
Workshop 07

Parallel Numerical
Algorithms

Optimization of the
ScaLAPACK L U Factorization Routine

Using Communication/Computation Overlap*

F. Desprez 1, S. Domas 1 and B. Tourancheau 1

LIP, ENS Lyon, CNRS URA 1398, INRIA Rh6ne-Alpes
46, Allde d'Italie, 69364 LYON cedex 07, France

Abs t r ac t . This paper presents some optimizations based on commu-
nications/computations overlap for the ScaLAPACK LU factorization.
First a theoretical computation of the optimal block size is given for the
block scattered decomposition of the matrix. Two optimizations of this
routine are presented that use asynchronous communications to hide the
communication overhead and to obtain optimal speed-ups.

1 Introduct ion

The LU factorization is the kernel of many applications. Thus, the importance of
optimizing this routine has not to be proven because of the increasing demand
for solving large dense system. Its efficient parallel implementat ion can bring
real improvements in the execution speed of the whole application. High per-
formances are obtained on vector machines, but a prohibitive cost. Distributed
memory machines seem to be a good balance between performances and cost.

Portabi l i ty is one of the key issue of computer programming. Many libraries
have been designed to ensure portabil i ty and performances across multiple ar-
chitectures. The BLAS [5, 7] and LAPACK [6] are available on many platforms,
provided by computers vendors. LU factorization was released in the LAPACK
package, using levels 1, 2 and 3 BLAS. ScaLAPACK [1] contains the parallel
version of subsets of the BLAS and LAPACK and has been designed to ensure
portability, performances and ease of use across many parallel machines. Matri-
ces are distributed in a block scattered way. Parallelism is hidden in a parallel
version of the BLAS called PBLAS [1]. Communicat ions between processors on
a virtual grid are done using the BLACS package.

Various methods have been proposed to improve the parallel LU factoriza-
tion. The corresponding papers present experiments which are sometimes con-
firmed by complexity studies [1, 2, 4, 8]. They are presented in our technical
report [3].

The a im of this paper is to show that improvements can be obtained in
the existing ScaLAPACK LU factorization routine by the use of communica-
t ion /computa t ion overlap.

* This work has been supported by the INRIA RhSne-Alpes and the EUREKA-
EUROTOPS project.

2 P a r a l l e l b l o c k L U d e c o m p o s i t i o n

The block LU decomposition consists in three phases, repeated as many times as
there are block columns to be factorized in the global matrix: instead of working
on a single column of the global matr ix A at a time, r columns are factored at
each step. And for convenience, the local L and U matrices are stored in place
of the matr ix to be decomposed.

 0o0) (00 01
Alo All J = \ Llo Lll * 0 g u]

Three steps are thus necessary to compute the LU factorization of a matrix.
In order to obtain (L00, L10) and Uoo, a simple Gaussian elimination is computed
oll (A::) (LooUoo = A00 and LloUoo = A10). The U01 block is obtained by a
triangular solve (LooUol = Aol). LMUu is obtained using equation L10U01 +
L n U u = All . A matr ix product is needed (An - LloUol). The three steps are
recursively computed on L n U u to obtain Ll l and Uu.

In ScaLAPACK, the parallel LU factorization uses a block scattered de-
composition of matr ix A on a P x Q processors grid. The M x N matrix is
divided in square blocks (r • r). Thus, each processor owns a local matrix with
[M_M__] X [JK_] blocks The general parallel algorithm is given in Figure 1 TRSM

/ ~ X r l 1 ~ X r , " �9 -

is the level 3 BLAS triangular solve routine and _GEMM is the general matrix prod-
uct routine. The ScaLAPACK routines PDGETRF and PDGETF2 execute the block
LU factorization on a matr ix distributed in a block scattered way. PDGETF2 per-
forms the factorization of a block column to compute Loo,Llo, and boo (phase 1
of the general algorithm in Figure 1). PDGETRF calls PDGETF2, then updates the
remaining blocks of the matr ix by computing U01 and L l l . U u (pha,,,e 2 and 3 of
the general algorithm in Figure 1).

