4 has a narrow band, such that  r + s ~ n. If this 
assumption does not hold, an algorithm for full matrices adapted to the banded 
mat r ix  structure is bet ter  suited for solving the problem. 

We implemented the single-width separator algorithm on the Intel Paragon, 
a multiprocessor computer  with distributed memory  architecture and powerful 
processing nodes supporting the MIMD programming model. 

To obtain speedup numbers, we will compare our implementat ion of the 
parallel single-width separator algorithm with Gaussian elimination executed on 
a single processor. Gaussian elimination is the method of choice for solving (1) 
on serial computers  [8, w Its complexity is 

C~,u,,(,~, r, ~) ~ ((2~ + 3)(r + 1) - 4) n i~ops. (3) 

We measure complexities in flops, i.e. floating point operations. A flop is either 
an addition, a subtraction, a multiplication, or a division. 
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2 The single-width separator algorithm 

The single-width separator algorithm has been investigated by many authors [4], 
[6], [7], [13], [14]. Johnsson [11] discussed an implementation for the Connection 
machine CM-2. The main difference to this paper is the modeling of the interpro- 
cessor communication. Dongarra and Johnsson [6] report on a similar implemen- 
tation for the Alliant FX-8 and Sequent Balance. Modifications are discussed by 
Conroy [4] and Wright [14]. The latter is particularly interesting, as pivoting is 
introduced into the algorithm. Wright's scheme gets very cumbersome, however�9 
If pivoting is necessary the approach by Hegland [9] is probably to be prefered�9 
The algorithm presented here is easily modified for symmetric definite matrices. 

To solve (1) on a p processor multicomputer, in the single-width separator 
algorithm the matrix A and the vectors ~ and b are partitioned in the form / l/x1//bl/ D, C2 ~1 /31 

B2 A2 B3 x2 = b2 

C2p-3 Dp-1 C2p-2 ~ 1 1 
B2p- 2 Ap ] 

(4) 

where Ai E IR,~xn~, Bi C IR ~xk ,  Ci E IRkx=~, Di E IRkxk, x~, bi E IRn~, t~i, 
/3i E 1R k k := max(r, s), and P , ~i=1 ni + ( p -  1)k = n. We assume that ni > k 
which restricts the degree of parallelism, i.e. the maximal number of processor p 
that  can be exploited for program execution, p < (n+k)/(2k). The structure of 
A and its submatrices is depicted in Fig. l(a) for the case p = 4. The diagonal 
blocks Ai are band matrices with the same half-bandwidths as A itself. 

Having p processors available, processor i holds matrices Ai, B2i-2, B2~-1, 
C2i-2, C2i-1, Di and the vectors bi and ~i" 

The single-width separator algorithm can be considered to be block-cyclic 
reduction [10]. In the first step, rows and columns of A in (4) are (formally) 
permuted in a block odd-even fashion, 
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F i g .  1. Non-zero s t ructure  of (a) the original and (b) the block odd-even pe rmuted  

band mat r ix  wi th  n = 60, p = 4, ni = 12, r = 4, and s = 3. 

The structure of the matrix in (5) is depicted in Fig, l(b). We write (5) in the 
form 

where the respective submatriees and subvectors are indicated by the lines in 
equation (5)+ An 'incomplete' LU factorization executed of A yields 

where A = LR is the ordinary LU factorization of A+ The blocks in (6) are given 
by 

E2 Ea E2+-2 = L[1Bu+-~,  
E = L - 1 B  : ". "'" ' E 2 i - t  = L g l B 2 { - t ,  

E2p-4  E2p-3 

E2v- 2 / 

F=CR-I= 
F, F2 i 

F3 "'. F2i-2 = C 2 ~ - 2 R [  1, 
' F2i-1 = C 2 i - I R [  1, 

F2v-3 F2,p-2 
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(  u 1  

T2 U2 Ti = Di - F2i- lE2i-1 - -  F2iE2i ,  

S = D - F E  = "'. "'. "'. , Ui -'- - F 2 i E 2 i + l ,  ( 7 )  

"'. U p - 2  V~=-F2i-IE~i-2. 

