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Abstract 

This paper presents a technique for formally verifying synchronous circuits 
modelled at the Register Transfer Level of abstraction. The circuit's behavior, 
specification, and hypotheses on its clock sequencing are modelled using a special kind 
of predicate calculus formulas, named transfer formulas. The proof process consists in 
applying two general rules of the predicate calculus in a specific order. The automated 
verification process uses an acyclic graph for representing each transfer formula; in this 
way, the application of the rules is similar to the manipulation of boolean functions 
represented by aeyclic graphs. 

1 Introduction 

An error-free design can be assured using good test vectors for simulation, formal 
verification tools, or silicon compilation. Automated synthesis is the easiest way to 
design a circuit; unfortunately, no existing tool can handle a wide range of circuit 
designs. For example, the VTI CAD system can be used to generate the layout of 
specific components like ROMs, RAMs, PLAs, State Machine, and DataPath, from a 
high level description [16]; but the compilation of a complete synchronous circuit 
(datapath and control parts) is not yet available. The validation of these circuits has to 
be performed with simulation or formal verification tools. Since the complete 
simulation of a large circuit may be impossible, the designer needs other tools to 
ascertain the validity of his design; formal verification has been introduced to fill this 
gap. Much progress has been made in formal verification until now [7]; for example, 
BULL's PRIAM system has proven the functional correctness of circuits of up to 20000 
transistors [11], while the formal verification of a high level description of the RSRE's 
VIPER processor has been carded out with the HOL system [8]. 

This paper presents a formal model to prove that the specification of a 
synchronous circuit is realized by the interconnexion of its components; the circuit 
specification and structural description are model at the RT Level, but memory 
component can be latches (asynchronous parts), i.e. the circuit description is more 
detailed than the circuits with registers only for memory components. Some 
formalisms have been proposed to perform automated RTL verification [4,15], but 
these tools do not handle the presence of latches in the design. The systems HOL [6] and 
VERIFY [3], are accurate formalisms to model the specification and component 
behavior of the proposed kind of circuit; however, the proofs of correctness in these 
systems have to be completely or partially human directed, because of the high 
flexibility of their underlying formalisms. An important feature of a formal 
verification system is its automation because the circuit designer is not interest to 
manage the proof; this goal is also pursued in [17,18], where the Boyer-Moore theorem 
prover is used to verify synchronous design. 



117 

The proposed method is based on a subset of predicate calculus for modelling 
circuit behavior. The proof of correctness of a circuit consists in always applying 
certain logical rules in a specific order, which means that the process can be automated. 
Direct acyclie graphs (DAGs) are used to represent logical formulas since the 
manipulation of these formulas is reduces to the graph-based manipulation of boolean 
functions [5]. 

2 Level of modelling 

The proposed formalism is intended for modelling the behavior of synchronous 
circuit driven with a multiphase clock, where memory elements could be latches or 
registers [1]. Carriers are used to represent the nodes of the circuit [2]: there are clock 
carders, input carriers, output carriers, and internal carriers for a particular circuit. A 
carrier represents a bit vector with a certain length. 

The circuit behavior is modelled at Register Transfer Level [2]; at this level, the 
combinational parts are instantaneous. The time granularity used to model the behavior 
of the circuit components corresponds to the clock phases; a time unit thus corresponds 
to the interval between the middle point of two adjacent active clock phases. For 
example, Figure 1 presents the meaning of the time for a circuit which operates in a 3- 
phase clock mode. This time representation is called the phase-time representation. 
The clock frequency and sequencing is assumed to assure correct timing. 

Phil I"  ... 

Ph i3 - I  [ t+ll t+12 t+13 t ~  t+5 ... 

Figure 1 

The specification of each circuit's component is a set of transfer functions; a 
transfer function specifies the possible value that can take a component's output port (an 
internal or output carder of the circuit). The components are supposed to be already 
verified (bottom-up verification), or they will be verified later (top-down verification). 
Their verification could be performed with other tools of  the CAD system: simulators 
or formal verification tools; in the ideal case, a silicon compiler could be used to 
generate the components' layout from their specification. A transfer function is defined 
for any time t, i.e. for any clock phase. A carrier can have memory or not [5]. If a 
carder is memoryless, its value at time t+l depends only on the value of other carders 
at time t+l; whereas the value of a memory carder at time t+l also depends on the 
value of carders at time t (at the previous clock phase). 