3 A n a l y s i s a n d o p t i m i z a t i o n o f t h e S c a L A P A C K L U
f a c t o r i z a t i o n

3.1 C o m p l e x i t y ana lys i s

A prediction of the execution time is important to confirm the experimental
results. In the ScaLAPACK LU factorization, performance depends greatly on
the block size used for the block scattered decomposition. Thus, it is interesting
to compute the optimal block size to avoid a number of tests. It is also interesting
to compute automatically the best data distribution (for parallel compilers, for
example).

The theoretical optimal block size Sb is obtained by an interpolation, based on
experimental measurements (for a given supercomputer) of the s subroutines.
For all subroutines function of Sb (see below), the execution time is expressed
literally as a sum of polynomials (with ai, bi... the coefficients given by the
interpolation), and then derived to find the optimal Sb. The complexities are
given below with Sb as the block size, Bc the number of block columns (or

pco l=O, p r o w = O
f o r k : 0 t o min(Mb, N b) - 1 by s t e p r do

f o r i = 0 t o r - - 1 do / if (my_col = pool) then find pivot and its position

broadcast the two values to all processors
exchange pivot rows phase I

if (my_col =pool) then
div. under-diag, elts. of col. i by piv. /* _GER */

end for
if (my_row =prow) then]

broadcast Loo to all processors of the prow row
solve Loo.Uol = Aol /* _TRSM */ phase 2

end if

broadcast Ll0 on proc. rows and Uox on proc. columns
update Atl 4-A11 -L10.U01 /* _GEMM ,/)phase 3

pcol= (pcol+ 1)modQ, prow = (prow + 1)modP
end f o r

Fig. 1. Parallel block LU factorization using a block scattered data distribution.

rows) in a single processor (i.e. M ~) , Pc the number of processor columns (or

rows) on the grid (the grid is assumed to be squared (P~ processors) in order to
simplify the calculus below) and M the matrix size. The subroutines names are
the BLAS or LAPACK names. We only give the complexity results of the three
most important subroutines but the complete study can be found in [3].

DGER: is executed Sb times for each PDGETF2 call, with a decreasing data
size. The execution time of a single DGER call is quadratic (level 2 BLAS), but a
pseudo-linear time, function of Sb, can replace it: tds~r (i) = adg~r .(i • Sb)+ bd~r
w i t h adger : ~dger X Sb a n d bdger -~ "[dger• Sb + Adger.

Bc Sb-- 1

Tdg~r = Z Pc. Z [(adg~r • j)(Sb X i) + ('Tdg~ • J + Adger)] (1)
i=1 j = l

DTRSM: is executed Bc • Pc time, with a variable data size, multiple of Sb.
The execution time of a single DTRSN call is cubic, but a pseudo-linear time,

.s~ i ,(i • Sb) + bdtrsm, w i t h adtrsm = function of 6"6 can replace it: *dt~sm() = adtr~m

O~dtrs*r~ • ~ -~- fldtrsm • ~b -}- ~dtrsm, a n d bdtr.~m = ~/dtrsm • Sb -I-)~dtrsm.

Br

TWRSM = (i • Sb) + • S b) + (2)
i=1

DGEHM: executed Be • Pc time, with a variable data size, multiple of Sb, The
execution time of a single DGEMM call is cubic, but a quadratic time, function of

2 DTRSM is execu ted one less t ime at m a x i m a l size because of block s ca t t e r ed distr i-
b u t i o n and LU a lgor i thm.

Sb ~
Sb, can replace it: tdgemm(~) = adgeram.(i 2 X S 2) + bdgemm.(Z X Sb) + Cdgeram,
with adgemm : Otdgernrn • Sb, bdgemm : ~dgemm • Sb + ~dgemm and Cdgemrn :
"~dgernrn X Sb "~ ~dgerr~g,..