The matrices E2~-2, E2i-1, F2i-2, F2i-1, V~, ~ ,  Ui and the vector "/i are stored 
in the memory of processor i. The matrices E2i-2, E2i-1, F2i-2, and F2,-I  
overwrite B~_2, B~_~, C~_~, and C~_~, respectively. Notice, that  only E~_~ 
and F~i-2 are full matrices. E2~_~ and F~_~ keep the structure of B~_I  and 
C~_1, respectively. 

Using the factorization (6), we obtain 

(S) 

X 1 : R l 1 ( C 1  - -  E 1 ~ 1 )  , 

x~ = a~ -  1 (c~ - E ~ i -  2 ~ i -  1 - E 2 i -  1 ~ i ) ,  

xp = R -l(cp - 
l < i < p ,  

In this back substitution phase each processor can proceed independently without 
interprocessor communication. 

where the sections ci a n d / 3 / o f  the vectors c and ]9 are given by 

c / =  L~-lbi, "/i = f l / -  F2/- lci  - F2/Ci+l. 

Each processor can work independently on its block row computing E~.i-2, E2i-1, 

F2i-2, F2/-1, and c~. Furthermore, each processor computes its portion of the 
matr ix  and right hand side of the reduced system S~ = "?, 

- F 2 i - l E 2 i - 2  Di - F2i - l •2 i -1  E and [ ~ i  -- F2i - l e i J  E , 

respectively. Until this point of the algorithm, there is no interprocessor com- 
munication. 

The matr ix  S in the reduced system is a block tridiagonal matr ix of order 
(p - 1)k with k • k blocks. The blocks are not full if r < k or s < k. The 
reduced system is diagonally dominant and could be solved by block Gaussian 
elimination. However, for good performance on multicomputers the system S{ = 
~' must be solved by block cyclic reduction [2], i.e., the reduction step described 
above in equations (4) to (8) is repeated until a k x k system of equations remains. 
As the order of the actual system is halved in each reduction step, [log2( p -  1)J 
of them are needed until a full k x k system is left which is solved by ordinary 
Gaussian elimination. 

As soon as the vectors {i, 1 < i < p, are known, each processor can compute 
its section of x, 
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Assuming for simplicity that k := r = s << n, the parallel complexity of the 
single width separator algorithm is [2] 

CPs~r ,~ 8k 2 n- + ( 2@ k 3 + 4cr + 4k 2 [ log 2 (P-1) ] + ~ k 3 - ~(p-1)4k 3 flops, (9) 

where 
1, 2[log2(p)J < p < 3 . 2[log2(p)J 

~'(P) = o, ~ �9 2~~ _< p < 2.2t~og~(;)J. 

If ~(p) = 1, the root node in the cyclic reduction receives (and processes) data  
only from one node. The influence of ~(p) is clearly visible in the timings, 
cf. Fig. 4. In (9), we assumed that the time for the transmission of a message of 
length n floating point numbers from one to another processor can be represented 
in the form 

cr + nv. 

c~ denotes the startup time relative to the time of a floating point operation, i.e. 
the number of flops that  can be executed during the startup time. r denotes the 
number of floating point operations that  can be executed during the transmis- 
sion of one (8-Byte) floating point number. On the Paragon the transmission of 
m bytes takes about 0.11 + 5.9-10-5m msec. The bandwidth between applica- 
tions is thus about 68 MB/s. Comparing with the 10 Mflop/s performance for 
the LINPACK benchmark [5] we get c~ = 1100 and r = 4.7 for the Paragon. 
Dividing (3) by (9) and dropping lower order terms, the speedup becomes 

CGauss(n, k) p 
S s w s ( n , k , p ) -  .~par, ~ (lak ~o pllog~(p-1)J pk(1-6~(v-1))' 

t ~ s tn ,  k,p) 4 + ~  3 "}-2T~-'k'-ff) n + 3n 

The processor number for which highest speedup is observed is O(n/k)[2]. 
Speedup and efficiency are relatively small, however, due to the high redundancy 
of the parallel algorithm. 

3 E x p e r i m e n t s  

3.1 S ing le  n o d e  p e r f o r m a n c e  

Most of the work on a single processor i, say, goes into the factorization of Ai, 
Ai = LiRi, the forward substitutions E2i-2 = LilB2i-2 and F2i-2 = Cei-2R.'[ 1, 
and in the local portion F2iE2i of Ti. Each of these computations costs approx- 
imately 2k2ni flops, ni ~ n/p. 

