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1. I N T R O D U C T I O N  

Finite state automata provide a clear and faithful mathematical repre- 
sentation of digital devices and programs. Since large-scale digital systems 
are generally constructed by interconnecting less complex components, the 
problem of representing such systems in terms of interconnected automata 
has received a great deal of attention in the computer science literature, 
e.g., [COGB86, Hat84, Kur85]. In this paper we describe an algebraic 
automata product, called the feedback product which can be employed to 
emulate the intricate control and component interconnection of a wide vari- 
ety of digital systems 1. A classical Moore machine or finite state transducer 
[HU79] provides a mathematical model of a discrete finite state mechanism 
with output. A feedback product form transducer provides a mathematical 
model of an interconnected system of finite state mechanisms. A product 
form transducer contains some number of component transducers represent- 
ing sub-systems. Each component transducer is associated with a feedback 
function. When input is provided to the product form machine, each feed- 
back function generates an input sequence for its associated transducer. 
The generated sequence depends on the input provided to the product 
machine, the global system state, and the outputs of some or all of the 
other components. Thus, each system transition corresponds to parallel 
computations in each of the components. Because the feedback functions 
can access the outputs of all the components, arbitrary (finite state) syn- 
chronization can be modeled. 

• Generated sequences can be of differing lengths (or empty), so 
components may change state at varying rates. 

This research was funded in part by the O~ce of Naval Research under contract N00014-85-K- 
0398. 

1The feedback product used here is a variation of the general product described in [Gec86]. 
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• A feedback product form transducer can be "multiplied-out" to 
obtain a classical transducer, we remain within the domain of 
finite state machine theory. 

• Since components may, themselves, be in product form, we can 
model multi-layer systems. 

• There is no need to make the alphabets of components and the 
product transducer overlapping or disjoint - -  the feedback func= 
tions, rather than the transition labels, define interactions. 

The feedback productprovides several advantages over inter-connection 
techniques previously described in the computer science literature. Among 
these advantages are: a direct (non-interleaved) model of concurrency, a 
model for systems containing components that change state at differing 
rates, and a natural model of encapsulation and information hiding. The 
feedback product also provides a formal framework for describing concur- 
rent systems without making any assumptions about underlying compu= 
tation environment: e.g., scheduling, storage, or communication mecha- 
nisms. We are interested in specification of operating systems, circuits, 
and real-time controllers. These systems are not implemented within envi= 
ronments that provide uniform, fixed communication primitives, and these 
systems may contain components which have radically different grauulari- 
ties of state change. We are hesitant to accept, for example, the paradigm 
of a concurrent algol=like programming language as fundamental. And we 
are dubious about the prospects of verifying the behavior of systems which 
implement scheduling, storage and communication mechanisms in terms of 
a formal framework which assumes the previous existence and character of 
these mechanisms. 

Direct analysis and definition of product form automata would be rather 
awkward. In preference, we define a modal formal language based on the 
primitive recursive functions [Pet67, Goo57]. The modal primitive recur= 
sire (m.p.r.) functions are evaluated in the implicit context of a product 
form transducer and trace (sequence of transition symbols). The trace is 
intended to represent the sequence of state transitions which have driven 
the transducer from its initial state. We never explicitly construct either 
traces or transducers. Instead, we describe these objects in terms of the 
values that they confer on m.p.r, functions. 

We say a transducer P satisfies a m.p.r, expression E iff E is non-zero 
in the context of (P, w) for every w that does not drive P to an undefined 
state. In other words, P satisfies E iff E is true in every reachable state of 
P. Every m.p.r, boolean expression is, thus, a specification of the class of 
transducers which satisfy it. We can show that some fairly simple exten- 
sions to the primitive recursive functions are sufficient to obtain a powerful 
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and expressive language in which to describe product form transducers. 
Re l a t ed  formal isms.  In some respects, our work is closest to that  

of Clarke et el [CAS83, EHS3] and Ostroff [OW87], who have also used 
modal formalisms to describe finite automata. Our work can be seen as 
providing an alternative semantics for temporal logic based formalism. We 
believe that this semantics solves some of the problems that temporal logic 
presents in terms of composition. Statecharts [Har84] are an extension 
of state diagrams to allow for description of concurrent and composed 
systems. While statecharts are quite expressive, they suffer from some of 
the same limits as traditional state diagrams, e.g., we cannot extend the 
statechart of a 2 bit shift register to obtain the statechart of a 3 bit shift 
register. Furthermore the formal semantics of statecharts is exceedingly 
complex. 