The specification of a circuit consists in providing transfer functions that specified 
the possible values for each output carrier and for certain internal carriers; these 
carders are the observable carriers of the circuit. The time representation used for 
these transfer functions corresponds to the clock cycle; this is the cycle-time 
representation. The circuit's specification is a structural and a temporal abstraction of 
its behavior [13]. In the specification, the value of an observable carder V at the end of 
cycle t+l (at the last phase of this cycle) must depend only on the values of the input 
carders during the cycle and the values of the observable carriers at the end of the 
previous cycle (the cycle t). These transfer functions must be defined for any clock 
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cycle t. To be able to perform the verification of the circuit, the correspondence 
between the cycle-time representation and the phase-time representation has to he 
established. Consider the ease of a d-phase clock: the nth phase of cycle t + 1 (1 < n < 
d) occurs at phase-time d.t + n, i.e. the end of each cycle occurs at a phase-time which is 
a multiple of d. Hypotheses on the value of clock carriers have to be made when the 
circuit behavior is specified. A circuit description is the set of its transfer functions 
which represent the circuit's behavior, the specification, and the hypotheses on the clock 
sequencing. 

3 An example 

Let the behavior of a k-bit latch with input D, output Q, and control line 'load' be 
modelled. The carders D and Q are described by time function returning bit vectors of 
length k, while the 'load' carder is described by a function returning a one bit value. 
The latch behavior can be modelled with the following first-order formula: 

load(t+l) * EQU(Q(t+I),D(t+I)) + load(t+l) * EQO(Q(t+I),Q(t)) 

where '*' stands for logical 'and', '+' for logical 'or', 'EQU' is the equality predicate, 
and the variable t represents a clock phase (t is considered to be universally quantified). 
This formula, called transfer formula, specifies the possible value that can take Q at any 
phase t+l; if load is true at this phase then the latch is transparent, otherwise the latch 
keeps its last value. 

Two of this latches and one multiplexor are interconnected to form the circuit of 
Figure 2; after a clock cycle, the value of B is a new value iff 'we' (Write Enable) is 
high during the second phase. The formulas H1, H2, H3 and H4 constrain the possible 
values for the clock carders while the circuit specification is the formula S. To prove 
that the structure of the circuit meets its specification, it must be shown that the formula 
S is a logical consequence of the formulas H1, H2, H3, H4, and the formulas F1, F2 and 
F3, extracted from the circuit structure; F1 and F2 are latch specification while F3 is 
the multiplexor specification. 

x Y 

Figure 2 

we(2t+2) * EQU~(2t+2),A(2t+2)) + we(2t+2) * EQU(B(2t+2),B(2t)) 
EQU(phil(2t+l),T) 
EQU(phiz(2t+l ),F) 
EQU(phil(2t+2),F) 
EQU(phi2(2t+2),T) 
phi l(t+l) * EQU(X(t+ 1 ),B(t+ 1)) + phi l(t+ 1 ) * EQU(X(t+I),X(t)) 

phi2(t+l ) * EQU(B(t+I),Y(t+I)) + phi2(t+l) * EQU(B(t+I),B(0) 

(s) 
(H1) 

t~3) 
(H4) 

0:1) 

0~) 
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we(t) * EQU(Y(t),A(t)) + we(0 * EQU(Y(0,X(0) if3) 

The following proof demonstrates that the circuit's behavior meets its 
specification. It is straithforward for this small example, but could be tedious for 
larger circuits (note that this proof holds for any width of the datapath). An algorithm 
to perform automatically this kind of proof is proposed in this paper. 