To get performance estimates, we measured the times for solving the linear 
system A X  = Y with k right-hand sides stored in Y. Here, A is a banded, 
diagonally dominant  matr ix with equal lower and upper half-bandwidth k = r = s. 
We timed each of the three steps of the algorithm: factorization A = LU of 
A, simultaneous forward and backward substitution. The Fortran codes were 
optimized for the 150-processor Intel Paragon XP/S-22MP at ETH Zurich. 
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Fig. 2. Times in seconds (a) and performance in Mflop/s (b) for solving a banded 
system of order 2000 with varying band width/number of right sides k, 5 < k < 100. 

In a first approach, we used LAPACK [1] subroutines (dgb t f2 ,  d t b s v )  in 
a straightforward way. Unfortunately, there is no special routine for factoring 
banded diagonally dominant matrices in LAPACK. All non-symmetric matrices 
are factored by the same routine. For diagonally dominant matrices this leads 
to overhead due to pivot searching and unneeded memory space. Furthermore, 
there are no routines for forward and backward substitution with multiple right 
hand sides. A loop over the right hand sides is performed instead. The whole 
matr ix is fetched from memory over and over again causing unnecessary memory 
traffic and possibly degradation of performance. 

In a first modification, we replaced the LAPACK routines by hand-written 
Fortran programs. The new subroutine handled multiple right hand sides. Fae- 
torization and forward substitution were performed in one sweep. This tight 
integration was found to be advantageous only for very small half-bandwidths 
in which case the complete 'active part '  of the matr ix Ai could be hold in cache. 
For larger half-bandwidths it was better to separate the factorization from the 
computation of E2i-~ and F~i-2. 

In a second modification, the n x k matrices B2i and E2i were stored in 
transposed form. As these matrices are accessed row-wise, the transposition sped 
up the simultaneous forward and backward substitution as contiguous memory 
locations are accessed [3]. The transposition was found to be beneficial for the 
computat ion Ti = f2iE2i as well. For similar reasons, A was stored in transposed 
form, although performance improved only little. 

In a third modification, doubly nested do-loops in the factorization and 
the forward/backward steps were replaced by calls to BLAS-2 routines (dger, 
dgemv). 

Figure 2(a) shows plots of measurements of the performance of the foul" ap- 
proaches for solving A X  = Y .  The order of A was held fixed at n = 2000. k, the 
half-bandwidth of A and at the same time number of right sides, varies from 5 
to 100 in steps of 5. It was found that  the times behave ahnost linear in n as 
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long as n is not too small. The plots show that  the compiler can produce very 
effective code if the da ta  is distributed properly. To get highest performance, 
calls to the BLAS seem to be indispensable. We at tr ibute the good performance 
of the LAPACK implementat ion to the high-performing BLAS they are calling. 

The Mflop/s rates in Fig. 2(b) are obtained by assuming a flop count of 6k2n 
for solving A X  = Y .  The nominal peak performance of an Intel Paragon pro- 
cessor is 50 Mflop/s. (An MP node has two compute processors but we only 
used one of them.) To get more insight how the three steps, factorization, for- 
ward and backward substitution, behave we t imed them independently with our 
fastest implementat ion,  cf. Fig. 3. Compared with other machines the curves for 

Fig. 3. Mflop/s rates for solving banded systems on the Intel Paragon. Highest perfor- 
mance is obtained with forward substitution, lowest performance for the factorization. 
The numbers are obtained with parameters n = 1500 and k ranging from 1 to 200. 

the Paragon are quite smooth. The Mflop/s rates for forward and backward sub- 
st i tution tend to the processor's peak performance, however very slowly. In the 
factorization only about  half of this performance is observed. The reason is the 
higher number  of memory  accesses caused by the rank-1 updates (LAPACK's  
dger)  which were used in the LU factorization. Each call of dge r  causes the up- 
date of k 2 numbers.  Forward and backward substitution were coded with calls 
to the LAPACK matr ix-vector  multiply dgemv, which has the same operation 
count as alger but stores only one k-vector per invocation. (If forward or back- 
ward solve are implemented with calls to dge r  the performance is reduced to 
the one of factorization.) 