T , GEMM = • Sb) + bdg r m.(i • + Cdger ,,]
i=X

- [adg~m,~.(B~ x Sb) 2 + bdg~mrn.(B~ • Sb) + Cdg~mm] 3 (3)

3.2 R e s u l t s o n I n t e l P a r a g o n

In order to compute the optimal block size for each code, the derivative of each
complexity over Sb is computed. The total complexity optimum is obtained when
the sum of the derivatives equals zero. Hence, the optimal block size is given
by the resolution of a third degree equation. We computed the three roots for
different grid sizes and matrix sizes, from the coefficients (ai, bi ...) found on
an Intel Paragon at Lyon. Only one solution was positive each time. Results
are given in table 1. It gives the theoretical optimal block size as a function of
different grid sizes and matrix sizes (1000 signifies a 1000 • 1000 matrix in double
precision). For a 4 x 4 grid and up to matrix size 4000, experimental results are
also given.

matr ix size
grid size

100012000130001400015000160001700018000
4 • 4 8 .31 9.28 9.64 9.83 9.94 10.0 10.1 10.1

4 • 8- 9 8 8 10 / / / /
8 • 8 7 .38 8.38 8.79 9.03 9.17 9.27 9.35 9.41

16 • 16 7.26 8.0 8.38 8.61 8.77 8.88 8.96 9.03

Table 1. Optimal block size on Lyon Intel Paragon.

Five important points have to be noticed. Theoretical optimal block sizes are
not exactly the same as experimental ones but they range between 7.2 and 10.1.
Actual tests give an optimal block size of 8 or 10 on a 4 • 4 grid. 4 The theoret-
ical optimal block size is a function of the matrix size, and raises up to a top
value around 10. Thus, a "good" theoretical block size is given by the asymptotic
value. The optimal block size does not very depend on the number of processors.
Asymptotic values are 9 for 256 processors and 10 for 16. Again, experimental
results confirm this point. The grid is assumed to be squared for convenience.
According to experimental results, the grid shape has no real influence on the
optimal block size, though it greatly influences the execution time [1]. A rect-
angular grid with few rows of processors works faster than a square grid : there
are less communications since pivoting is achieved more often in local memory.
Results are identical if only the subroutines DGER, DTRSH, and DGEI~I~ are used
for block size computation (they represent 95% of total computation time).

4 A size of 16 was found on previous tests. It has been done on the same machine
but with an older version of the operating system. Results depend greatly on the
machine and its system.

3.3 Op t imiz a t ions

The ScaLAPACK version of L U has been implemented in order to be scalable:
each subroutine call is a BLAS or BLACS call. These two libraries are already
fully optimized for a lot of computers. Furthermore, the minimal number of
operations to achieve a L U factorization is well-known (-~n 3 + 2n2). Thus, only
communicat ion phases can be optimized since the computat ion t ime is fixed.
Asynchronous messages are used to overlap communications with computat ions.

B r o a d c a s t o v e r l a p By looking closely at the algorithm, we can see that pro-
cessors are often waiting results from other processors. During the block column
decomposition, only a processor column is working. And only one processor row
is working during the triangular solve. This brings us to the first optimization
solution: " I n s t e a d o f b r o a d c a s t i n g (L00, L10) p a n e l b e f o r e t h e t r i a n g u l a r
so lve (_TRSM), do it at t h e s a m e t i m e . " This means that general synchronous
BLACS broadcasting routines (_GEBS2D and _GEBR2D) are used on processors
tha t do not compute _TRSM, and asynchronous communications are used to send
(Loo,Llo) during _TRSll on processors that compute it. Therefore, the single
block L00 must be broadcast on the current processor row to perform _TRSM.
But it takes less t ime than broadcasting (L00, L10). This solution seems inter-
esting since, at each step i of the factorization, we gain the broadcasting t ime
of Pb -- i -- 1 blocks, compared to the original version. But, unfortunately, that
gain represents only 1 to 2 percents of total factorization t ime (on the Paragon
system). This is due to the number of times this broadcast is done (only PD -- 1
times).

R o w s p i v o t i n g o v e r l a p It appears that an opt imal speed-up cannot be ob-
tained until a communicat ion phase is overlapped most of the time. Thus, it is
interesting to overlap the pivoting t ime since it is executed for each row of the
matr ix: " I n s t e a d o f b r o a d c a s t i n g p i v o t i n f o r m a t i o n s a n d t h e n e x c h a n g -
ing r o w s a f t e r t h e (A00, A10) d e c o m p o s i t i o n , do i t a t t h e s a m e t i m e . "
This means that we can use the DSCAL time of the processors column which de-
compose (A00, A10), to exchange current and real pivot rows using asynchronous
communications. Then we use the DGER time to send asynchronously the pivot
informations to the next processor in the processors row. Thus, as soon as this
processor receives pivot informations, it can exchange the rows for pivoting and
send the information to the next processor in the row. And so on, until the
last processor on the pseudo-ring receives its data. During this step, the block
colunm decomposition continues on the processor column.