I .  phi2(2t+2 ) * EQU(B(2t+2),Y(2t+2)) + phi2(2t+2) * EQU(B(2t+2),B(2t+I)) 

2. EQU(B(2t+2),Y(2t+2)) 

3. w¢(2t+2) * EQUCY(2t+2),A(2t+2)) + w,(2t+2) * EQUCY(2t+2),X(2t+2)) 
4. we(2t+2) * EQU(B(2t+2),A(2t+2)) + we(2t+2) * EQU(B(2t+2),X(2t+2)) 

5. phi 1(2t+2) * EQU(X(2t+2),B(2t+2)) + phi 1(2t+2) * EQU(X(2t+2),X(2t+I)) 

6. EQU(X(2t+2),X(2t+I)) 

7. w¢(2t+2) * EQU(B(2t+2),A(2t+2)) + we(2t+2) * EQU(B(2t+2),X(2t+I)) 

8. phil(2t+l) * EQU(X(2t+I),B(2t+I)) + phi l(2t+l) * EQU(X(2t+I),X(20) 

9. EQU(X(2t+I),B(2t+I)) 

10. we(2t+2) * EQU(B(2t+2),A(2t+2)) + we(2t+2) * EQU(B(2t+2),B(2t+I)) 

1 I. phi2(2t+l) * EQU(B(2t+I),Y(2t+I)) + phi2(2t+l) * EQO(B(2t+I),B(20) 

12. EQO(B(2t+I),B(20) 

13. we(2t+2) * EQU(B(2t+2),A(2t+2)) + we(2t+2) * EQU(B(2t+2),B(2t)) 

4 Transfer formulas 

F2,[t 12t+I]) 
(1,H4) 

(F3,(t t 2t+2]) 
(2,3) 

~1,[t 12t+U) 
(5,H3) 

(4,6) 

(Fl,[t 120 
(8,m) 

(7,9) 

fF2,[t 12t]) 
(11,H2) 

(10,12) 

In predicate calculus it is possible to use functions that return bit vectors of fixed 
length. The value taken by a carrier of the circuit at a given time can be modelled as a 
time function that returns bit vectors. This kind of function is called a signal, as in [10]. 

Functions can be used also to model high level operators similar to the ones used in 
RT level HDL's [2]. An operator is modelled as a function that returns a bit vector, and 
takes as parameters a (possibly empty) list of bit vectors. The operators have only a 
syntactic meaning, like in [15], i.e. the function of an operator used in the circuit 
specification has to be realized by a component of the circuit. Hierarchical verification 
is favored because the functionality of the operator is verified when the corresponding 
component is verified. 

A signal or an operator that returns a bit vector of length 1 can be considered a 
predicate; it is true if the returned bit is high, and false if the returned bit is low. 
Special kind of formulas, called transfer formulas, are used to model the transfer 
functions. The syntax used for the description of a given circuit is similar to the 
predicate calculus syntax, and corresponds to a subset of first-order predicate calculus 
(with equality) [12]. The syntax uses temporal expression with the form (c.t+n) to 
represent a phase-time; the constant e and n are non-negative integers while the variable 
t can represent a clock phase or a clock cycle. Also, the terms have the type Quadn 

defined as {0,1,~,A}n; this type represents a vector of n values defined as 0, 1, 
undefined or high impedance. Here is the syntax: 

A) Signals: 
A function V: (time) ~ Quadn, is a signal. Each carrier is represented by a signal. 

B) Operators: 
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C) 

D) 

E) 

F) 

1) The function Mk: (Quadnl x ... x Quadnk) ~ Quadn, is associated with each 
operator M of the circuit, 

2) Special operators: 
i) The constant T" 0 ~ Quadl models the truth value "true", and the bit 

high; 
ii) The constant F: 0 ~ Quadl models the truth value "false", and the bit 

low; 
iii) The constant UDn: 0 ~ Quadn models a vector of n undefined values; 
iv) The constant HZn: 0 --~ Quadn models a vector of n high impedance 

values; 
v) The operator BUSn: (Quadn x Quadn) ~ Quadn models the connection 

of two sources (defined like the primitive JOE,/in [3]). 
Terms are defined recursively as: 
1) If I is a temporal expression and S is a signal then SO) is a term, 
2) If V1 ..... Vn are terms and M n an operator, then Mn(v1 ..... Vn) is a term (the 

type of Vi has to be the same as the specified type of the ith parameter). 
Predicates: 
A term P of type Quadl is considered a predicate, except for HZ1 and UD1. 

