
T A S K - D R I V E N S U P E R V I S O R Y C O N T R O L

OF D I S C R E T E E V E N T S Y S T E M S

CH. Golaszewski and R.P. Kurshan

AT&T Bell Laboratories, Murray Hill, NJ 07974

A b s t r a c t

The supervisory control framework formulated by Ramadge and Wonham i8 ez~ended
to allow the synthesis of supervisors which control a given system to perform an arbi-
tra~ w-regular task specified by a nondeterministic Bgchi automaton. To this end, the
supervisory control paradigm is applied to R.P. Kurshan% L.procenses which provide a
convenient model for nonterrainating discrete event system behaviors. Necessary and
sufficien~ conditions for the eziatence of supervisor8 are derived and the synthesis of
supervisors is discussed.

1. I n t r o d u c t i o n

One of the goals of supervisory control for discrete event systems is the synthesis of su-
pervisors which guarantee that the closed-loop (or supervised) system performs certain
prescribed tasks. In this paper a task is assumed to be specified by an w-regular lan-
guage defined by a Bfichi automaton. The given discrete event system is not constrained
to be completely observable, i.e., it may be required to synthesize a supervisor for the
system which cannot observe all system events and which may not possess complete
state information about the system.

To motivate our study, consider a communication system consisting of a sender A,
a receiver/3 and an unreliable channel C which nondeterministically loses packets. A
standard problem is to design a supervisor (communication protocol) that ensures that
a packet sent by A is eventually received by/3 , under the assumption that the channel
eventually delivers some message which was transmitted by A. The channel can delay
packets arbitrarily long, the loss of a message is unobservable and all components operate
asynchronously. Thus, based on the past observations of the system trajectory it cannot
be decided whether a packet which was not received was actually lost or will be received
at some point in the future. Consequently, a supervisor which is to guarantee packet
delivery must at some point cause retransmission of that message, irrespective of the
event of packet loss. The timing of this retrausmission is not critical, and for ei~ciency
may be adjusted with consideration of system component delay. Therefore, it is natural
to model the supervisory event which causes retransmission as a nondeterministic control
action. However, in order for the supervisor to fulfill its required task, it will often be
required to satisfy certain obligations eventually. These considerations lead in a natural
way to the definition of the supervisor as a nondeterministic automaton with acceptance
conditions for infinite sequences.

The major new contribution of this paper is a synthesis procedure for Biichi super-
visors. These can be understood as supervisors that for certain states of the system may
choose nondeterministically between several control actions. The choice is not forever

283

arbitrary, however, as we require that eventually some particular sequence of control ac-
tions is selected; this ultimate occurrence of sequences of control actions is characterized
by automata acceptance conditions. Allowing nondeterminism in the supervisor permits
to defer certain timing and sequencing decisions to a lower level of system design, while
at the same time providing "place holders" during the high-level supervisor synthesis.
It was already illustrated with the previous example that such an extension is needed
for the synthesis of communication protocols. Lacking this feature, the RW-Model can-
not be applied directly to the synthesis of, say, communication protocols as they are
conventionally modeled. For example, Cieslak et al. had to include the structure of the
alternating bit protocol in the model of the open-loop system in order to derive their
solution in [2]. Clearly, a general synthesis procedure should not require much knowl-
edge about the solution. This suggests that the basic RW-Model lacks certain features
that are necessary to synthesize a supervisor for this class of systems.

The present investigation is by no means the first attempt to extend the R.W-Model
so that it can be applied to a larger class of supervisory control problems. For example,
recently it was realized by Thistle and Wonham, and R.amadge that one important as-
pect absent from the basic model is the notion of periodic and asymptotic behaviors of
discrete event systems. This led to proposals for extensions of the ltW-Model to include
infinite sequences ([8,10]). These approaches are very similar in spirit in that they both
extend the notion of string controllability of the basic model to the prefix set of (infinite)
sequences. The extended model was used to pose and solve several interesting super-
visory control problems ([3,8]). However, these extensions do not address the problem
of achieving a desired sequential closed-loop behavior which is neither realizable ([10])
nor topologically closed ([8]). Simply stated, this framework applies only to the case of
transition structures which are structurally incapable of generating irnCinite sequences
incompatible with the given task. We show in this paper that this is too restrictive in
the context of communication protocols. Instead, by defining the supervisor as a non-
deterministic L-process, we may place constraints on the eventuality of the closed-loop
behavior to exclude arbitrarily long but finite periods of behavior, which, if continued
forever, would constitute a failure of the system.