We modeled the Mfiop/s rate r(k) by 

k 
r ( k )  = . (10) 

cl + c2k�89 + c3k 

The constants ci are obtained from a least squares fit, ~(k)(cl+cukl/2+cak) ~ k, 
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where ~(k) = 2nk2/[(k) is ob t a ined  d i rec t ly  f rom the  t ime  m e a s u r e m e n t s  t (k) ,  
cf. Tab.  1. The  execut ion  t ime  is then  e s t ima ted  by  

t(n, k) = 2nk2/r(k) = 2nk(cl + c2k�89 + c3k) msec. (11) 

T h e  k �89  in (10) is not  present  in the  wel l -known pe r fo rmance  mode l s  [10, 
w We found  the t e rm useful in s i tua t ions  where r (k)  was not  mono ton ica l ly  
increasing.  I t  is poss ible  to der ive such numbers  as roo or kl/2. Figure  3 indica tes  
t h a t  the  Mf lop / s  ra tes  behave  differently for ks and k~16. This  is p r o b a b l y  
due  to the  i m p l e m e n t a t i o n  of the  BLAS rout ines .  The  numbers  in Tab.  1 show 

factorization k < 16 
factorization k > 16 
forward solve k < 14 
forward solve k > 14 
backward solve k < 14 
backward solve k >14 
backward solve (1 rhs) 
dgemm k < 24 
dgemm k > 24 

c, c2 c3 r(200) 
[msec/flop]i[msec/flop] [msec/flop] [Mflop/s] 
4.83" 10 -3 
1.56 - 10 -3 
4.29- 10 -3 
1.18- 10 -3 
4.96 �9 10 -3 
1.48 �9 1 0  - 3  

4.05 �9 10 -4 
5.86- 10 -4 
9.25 �9 10 -3 

- 1 . 9 4 . 1 0  -3 
-2.31 �9 10 -4 
- 1 . 7 4 . 1 0  -3 

1.84.10 - s  
- 2 . 0 1  �9 10 -3 
- 3 . 4 3 '  10 -5 

1.65' 10 -4 
- 1 . 4 5 . 1 0  -4 
- 5 . 5 5 '  10 -6 

3.50'  10 -4 
5.74" 10 -5 
2.78" 10 -4 
1.75" 10 -5 
3.15" 10 -4 
1.99' 10 -5 
1.50 - 10 -4 
3.45" 10 -5 
2.20' 10 - s  

20.6 

40.2 

39.8 
6.1 

45.2 

kl/2 

17 

41 

43 
6 

12 

T a b l e  1. Constants ci in (10) for an i860 node of the Intel Paragon. kl/2 is the smallest 
integer such that  r(kl/2) > r(200)/2. 

t h a t  the  pe r fo rmance  for forward  and backward  subs t i t u t i on  and in pa r t i c u l a r  
for m a t r i x  mu l t i p l i c a t i on  is close to the  nomina l  peak  pe r fo rmance  of  the  node. 
On RISC works ta t ions ,  the pe r fo rmance  drops  by  a fac tor  2 or 3 if  the  size of 
the  ' ac t ive  p a r t '  o f  the  d a t a  exceeds the  cache size. A l t h o u g h  the  Pa ra gon  has a 
cache, in o p t i m i z e d  code, pa r t s  of  the  d a t a  can ' s t r e a m '  a round  it  d i rec t ly  into 
the  registers.  (Cache s t r e a m i n g  is not  possible  in the  Pa ragon  mul t ip rocessor  
mode . )  

The  m u l t i p l i c a t i o n  F 2 i f 2 i  is pe r fo rmed  in the  BLAS subrou t ine  dgerm. Both  
ma t r i ce s  E2 i -2  and  F2i-2 are s to red  in a k x n array,  the  former  in t r ansposed  
form.  As n is qu i te  large in our  examples ,  n > 100, the  pe r fo rmance  of  dgerm 
depends  only on k. In Tab.  1 we also give cons tan t s  for backward  subs t i t u t ion  
wi th  one ins tead  of  k r ight  sides. W i t h  t hem it is easy to verify tha t  the  ra t io  of 
the  execot ion t imes  for the  two tasks  is much smal le r  t han  k [12]. 