Out l ine .  The remainder of this extended abstract is in 2 sections. Sec- 
tion 2 defines product form automata, the m.p.r, functions, and an inter- 
pretation. In section 3 we show the expressive range of the m.p.r, functions 
and develop some proof methods. 

Notational Preliminaries. Much of the body of this paper is concerned 
with sequences and paths. Let 0 denote the empty sequence and let 
juxtaposition denote sequence concatenation: (a l , . . .  ,a~)(bl, . . .  ,b~) - 

de/u(a) Finally, let de/ (a)u and let u :: a (a l , . . ,a~,bl , . . .  ,b~). Let a : u - 
length(w) be the length function. 

2. FEEDBACK PRODUCTS AND MODAL FUNCTIONS. 

2.1. P r o d u c t  form t ransducers .  We define product form transducers 
inductively. First we define the class P0 of flat product form transducers 

those with no factors. The elements of this class are essentially standard 
Moore machines [HU79]. The class Pi+l of transducers consists of those 
transducers containing at least one factor belonging to Pz, and no factors 
of belonging to Pj  for j > l. The class P is the union over all Pi. 

Each product form transducer contains a tuple of factor product form 
transducer and .feedback functions: (¢1, P1, . . .  , ¢,, Pr). Factors are con- 
nected by making the input to each factor depend on the input to the 
product form automaton, the state of the product form automaton, and 
the outputs of all of the factors. When a product form automaton accepts 
a single input symbol, each factor is provided with a sequence of 0 or more 
input symbols, representing the parallel activity of all the components. 
Note that the transition and output functions can only use the output of 
the factors, and do not see the internal state of factors. 
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Figure 2.1. A product form transducer. 
Feedback 
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P1 - P5 are factors, T is a transition function,  and F1 - F5 are 
feedback functions. 

Definition 2.1. The class of product form transducers 
The class P of product form transducers is the infinite union of 

the classes Pi  for i > O. The class Po consists of all Moore ma- 
Chines. Each class Pz+l of product form transducers is the smallest 
set containing all tuples of the .form: 

P - ( A , O , S ,  s tar t ,~ ,5 , (¢ l ,  P l , . . .  ,¢r, Pr)) 

• A = {1,. . .  n} is a finite transition alphabet, with 0 reserved 
for use as the null transition that leaves state unchanged, 

• 0 = {1,. . .  k} is a finite output alphabet, 
• S - {1 , . . .  h} is a finite state set (called the top-level state 

set), 
• start  6 S is a distinguished start state, 
• Each Pi (0 < i <_ r I is a product form transducer, with l = 

• ~:Sx ..x-O.r-,O, 
• 5 : S x 0.I... x O.r x A ~ S is a transition .function, with 

6(s ,  o l , . . .  ,o , . ,0 )  = s .  
• Each ¢i : S x 0 . 1 . . .  x O.r x A ---, (A.i)* is a feedback function, 

with ¢ , ( s ,  o l , . . . ,  o,,  0) = 0. 

As the product form transducer accepts input, its internal state changes 
according to 6, and the outputs of the factors change according to their 
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own transition and output functions and the feedback functions of the 
product. A configuration is a tuple (s, o l , . . .  , or) representing a state of 
the product form transducer where the top-level state is s, and the output 
of each Pi is oi. We let A(P, w) represent the configuration reached by 
following w fro the initial configuration. Let ¢(P,  w, i) denote the sequence 
generated for Pi by ¢i when the product transducer follows w from its 
initial state. Whenever, A(Pi, ¢(P,  w,i))  is undefined, we want A(P,  w) to 
be also undefined. This means that any trace of a product form transducer 
will not drive any of the factors into undefined states. The language of 
traces £:(P) is simply the set of traces that do not drive A to an undefined 
configuration. 