Conditions (propositional formulas): 
1) A predicate is a condition, 
2) If G and H are conditions then so are 

i) U (logical not) 
ii) G * H (logical and) 
iii) G + H (logical or). 

Transfers formulas (TFs) for the term U are defined recursively as" 
1) If V is a term then EQU(U,V) is a TF for the term U (this special predicate is 

called atomic TF (ATF)). It means that the term U takes on the value of the 
term V; U is the destination while V is the source (the types of U and V have 
to be the same). 

2) If P is a condition, and F1 and F2 are TF for the term U, then P * F 1 + P * F2 
(IF P THEN F1 ELSE F2) is a TF for the term U. 

In the following, we will assume that the type restrictions are respected in all TFs. 
The only variable that could appear in a TF is the time variable t; it is considered to be 
universally quantified. Therefore, a TF for the term U defines the values that U can 
take for all t. This is the general form of the TF: 

eondl  * EQU(U,U1) + cond2 * EQU(U,U2) + . . .  + condn * EQUCU,Un) 

where the condi are composed from a set P1 .. . . .  Pm of predicates. This formula 
specifies that term U takes the value of the term Ui if condi is satisfied; U can take one 
and only one value because all the condi are mutually disjoint and their union is a 
tautology. These formulas can be represented with direct acyclic graphs (DAGs) if the 
predicates are matched to the nodes of the graph and the atomic TFs EQ(X,Y) are 
matched to the leaves ~igure 3). The difference of TFs with boolean functions is that 
more than two values can be transferred in the TFs. A boolean TF is a TF where each 
Ui is T or F; its representation is the same as for a boolean function. The reduction 
algorithm for the DAGs that represent boolean functions proposed in [5] can be applied 
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in the same way as for the DAGs that represent TFs. Moreover, as in the case of 
boolean functions, there exists a canonical form for these DAGs. 

EQU(U,UI) ] 

Figure 3 

For a given circuit operating in d-phase mode, the description is modelled with 
specific TFs. For the specification, a TF is defined for each observable carrier at time 
dt+d (the end of the cycle); its value depends on the value of input carriers at a time 
between dt+d and dt, and on the value of the observable carriers at the time dt. For the 
hypotheses on the clock sequencing, a TF is defined for each clock carrier at time dt+n, 
1 < n < d; its value is either true or false depending on whether or not the clock carrier 
is active at the nth phase. For the behavior, a TF is defined for each internal and output 
carrier; if the carrier is a memory cartier, its value at time t+l depends on the value of 
the other carriers at time t+l and t, otherwise, its value at time t depends only on the 
value of the other carriers at time t. 

Example of  a circuit description: The circuit NextPC (Figure 4), operating with a 
2-phase clock, computes the future value of the PC. At the end of a cycle if the flags' 
value satisfies the jump condition (JC) then the PC takes on the value of the jump 
address (JA); otherwise the last value of the PC (the one at the end of the previous 
cycle) is incremented by 1. The increment operation is modelled with the operator INC 
while the test condition is modelled with the operator SATISFY; it is assumed that these 
operators have a verified implementation. 

The specification of NextPC is modelled with the transfer formula S while the 
formulas F1, F2, F3, F4 and F5, extracted from the circuit component, modelled the 
circuit behavior. The hypothesis on the clock sequencing are the same as for the circuit 
of Figure 2. 