Some of our research overlaps with work done by Brave et al. in [1] and C)zveren
et al. in [0]; our independently derived results differ from the work of both of these
groups, though. Their research is focused on the synthesis of deterministic supervisors
which guarantee that the closed-loop system visits a given subset of states infinitely
often. In contrast, we use a formal framework for the infinite behavior of discrete
event systems, which includes B/ichi supervisors and L-processes, to pose and solve
supervisory synthesis problems for w-regular tasks.

The organization of the paper is as follows. In Section 2 the discrete event system
model is reviewed. Section 3 introduces the control-theoretic framework used in the
paper. Section 4 discusses the existence and synthesis of supervisors for fully observable
systems and in Section 5 these results are extended to the general case.

2. L-Proces se s

In this paper, the logical behavior of discrete event systems is modeled by L-proceases.
The reason is that L-processes are a class of automata with a simple (polynomial)

284

product and the property that the language of the product system is the intersection of
the languages of the subsystems. We will review only the basic de6n~tions; for a detailed
presentation we refer to [4].

Let L = (L, + , *, ,~, 0,1) be a Boolean algebra over the set L. A Boolean algebra L
admits a part ial order < defined by x < y if and only if x * y -- x. An atom of L is a
minimal element with respect to this order.

Let L1, . . . ,Lk be subalgebras of L. Define their product

b

II }
i=1 jEJ

Clearly, 1-I Li is a subalgebra of L. L1 , . . . , Lk are independent if

0 ~ zi 6 Li for i = 1 , . . . , k =~ Zl * . . . * X k ~ O.

Subalgebras will be used later to describe the concurrent operation of several discrete
event processes.

Let V be a non-empty set. The map M : V x V --* L is an L-matrix with state
space V(M); the elements of V(M) are the states of M. It is deterministic if for all
u,v ,w 6 V(M), v ¢ w =~ M(u,v) • M(u,w) = 0, and complete if for all v 6 V(M)

M (v , w) = l.
v~EV(M)

Let M and N be L-matrices over the same Boolean algebra L. Their ter ror product
M ® N is defined by

(M ® N)((v, w), (v', w')) = M(v, v') • N(w, w').

Given an L-matr ix M, a sequence s 6 L °; and a sequence of states w 6 V(M) °~, we
call w a state trajectory of s s tart ing at q if Wo = q and si * M(wi,wi+l) ~£ 0 for all i.

An L-automato is a qu ruple r = (Mr,I(r) , R(r), z (r)) , where Mr, the state
transition matrix, is a complete L-matrix, • ~ I (F) C_. V(Mr) are the initial states,
U(F) C_ V(Mr) are the recurring states (Bilchi states), and Z(F) C_ 2V(Mr) is the cycle
set.

Denote the set of all sequences of atoms of L by S(L) w. A sequence s 6 S(L) °~
is F-cyclic if for some N > 0 and some C 6 Z(F), the corresponding state trajectory
w satisfies wi 6 C for all i > N; it is F-recurring if wi 6 U(F) for infinitely many i.
A sequence s 6 S(L) w is a tape of r if it is F-cyclic or F-recurring. The behavior (or
language) £:(F) accepted by F is the set of tapes of F.

a n Z-process G is a qnintuple G = (Ma, aa , Z(G), V(G), Z(G)), where Me, Z(G),
U(G), and Z(G) are as in the definition of an L-automaton in the previous section.
However, MG is not required to be complete. Finally, SG is the nondeterministie se-
lection function SG : V(G) ---r 2 L. We restrict at tent ion to the case where SG(q) is an
atom for every q 6 V(G).

A selection z 6 SG(q) enables the state transition q --+ p if x * MG(q,p) # O. We

285

also require that
Ma(q,v) < ~ x. (2.1)

per(a) ~esa(q)

If equality holds in (2.1) for all q E V(G), and if 0 ¢ SG(q), then G is said to be
lookup-free. (This is similar to the notion of nonbloeking in [8].)