2.2. The  M o d a l  P r imi t ive  Recurs ive  Funct ions .  The class MPR of 
modal primitive recursive functions includes a sma~ set of initial func- 
tions, and all those functions definable from the initial functions with a 
finite number of applications of an even smaller set of function construc- 
tion rules. The m.p.r, functions form an extension to the class PR of 
primitive recursive functions [Pet67, Smo85]. Every p.r. function is also a 
m.p.r, functions. In fact, m.p.r, functions are simply p.r. functions with 
hidden parameters for a product form transducer and its trace. We first 
define the m.p.r, functions, and then give a partial definition of a map 
p : M P R  ---, P R  which makes the context dependencies explicit. 

Defini t ion 2.2. The class of m.p.r, functions 
The class M P R  of the modal primitive recursive functions consists of all 

the functions which can be generated after a finite number of steps using the 
following rules and the defining rules of the primitive recursive functions. 2. 

(1) Alphabet:  f dej Alphabet,  

(2) o,~tp,,t f,,n~t~on: f(~) d~=f o~,t(~), 
(3) C o m p o n e n t  names:  f de__f Componen t s ,  

(4) P,,mping ,~,mbe,: f dj  p~,mp_n,,mbe,, 
(5) Enabling:  f ( x )  de_f enable(x), 

(6) Feedback: f(~,y) d~_~ e/ye~t(~,y), 
(7) Path oyy~et: f(y,e) ~=~ (ape,~y)g(e), 
(8) ComponenT~ ,selection f (y ,x)  de_f (~nny)g(x). 

ZThe form of this presentation is adapted from [Smo85]. 
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Defini t ion 2.3. A fragment of the evaluation functional, p 
Let P = ((A,O,S,  start,;~,5,(¢1,P1,...¢r, Pr)) 

I f  f '~-----f p u m p _ n u m b e r  
(p f)(P, w,~)d~f size(s), n, size((ppump_number)(P,)) 

If f(x) ~f enabZe(x) 
(p f)(P, w,~) ~S { 01 ifotherwise. ~ :: ~ e L(P) 

If f(~) %f e.ffe,=t(~,y) 

(p f ) ( P , w , x , y , )  ~f= { ~y(A(P,w),x)  otherwise.if 0 < x <_ r; 

If f(y,~) dg (attery)g(~) 
(pf)(P,w,y, ~) ~f (pg)(P, ~y, ~) 

If f(y,~)"f (inny)g(~) 
clef ~ (pg)(Py,¢y($t,?Yd, y),T,)) i f  0 < y ~ r; (pf)(P,w,y,~.) [ 0 otherwise. 

T h e o r e m  2.1. The functional p is an effectively 1-1 map from the m.p.r. 
functions to the p.r. functions. 
Proof .  Note that (pf) is obviously a p.r. function when f is an initial 
m.p.r, function. Proceeding by induction we can see that (p f )  must be 
p.r. for all functions f E M P R .  The function is "effectively" 1-1 because 
for every p.r. function f ,  there is a m.p.r, function, f itself, so that 
f'(~) = (pf)(P, ~,~) = f(~) That it, the map is I-I moduto hiding the 
extra, meaningless arguments. 

3. PROOF SYSTEM 

G°°dstein [Goo57] has described a purely syntactic proof system for p.r. 
functions, and this system is sound for m.p.r functions by the construc- 
tion of p. We need,  however, to provide for modal deductions as well as 
arithmetic deductions. 

3.1. E l e m e n t a r y  p r o o f  me thods .  We find it convenient to be able 
to treat expressions as un-named functions. That is, we might write 

! (inn c) (E h E ) to force ewluation of the entire expression t A t' within the 
context of component c. Similarly, we write (af ter  a)(EA E') to force the 
evaluation of the expression E A E ~ in the state reached via an a transi- 
tion. We can now list some simple results. The first result is that state 
independent functions can be "factored" out of the scope of inn and after .  
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T h e o r e m  3.1. Distributive law for modal functionals. 

(a j2eru) ( f (E1 , . . .  ,E~}) = (a~e~'u) f ( (a f2eru)E~, . . .  , (a~eru)E, , )  

and 

( innc ) ( f (E1 , . . .  ,E,~)) = ( i n n c ) f ( ( i n n c ) E ~ , . . .  , ( innc)E,,)  

The second, trivial, result is that  primitive recursive functions are state 
independent. 