X . ~ . . _ l ~  I Y 

phi1 

JC ~1 I 
Flag ~='-I Satisfy ,,I 

1 I 

phi2 

Figure 4 

SATISFY(JC(2t+2),Flag(2t+2)) * EQU(PC(2t+2),JA(2t+2)) + 

SATISFY(JC(2t+2),FIag(2t+2)) * EQU(PC(2t+2),INC(PC(2t))) 
(s) 
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phi2(t+l) * EQU(PC(t+I),A(t+I)) + phi2(t+l) * EQU(PC(t+I),PC(t)) 

phi l ( t+l )  * EQU(X(t+I),PC(t+I)) + phil(t+1) * EQU(X(t+I),X(t)) 

jp(t) * EQU(A(t)JA(t)) + jp(t) * EQU(A(t),Y(t)) 

EQU(jp(t),SATISFY(JC(t),Flag(t))) 
EQU(Y(t),INC(X(t))) 

5 Behavioral verification 

fF1) 

&3) 
~4) 
&5) 

With the proposed formalism, the proof of correctness of a circuit consists in 
applying some rules of predicate calculus with the goal of  deriving the transfer 
formulas of the specification from the transfer formulas of the circuit behavior. Let 
F1 ..... Fn be the TFs of the circuit behavior, HI ... . .  Hm be the hypotheses on clock 
sequencing, and S1, .... Sp be the TFs of the circuit specification. The goal is to prove 
that each of the formulas Si is a theorem when the formulas F1 ..... Fn,H1 .... ,Hm are 
taken as assumptions. A transfer formula Si specifies the values that an observable 
carrier V at time dt+d can take as a function of the values of the input carrier between 
the times dt and dt+d, and the values of the observable carriers at the time dt (the 
constant d is the number of phases). This kind of TF is called an observable TF, and is 
defined as: 

Def 1: 

Def 2: 
Def 3: 

Def 4: 

A term U is observable iff one of the following conditions is true: 
i) U has the form S(I) where S is an input signal and I a temporal expression, 
ii) U has the form S(dt) where S is an observable signal, 
iii) U has the form M(A1 ..... An) where M is an n-ary operator and each Ai is 

observable. 
A condition C is observable iff each predicate that occurs in C is observable. 
An atomic transfer formula EQU(U,V) is observable iff the term V is 
observable. 
A TF is observable iff each of its conditions and atomic TFs is observable. 

An observable TF for a term U specifies the values that U can take as a function of 
only the values of the observable carrier at time dt and the values of the input carriers 
at some arbitrary time; the TF Si is an observable TF for the term V(dt+d). Another 
"IF for V(dt+d) can be extracted from the circuit's behavior since the variable t of the 
TF for the carrier V can be replaced by any temporal expression. Now, suppose that 
this TF is transformed in an observable form using logical rules; if this observable 
formula is identical with Si then Si is deduced from the circuit behavior. This is the 
verification technique proposed in this paper. Two specific rules are used to transform 
a TF in an observable form: 

1) The substitution rule: 
Suppose that we have the two following TFs: 

eondl * EQU(U,U1) + eond2* EQU(U,U2) + ... + eondn * EQU(U,Un) (1 .1 )  

G * EQU(P,T) + ~ * EQU(P,F) (1.2) 
The substitution of 1.2 in 1.1 consists in replacing all the occurrences of P in the 
conditions of the TF 1.1 by the condition G of the TF 1.2. 

2) The transition rule: 
Suppose that we have the two following TFs: 
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Cl,l * EQU(U,U1) + ... + Cl.n * EQUCLI,UB) (2.1) 
C2,1 * EQU(V,V1) +... + C2,m * EQU(V,Vra) (2.2) 

The transition of 2.1 with 2.2 consists in replacing all the occurrences of V in the 
terms Ui of 2.1 by its corresponding value specified in 2.2. First, the logical 'and' 
is applied between the two TFs and the following formula is obtained: 

(22,1 * CI,1 * EQUCO,U1) * EQU(V,V1) + . . .  + (22,1 * Cl,n * EQUCO,Un) * EQUfV,V1) 

C2,m * CI,1 * EQUCO,U1) * EQU(V,Vra) + . . .  + C2,m * Cl,n * EQUCU,Un) * EQU(V,Vm) 

This transitive rule for equivalence is applied to each product of atomic TFs: 

EQU(G,H) * EQU(X,Y) => EQU(G,H') where H' is the term H in which the 
occurrences of X are replaced by Y. 