Figure 2 represents the different steps of these operations for an 64 x 64
mat r ix distributed on a 4 x 4 grid using a 8 • 8 block size. We explain this
example in the following:

s t e p 1: This is the k th iteration of PDGETF2. The real pivot row has been found
on processor 11. Then, processor 15, that owns the current pivot row k, divides
the current pivot by the real pivot and asynchronously send the whole k th r o w to
processor 11. After, it proceeds with DSCAL and after, waits for the completion
of the asynchronous send and receives the real pivot row. Identically, processor
11 asynchronously sends the whole pivot row to processor 15 and computes the

step 1
:...." .'...., ...'..._'.. "

0 , l l ~ , I i

2"" : % ' " : g ' " 1~" "

i" i" i"
1

D ~ X L

step 4

" ' " " " ' : ' " L ' " r ' " " ' ~ , T ' " ' "

, , , , ~0,~ ,~ ; ,, ,
l l l , l ; l

, ,~ o ,l ,a ,~

. . . . Ll[,::_l__lL[;..-;.! L , : / =

.,..

.... i-v I llla--!T-r~--i;; -.
I III

v s c ~

step 2

~ x 0 ; 1 i 2 0 ; 1 ;2 ;3 ~ ; i ;
'IN.,': ', , I ', ', '....,...,....,........,...,

.......:....-....U.
1o,11 i ' ' ,

: I ~ : : !

�9 % f~o ,W

step 5

~i[iiio;t ;~ ;~ ', ; '~,,'X; ; ";~;-!~""'"!" ; - !

~o,~ ~] ; ;
;L___,'.___[..~.; i : ' 1

is ', 'i~ 'Is

~e~ 3

~ i' i" i i i i

....
. . . .

3i_._: "

IDAI~|AX

DO.Sign

~ r ~

~ m p~c t r ~

Fig. 2. One iteration of optimized PDGETF2 routine.

DSCAL at the same time. After completion, it receives the current pivot row. In
the best case, processors 15 and 11 do not need to wait for send completion
since the communication is already over when DSCAL ends. In fact, a wait state
appears with a very large matrix, when their size reaches memory size limits.
In this case, the DSCAL time does not completely overlap the communication
time, since DSCAL domain size decreases each step. Other processors in the pivot
processor column just execute the DSCAL routine.

s t e p 2: DSCAL and pivoting is done. Now, the local sub-matrix must be
updated with DGER. Processors 15 and 11 use this time to send the pivot in-
formation to their right neighbor on a pseudo-ring made from the processors
row. In Figure 2, a pseudo-ring is (12, 13, 14, 15), and the right neighbor of 15 is
12. Processors 12 and 8 are just waiting for pivot information using a blocking
receive.

s t e p 3: processors 12 and 8 have just received the pivot information. They
can now exchange the U h row and the pivot row, and send the pivot informations
to their right neighbor. Meanwhile, processors in the pivot column continue the
decomposition, finding the pivot and its position, broadcasting the local pivot
r o w , . . .

s t e p 4: as in step 1, DSCAL is overlapped by an asynchronous exchange of
current and real pivot row. But now, processors 13 and 9 are working, exchanging
rows, instead of waiting for the completion of PDGETF2 to work.

s t e p 5: as in step 2, but with two more processors working.

3.4 E x p e r i m e n t a l r e s u l t s

All experimental results have been obtained on Intel Paragon systems, with var-
ious grid sizes, on two different machines (ORNL, Tennessee, and Lyon, France).
These two machines have not the same version of the operating system and it
appeared that it leads to different experimental results. There are four different
grid sizes: 4 x 4, 6 x 5 (Lyon), 8 x 8, and 16 x 16 (ORNL).