In eontrast to the definition of a tape for an L-automaton, an element s of S(L) t°
is a tape for G if and only if it is not G-cyclic and not G-recurring. If s E S(L) w is not
a tape for G because it is G-cyclic or G-recurring, then s is said to be ezeepted from the
language of G. The behavior (or language)/;(G) generated by an L-process G is the set
of all tapes of G.

The concurrent operation of several discrete event processes is modeled as foUows:
each individual component system is represented by an Li-process Gi over a Boolean
algebra Li. The algebras Li can be interpreted as subalgebras of a Boolean algebra L
which is given by the product L = l-Ii Li. This procedure associates with each Li-process
a corresponding L-process.

Given L-processes G1 , . . . , Gk define their synchronous product to be

k
G = (~ G~ = (Me, sa , z(G), U(G), Z(G)) =

i=1

(,__61) = M ~ , , s~,,Z(al) X . . . × z (o k) , U ~ v (a ,) , U ~ z (a ,) ,
i=1 i=1

where lr G denotes the projection G × / - / ~ G and

SG, (ql ,-- . ,qk) = {Xl * . . . *XklXi e SG,(qi),i = 1 , . . . , k } .

The model described so far applies to the concurrent operation of synchronous
discrete event processes, i.e., state transitions occur simultaneously in the component
processes. To model partially and completely asynchronous selections we introduce two
additional selections called wait and pause, respectively. A process can select pause
independently of the selections of the other processes and, for example, use pause to
self-loop for an undetermined amount of "time." The wait selection is used to model the
case where the possible state transitions of a process depend on the selections of other
processes. Until this process can proceed it remains at the current state (in a self-loop)
by selecting wait.

Consider two alphabets E1 and E2, and let ¢: E1 ~ E2 be an arbitrary map. We
can extend ¢ to a language homomorphism ~ -.4 ~ in the usual fashion by setting
¢(~) = ¢ (~ 1) ¢ (~ 2) . . . for all ~ e s~'.

Let G1 be an Ll-process over the alphabet E1 and G2 be an L2-process over
the alphabet E2. The pair • = (% ¢), with ~o: V(Ga) ~ V(G2) and ¢ a language

286

homomorphlsm, is said to be a process horaoraorphism if

a E Ml(v,w) =~ ¢(a) E M2(~o(v),cp(w)). (2.2)

Now let G be an L-process, not necessarily deterministic. Define a binary relation
q2 on V(G) × V(G) according to

(1) for all q e y (a) , (q,q) e and
(2) (p, q) E q~ if there exists (u, v) E • such that a e M(u, p) and a e M(v, q) for some

n E E .

A pair of states (p, q) E qs is said to be indistinguishable. Note that in general q¢ is
not an equivalence relation.

For two relations q21 and ¢22, a partial order is defined in the usual fashion:

q21 < q22 ¢~ ((p,q) e q21 =~ (p,q) e q22).

Partial or incomplete observations of the tapes of G are modeled by letting the
language homomorphism ¢ be a projection onto a subset of the alphabet. In this case,
ker(¢) = {a E ~ : ¢(a) = 1} induces a binary relation on V(G) × V(G) via (2.2).

3. Tasks and Supe rv i so r s

For a given L-process G with behavior £(G) we can specify its admissible behavior f:.
In this paper £ is assumed to be an w-regular language. Thus a task can be represented
by a deterministic L-automaton T. A standard verification problem is to decide if
£(G) C £. Suppose this condition fails to hold, but there exists some L-process C such
that ~:(G ® C) C/2: In situations where G is independent from its environment this
cannot happen. However, it is often the case that some (but not necessarily all) of the
state transitions of G depend on shared or controllable variables which can be accessed
by other processes. Thus, the language L(G) can be restricted to a subset by external
control selections.

We call the L-process C in (3.1), if it exists, a Bgehi supervisor (or supervisor) for
G with respect to the ~ask £. Note that we permit a supervisor to be an L-process with
nondeterministic selection function. Hence, certain control selections (or sequences of
control selections) can be required to occur eventually. For example, in the model of
a communication protocol an eventual control action may represent the fact that the
protocol will retransmit a window after a time-out has occurred.