3 .2  C y c l i c  r e d u c t i o n  

T h e  difficult pa r t  of  the  a lgo r i t hm is the  block-cycl ic  reduc t ion  of the  reduced 
sys t em S~ = % cf. (7). This  is the  only  pa r t  of  the  a lgo r i t hm wi th  in terprocessor  
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communication. We measured the plain cyclic reduction on a varying number of 
processors p. The size of the blocks of the reduced system was k. The size pk of 
the problem increased with the number of processors. The matrices Ti, ~ and U~ 
together with the right side -'q are stored in one array of dimension k • 3 k + l  in 
the form [Ti, Vi, %, Ui]. With this arrangement, data that has to be sent always 
resides in contiguous memory locations. Therefore, messages do not have to be 
collected in a buffer before being sent. In Fig. 4 timings of measurements with 
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Fig. 4. Times in msec vs. processor number p for cyclic reduction of a system of order 
pk. 

k = 10, 20, 30, 40, and 50 are shown. They have been obtained on the Paragon 
using the MPI message passing library. We model the execution time by 

t(p, k) = (c4 + c5 k3)[log2(p)j + c6k3~a(p) + cTk 3. (12) 

A least squares fit with the data  depicted in Fig. 4 gave the constants [msec] 

c 4 = 3 . 8 2 ,  c 5 = 3 . 1 7 . 1 0  -4 , c 6 = - 3 . 9 0 . 1 0  -5 , c 7 = - 1 . 2 8 . 1 0  -4 . (13) 

3.3 T h e  ove ra l l  p r o b l e m  

To get a rough estimate for the solution time of the overall system we sum the 
times obtained from equations (11) and (12) with the constants given in Tab. 1 
and in (13). For p =  1 only factorization and the backward substitution with one 
right side are taken into account. Notice, that  the time for forward substitution 
of b has been neglected. Forward substitution takes place during faetorization 
such that  the matrix Ai is traversed onle once. Furthermore, the times do not 
comprise the summation of parts of the diagonal blocks ~ of S in (7) which have 
been formed by different processors. 
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Fig. 5. Measured (--)  and estimated 
(- - -) execution times and speedups 
for the Intel Paragon for the prob- 
lem sizes (a) (n,k) -= (10000,10) ,  
(b) (n,k) = (100000,10), and (c) 
(n, k) = (100000, 50). p is ranging from 
1 to 100. 

In Fig, 5 the actual timings t(n, k,p) on the Intel Paragon XP/S-22MP for 
three different problem sizes are compared with the corresponding estimated 
times test(n, k, p). Also the estimated speedups 

sost (~, k,p) := tost (n, k, 1)/tos,(n, k,p) 

are included. As the largest problem was too large to be solved on a single 
processor we approximated t(100000, 50, 1) ~ 4 .  t(25000, 50, 1). 

The estimated times are quite good, in particular those for the higher proces- 
sor numbers. However, the one-processor time was in all cases underestimated 
by 10 to 20%. This seems to be the principal reason for the too low speedup 
estimations. Neglecting the forward substitution accounted for only a few per- 
cents of the error. Nevertheless, time and speedup estimation reflect the true 
behavior of the algorithm very well. The only exception is the too prominent 
appearance of the log(p) term of the cyclic reduction for the small problem size 
(n, k) = (10000, 10). 

4 C o n c l u s i o n s  

We have shown that the execution time of the single width separator algorithm 
for solving banded systems of linear equations can be estimated reasonably well 
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by  a careful  ana lys is  of  the  i m p o r t a n t  componen t s  of  the  a lgo r i thm.  This  makes  
i t  poss ible  to  pred ic t  the  speedup  t ha t  is to be expec ted  if a ce r ta in  n u m b e r  
of  processors  is employed  to solve a p rob lem of a cer ta in  size. As the  speedup  
canno t  increase u n b o u n d e d l y  for a fixed p rob l em size, these e s t ima te s  make  i t  
poss ib le  to de t e rmine  the processor  number  wi th  which the p rob l e m is solved 
fas tes t  or wi th  a desired speedup  or t u r n a r o u n d  t ime .  
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