A block size of 16 appears to be the opt imal value for the LU factorization
on the ORNL system, and 8 on the Lyon system. So, all Mflops are given for
these block sizes and one RHS vector for the solve computat ion.

Figure 3 shows a comparison between optimized and non-optimized results
for a 16 x 16 grid. The optimized version grows faster (in Mflops) than the non-
optimized, before becoming almost parallel. Indeed, it works better for small
mat r ix sizes (< 375 x Pc with Pc, the number of column of processors) because the
DSCAI. t ime can completely overlap the communication t ime of the pivoting rows.
After this limit, processors have to wait for the completion of the communication.

Figure 4 shows the gain in percents over the non-optimized version, for 8 x 8
and 16 x 16 grids. It can reach 15% for small matr ix sizes, and stay above 4%
for the largest matr ix size that can be allocated. This figure confirms that the
speed-up progressively decreases for a mat r ix size greater than 375 x Pc.

7OOO

6OO0

50OO

4m0

3000

2000

Z

2(X~ 4OOO GO00 80O0 100OO 1~C@0 14(~0 1Gong 1echo

See of the m a s (d~ble~)

22 I

Z0 I

1el

I11

sreea~p in % on a e~e ~ a

SLZe oI the m~ti~ (d~bi~)

Fig. 3. Experimental results on a 16 • 16 Fig. 4. Gain on the 8 x 8 and 16 • 16 grids.
grid.

10

4 C o n c l u s i o n a n d f u t u r e work

After a description of the LU Mgorithm in ScaLAPACK, a complete analysis of
complexity has been presented. This theoretical model allows the computat ion of
the opt imal block size for the block scattered decomposition. Thus, it is possible
to have the best performance with a simple pre-computation. The second part
has presented two optimizations based on communication / computat ion overlap.
In the two cases, our aim was to "hide" the t ime of some large communication
phases. Furthermore, it allows to reduce the idle t ime of some processors that
are waiting results from other to continue the execution.

All experimentations have been clone on Paragon systems but the methods
presented in this paper are general. Thus, they can be applied to any supercom-
puter. Meanwhile, some hints can be given. All the updates have been done using
Paragon system calls syntax. Asynchronous BLACS do not exist. Consequently,
our code is not portable. But the modifications are simple enough to be rewrit-
ten on any supercomputer. The speed-up decreases as the matr ix size grows:
the DSCAL time becomes not big enough to overlap the communications due to
pivoting. Thus, another routine could be used to overlap such communications
(like DGER, or DGEMM). The optimal block size computat ion is also interesting as
input for parallel compilers because it gives the best data distribution for a given
mat r ix size, and number of processors.

We are now working on the computat ion of optimal distributions and grain
size when BLAS routines are chained.

R e f e r e n c e s

1. J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R.C. Whaley. LAPACK Working Note: ScaLAPACK: A Portable
Linear Algebra Library for Distributed Memory Computers - Design Issues and
Performances. Technical Report 95, CS Dept - Univ. of Tennessee, 1995.

2. E. Chu and A. George. Gaussian Elimination with Partial Pivoting and Load Bal-
ancing on a Multiprocessor. Parallel Computing, 5:65-74, 1987.

3. F. Desprez, S. Domas, and B. Tourancheau. Optimization of Parallel LU Factoriza-
tion by Communication Overlap. Technical Report ???, LIP - ENS Lyon, 1996.

4. F. Desprez, J.J. Dongarra, and B. Tourancheau. Performance Complexity of LU
Factorization with Efficient Pipelining and Overlap on a Multiprocessor. Parallel
Processing Letters, 5-II, 1995.

5. J.J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A Set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1-17, 1990.

6. J.J. Dongarra, R. Van De Geijn, and D.W. Walker. A Look at Dense Linear Algebra
Libraries. Technical Report ORNL/TM-12126, Oak Ridge Nat. Lab., July 1992.

7. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subpro-
grams for Fortrml Usage. ACM Trans. Math. Soft., 5:308-323, 1979.

8. B.V. Purushotham, A. Basu, P.S. Kumar, and L.M. Patnalk. Performance Estima-
tion of LU Factorisation on Message Passing Multiprocessors. Parallel Processing
Letters, 2(1):51-60, 1992.