Let h: V(G) --~ 2 V(C) be the map induced by G ® C, which for each tape in
£(G @ C) assigns to the present state q of G the corresponding state(s) h(q) of C. A
state transition M(q,p) of G is disabled, i.e., prevented from occurring, if

SG(q) * Sc(h(q)) * M(q,p) = 0;

otherwise M(q, p) is enabled by C.
Define an equivalence relation ~ on V(G) × V(G) according to

0 = {(q,p) : Sc(h(q)) = Sc(h(p))}

Let B C V(G) be an arbitrary subset. Say that B is controlled-invarian~ if there

287

exists a supervisor C such that every state-trajectory of the process G ® C, once it
enters B, remains indefinitely inside B. A state q q V(G) is B-steerable, if there exists
a supervisor C such that for all p • V(G), Sc(h(q)) * MG(q,p) = 1, implies that p is
either B-steerable or an element of B.

Now consider two tasks T1 and T2 and suppose C1 and C2 are two supervisors with

£(G®C1) - -£1 CL:(T1) and / : (G®C2)- - -~2 _C~(T2).

It is natural to require that supervisors which control the same system do not share
control variables. From Proposition 4.9 in [6] it follows that if G, C1 and C2 are
independent L-processes, i.e., there exist independent subalgebras LG, L1 and L2 such
that

s a = I.J SG(q) c_ La, so, = [.J sc,(q) c Zl
q6V(G) q6Y(Cl)

and

then

sc = l.) Sc,(q)cL ,
qeV(C2)

£(G ® C1 ® C2) = £1 n £2,

and the resulting product system is lockup-free.
Now suppose we are given an L-process G, a task T and a supervisor C satisfying

Z(G ® C) C f.(T), i.e., G is controllable relative to T. Furthermore suppose that for
some reason (e.g. distributed implementation) we desire to partition T into subtasks
T1, . . . ,T,, with £(T) = £:(Tt) N . . . N Z:(Tn). Since there is a supervisor for T there
also exists a supervisor Ci which implements task Ti. However, if there are two tasks
Ti and Tj such that any pair of supervisors Ci and Cj, which implement the tasks, is
dependent, then it is impossible to realize T through the given subtasks T1 , . . . , Tn.

In certain cases it is possible to eliminate the dependency between supervisors by
introducing new variables. For example, let x E SC 1 NSC~ be a "shared" control variable
and introduce two variables Xl • SG U SC2 and x2 ¢ SG U SCI (possibly by extending
L) and set x = f (x l ,x2) where f is an appropriately chosen Boolean function. At
the present time it is not clear when such an f exists; this question is currently under
investigation.

4. Exis t ence o f Superv i sors : De te rmin i s t i c Case

Consider an L-process G with deterministic resolution and a task T. Our goal is to
derive necessary and sufficient conditions for the existence of a lockup-free supervisor
C such that £(G ® C) c £(T). Intuitively, such a supervisor C exists if all state
trajectories which originate in I(G) and reach a void cycle of uncontrollable events, can
be disabled by appropriately selected control actions.

Recall that any tape of L(G) has to be T-cyclic or T-recurring to be a tape for
JC(T). Since the two acceptance conditions are independent of each other, they are
investigated separately in the next two sections.

288

4.1 La rges t Invar ian t R e c u r r e n t Set

The case of recurrent sets is similar to the problem considered in [1] and [6] in the
context of the RW-Model for supervisory control. The following algorithm computes
the largest invariant recurrent set via a fixpoint iteration:

A l g o r i t h m 1:

g l := ~rG(V(G ® T));
/-/i := =G(U(G ® T));
REPEAT

Ki+l := {q 6 Ki : q is Hi - steerable };
Hi+i := Hi n Ki+i;

UNTIL Hi+i = Hi;

Denote the (unique) fixpoint of the algorithm by H(G) = liml.-,oo Ki. Since we
consider only finite state systems it is clear that the algorithm converges in a finite
number of steps.

P r o p o s i t i o n 4.1. The set H(G) is controlled invariang.

P r o o f . Every state in H(G) is steerable to some other state in H(G). ¢

P r o p o s i t i o n 4.2. Suppose I(G) C_ H(G). Then there exists a lookup.free supervisor C
such thag £(G ® C) C_ £(T).