T h e o r e m  3.2. Distributive law for non-modal functions. I f  f is a primi- 
tive recursive function then, 

(af-teru)f(~) = f(:,) = ( innc)f(: , ) .  

A consequence of these two theorems is that  many primitive recursive 
functionals can be factored out of expressions. For example: 

(afteru) E / ( = )  =  (afteru)f(=). 

A more interesting theorem allows inversion of expressions containing nested 
modal modifiers. 

T h e o r e m  3.3. Inversion. 

= effect( ,c))/(e) 

This theorem states that  the result of advancing the entire product state 
machine to the state reached by following u, and then evaluating f (~)  in 
the context of component c, is equal to the result of simply advancing 
component c by the sequence induced by u, and then evaluating f(=). 

The "compositional proof rules" that  are the staple of process based 
formal methods are not necessary in m.p.r, arithmetic. 

3.2. M o d a l  G r a m m a r s  . The most unconventional aspect of our proof 
theory, is the concept of syntactic proofs of finite state reallzability. We 
wiU show that  there are certain syntactic restrictions, so tha t  if f meets 
the restrictions, then f(rTz) defines exactly one (minimal) product form 
automaton. Thus, the construction of f is a proof that  the system specified 
by f(rh) is realizable as a finite state machine. Functions of this restricted 
form are called modal grammars. A modal grammer is a symbolic, and 
highly compact definition of a family of deterministic finite state machines. 
Modal grammars provide both a formal basis for exact specifications, and 
a style of specification that  we find intuitive. In this abstract, we do not 
have space to define modal grammars fully. But a modal grammar is a 
boolean function defined as a conjunction of clauses which describe the 
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alphabet, component set, feedback, and enabling rules of a product form 
transducer. It follows from the existence of modal grammars and theorem 
2.1 that  there is a recursive procedure for deciding o ~  --- t for closed modal 
grammar G and arbitrary closed term t. 

3.3. T e m p o r a l  logic s ty le  func t iona l s .  We let ( s o m e t i m e s u ) f ( n )  be 
true iff f ( n )  > 0 sometime during the computation of u. Similarly, we let 
( a l w a y s u ) f ( n )  be true iff f ( n )  > 0 every state visited by u. We write 
v -~ u to denote tha t  v is a prefix of u, i.e., v -,; u ~-~ (3z)u = vz. Note 
that  u -< u and (/"< u. 

( s o m e t i m e s u ) f ( ~ )  de_.f (3v -< u ) ( a f t e r v ) f ( £ )  > 0 

( a l w a y s u ) f ( £ )  " d~-f (Vv -< u ) ( a f t e r v ) / ( £ )  > 0 

Let Paths( i )  be the set of enabled paths of length i: Paths( i )  - {u : 
enable(u)  h length(u) - i}. We can now state the theorem that  makes 
m.p.r, analogs of temporal logic operators possible. 

T h e o r e m  3.4. There is a total map plen : M P R  --~ M P R  so that: 

(~u) ( ¢ e ~ u ) / ( ~ )  > 0 
--, (3u e Paths((plen f ) ( ~ ) ) ) ( s o m e t i m e s u ) f ( ~ )  

and 
(3u e P aths((plen f)(¢)))(alwaysu)f(x) > 0 

(Vi) (BuinP aths( i) ) ( a lways  u ) f ( x ) 

The implications of theorem 3.4 can be illustrated by considering the 
concepts of eventuality and henceforth. Suppose tha t  we wish to show 
that  f (x)  > 0 is inevitable (eventual). Thus, we need to show tha t  there 
is some i so that  no enabled path of length i or more keeps f ( x )  -- O. 
The second part  of the theorem tells us that  f (x)  is inevitable iff there is 
no enabled path u e Paths((plen f ) (x))  so that  ( a lwaysu ) ( f (x )  = 0). 
Similarly, I ( x )  > 0 after every enabled path iff there is no enabled path 
u e Paths((plen f ) ( x ) )  so that  ( s o m e t i m e s u ) ( f ( x )  -- 0). Thus, we can 
define constructive versions of the temporal logic operators D and (> and 
their existential counterparts. We can also define a m.p.r, analog of the 
temporal logic operator u n t i l .  In the full paper, we show that  the axioms 
of the UB Branching time temporal logic [BAPM83] are valid in m.p.r. 
arithmetic under our definitions. 
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