P r o o f . Follows from control invariauce and the fact that the states of every cycle which
does not intersect U(G ® T) are U(G ® T) ¢3 H(G)-steerable. <~

P r o p o s i t i o n 4.3. Suppose Z(G ® T) = 0. Then there exists a lookup-free supervisor C
such that L(G ® C) C_ L(T) if and only if I(G) C_ H(G).

P r o o f . (if.) This is the statement of Proposition 4.2.
(only if.) Suppose there is a supervisor such that £(G ® C) C £(T). Since Z(G ®

T) = @ this implies that G can control G in such a way that every state trajectory
intersects the set U(G ® T) infinitely often, irrespective of the initial state. But now it
follows from the construction of the set H(G) that I(G) q H(G).

The last proposition implies that, in the absence of cycle sets, Algorithm 1 pro-
duces the largest set of initial states for which a lockup-free supervisor with the desired
properties exists.

289

4.2 Cycle Sets

We proceed in a similar fashion to derive conditions on the set of initial states with
respect to the cycle set.

A l g o r i t h m 2:

FOR ALL K 6 Z(G ® T) DO
A(K) := largest controlled invariant set contained in rrG(K);
H(K) := {q 6 V(G): q is A(K) - steerable };

The computation of the sets A(K) can be done with a variant of Algorithm 1:

V1 := ~'G(K);
H1 := ~G(K);
REPEAT

Y~+l := {q E V~ : q is Hi - steerable };

UNTIL Hi+l = Hi;

For each K 6 Z(G ® T) set A(K) = limi--,oo ~ , i.e., A(K) is the fixpoint of the
above procedure.

The following two propositions summarize the properties of the sets H(K):

Proposit ion 4.4. Suppose I(G) C_ UKeZ(G®T) H(K). Then there exists a lookup-free
supervisor C such that £(G ® C) C f.(T).

Proof . We can assume without loss that there is only one set H(K). Consider the set
D = H(K) - A(K). Since each state in D is A(K)-steerable it follows that the states
on every cycle in D not contained in Z(G ® T) are A(K)-steerable. This implies that
the required supervisor C exists. <>

Proposit ion 4.5. Suppose U(G ® T) = 0. Then there ezists a Iockup-free supervisor
C such that £(G ® C) C £(T) i f and only i f I(G) C UK6Z(G®T) H(K).

Proof . (if.) This is the statement of Proposition 4.4.
(only if.) The argument is identical to the one used for the proof of Proposition

4.3. 0

4.3 Necessary and Sufficient Conditions

The sufficient conditions of the two previous sections can now be combined to yield
necessary and sufficient conditions for the existence of a lockup-free supervisor. Let G
be an L-process and T be a task. With the notation from above define

B = U H(K) u H(G).
KeZCG®T)

290

Theorem 4.1. There ezis~8 a lock.p-free s~pervisor C such $ha~ £(G ® C) C £(T) if
and only if I(G) C_ B.

Proo f . (if). Follows from the previous propositions.
(only if). Suppose/(G) % 13. Then there exists a sequence s E S(G) w starting at

an initial state i n / (G) - / 3 which, independent of any control actions chosen, eventually
reaches a cycle which does not intersect U(G ® T) and is not contained in Z(G ® T).
Hence, there cannot exist a supervisor C with the desired property. <>

4.4 S u p e r v i s o r y Synthes i s

Based on the above theorem the synthesis of a supervisor C for the task T is straight-
forward. We already presented algorithms (Algorithm 1, Algorithm 2) which compute
the sets H(K) for K E Z(G ® T), and H(G). There is a standard procedure in su-
pervisory control to synthesize a lockup-free controller for a controlled invariant set
(see [8]). So, for each of the above sets we can compute a supervisor, say Ci. The
supervisor C I = C 1 @ C 2 @ . . . , forces G to remain inside the set 0f "good" states/3,
provided/(G) C/3. Now extend C I to a supervisor C by excepting all states which cor-
respond to void cycles, i.e., C eventually "interrupts" every cycle in H(G) and f-I(K),
K E Z(G ® T), which does not intersect U(G ® T) and is not contained in Z(G ® T).
Then the language of G ® C satisfies f (G ® C) c_ £(T).

5. Ex i s t ence of Superv isors : Nondetermlnistlc Case
We now consider the case where G is permitted to have nondeterministic resolution;
everything else is llke in the previous section. In the present setting, L-processes with
nondeterministie resolution arise from ones with deterministic resolution and partial
observations. As discussed previously, partial observations are modeled by a language
homomorphism and give rise to a relation • on the state space of G.

It is clear that Algorithms 1 and 2 can still be used to cqmpute the sets H(G) and
H(K). However, the existence of supervisors does no longer follow immediately. For
the moment assume that there is a supervisor C with ~(G ® C) C ~(T), which by some
unspecified means is capable of exact state observations, independent of ~. In this case
a necessary and sufficient condition for the existence of an "ordinary" supervisor C t
with £(G @ C t) = / : (G ® C), whose resolution is limited to ker(~), is that

,z, < o. (5a)

This means that whenever two states are indistinguishable the respective control actions
must be identical.

We contend that the requirement (5.1) is artificial and too severe for many applica-
tions; for example, it is rarely satisfied in communication systems or distributed systems.
On the other hand, if (5.1) fails to hold, then clearly a mechanism is needed that allows
the supervisor to glean the necessary state information from G. Mathematically, we
can always change the system through c!llindrifiea~on and satisfy (5.1). Roughly, this
amounts to refining • by adding new selections to transition conditions, i.e., making G~
more deterministic. In communication systems cylindrlfication is achieved through the
introduction of sequence numbers or time stamps; more generalUy, cylindrification can

291

be interpreted as introducing tags for events. However, to give a generally applicable
practical solution appears difficult and remains an open problem for future research.

6. C o n c l u s i o n

A modified supervisory control framework based on the models proposed by Ramadge
and Wonham ([7]), and by Kurshan ([4]) was presented. We introduced the notion of a
Biichi supervisor to implement arbitrary w-regular behaviors by a feedback control. In
contrast to work along similar lines by other researchers, these behaviors are allowed to
violate the conditions of realizability in [10] and topological closure in [8]. We briefly
discussed the decomposition of complex tasks into subtasks, a topic which will receive
more attention in a future paper..Conditions for the existence of supervisors that lead
to feedback implementations of prespecified w-regular tasks were derived for the case of
L-processes with deterministic state transition matrix.

Future research will address the questions of distributed control, task decomposition
and computational aspects.

References

[1] I. Brave and M. Heymann, "On Stabilization of Discrete-Event Processes", Pro-
ceedings of the BSth Conference on Decision and Control, Tampa, Florida, 1989.

[2] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, "Supervisory Control of Dis-
crete Event Processes with Partial Observations", IBBB Transactions on Automatic
Control, Vol. 33(3), pp. 249-260, March 1988.

[3] C.H. Golaszewski and P.J. Ramadge, "Mutual Exclusion Problems for Discrete
Event Systems with Shared Events", Proceedings of the ~Tth Conference on Deci-
sion and Control, pp. 234-239, Austin, Texas, 1988.

[4] R.P. Kurshan, "Analysis of Discrete Event Coordination", Lecture Notes on Com-
puter Science 430, pp. 414-453, Springer Verlag, 1990.

[5] R.P. Kurshan and C.H. Golaszewski, "An Automaton-Based Approach to the Syn-
thesis of Communication Protocols", in preparation.

[6] C.M. C)zveren and A.S. Willsky, "Output Stabilizability of Discrete Event Dynamic
Systems", Discrete-Event Dynamical Systems", Proceedings of the ~8th Conference
on Decision and Control, Tampa, Florida, 1989.

[7] P.J. Ramadge and W.M. Wonham, "Supervisory Control of a Class of Discrete-
Event Processes", SIAM J. Control and Optimization, Vol. 25(1), pp. 206-230,
January 1987.

[8] P.J. Ramadge, "Some Tractable Supervisory Control Problems for Discrete Event
Systems Modeled by Biiehi Automata", IBEE Transactions on Automatic Control,
Vol. 34(1), pp. 10-19, January 1989.

[9] P.J. Ramadge, "Observability of Discrete Event Systems", Proceedings of the $5th
Conference on Decision and Control, Athens, Greece, 1986.

[10] J.G. Thistle and W.M. Wonham, "On the Synthesis of Supervisors Subject to w-
Language Specifications", ~2nd Annual Conference on Information Sciences and
Systems, Princeton N J, pp.440-444, March 1988.