The algorithm used to deduce the observable TF for V(t') (t' = ct+n) consists in 
applying these two rules in a specific order; this algorithm is presented in Figure 5. 
The initial TF is taken from the list of TFs of the circuit behavior (if the signal 
represents an output or an internal carrier), or from the list of TFs of the hypotheses on 
the clock sequencing (if the signal represents a clock carrier). Each non-observable 
predicate P in the conditions of this TF are replaced by its value specified by the 
observable TF for P; this transformation is performed with the application of the 
substitution rule. After, each non-observable source term X of the atomic TF is 
replaced by its value specified by the observable TF for X; this transformation is 
performed with the application of the transition rule. The resulting formula is the 
observable TF for V(t'). 

The application of the two deduction rules is similar to boolean function graph 
manipulation when the TFs are represented with a DAG. The substitution rule consists 
in replacing a predicate P of a TF E by the value specified in the TF D for P. Since the 
TF D is in the boolean form, this rule can be applied in the same way as the 
composition of boolean function. This algorithm generates a graph by applying the 
IF...THEN...ELSE (ITE) function between three graphs: the graph of D, the graph of 
E where P is restricted to the value true, and the graph of E where the value of P is 
restricted to false. When the algorithm reaches the leaves of these graphs, the function 
ITE is applied on three leaves: a leaf that represents a truth value for P, a leaf of E that 
represents an atomic TF when P is true, and a leaf of E that represents an atomic TF 
when P is false. Like for boolean functions, the result leaf depends only on the value of 
the leaf of P. 

The transition of a TF D for U with a TF E for V can be performed in the similar 
way as the application of the logical 'and'. When this function is applied between two 
boolean functions, the logical 'and' is applied only to the pair of leafs' value. To 
perform the transition rule, instead of applying the logical 'and', the equality rule is 
applied to the two leaves EQU(U,Ui) and EQU(V,Vj); the occurrences of the term V in 
the term Ui are replaced by the term Vj. Unlike the application of the logical 'and', the 
equality rule is applied in a strict order. 

Closed loops in the circuit can be detected when the circuit is verified. During the 
recursive application of the algorithm to deduce the initial TF for U, if the term U is 
met, a closed loop in the circuit is detected since the value of the term U depends on the 
value of the term U [1]. With this algorithm, the way to prove that the specification TF 
for the term V(dt+d) is a theorem consists in deducing the observable TF for the term 
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V(dt+d) from the implementation and in showing that it is equivalent to the specified 
"IF. This comparison is carried out by comparing the two DAGs as in [5]. Also, the 
inclusion of formulas can be used to show the correctness of an incomplete 
specification. 

E is a TF for V(O ¢- 
I Let P a non-obsevable predicate j 

yes 

no 1~ 

~et EQU(V(t'),X) a non-observable I 
yes 

E is the observable TF 

! 
I ............. Substitute D in E [ 

¢ 
D be TF for P l 

I 
I Make the transition of E with D I 

L~.,et D be the observable "IF for X ] 

Figure 5 

6 Experimental Results 

A prototype of the proposed verification technique is under development in 
Common Lisp. The example of section 4 was successfully verified in about 30 seconds 
on a Mae Plus. This tools was used in the WORP project [9] at the EPFL, Switzerland; 
WORP (Watch Oriented RISC Processor) is a RISC processor because it has only one 
level of programming and each instruction is executed in 4 phases [14]. Its general 
structure is of the type Harvard, i.e. data and code reside in different memories. It has 
a 21( of 48-bit instructions saved in a ROM, and 256 of 8-bit words of RAM that earl be 
accessed in a relative or absolute mode. 

The circuit is built from the intereonnexion of a ROM, a latches bank, an ALU, 
some working registers, adders, multiplexors, buses, etc. Only a partial verification of 
this processor has been performed up to now. We specify the possible values that can 
be stored in the Index Latch of the processor after the execution of any instruction; 
these values depend on certain fields of the instruction (the ALU code operation, the 
two source registers for the ALU operation, etc.). A closed loop in the circuit's 
behavior was detected during this verification. Once this error corrected, the 
specification has been successfully verified; a trace of roughly I0 pages is produced 
during the verification and it takes about 7 minutes of real time on a Mac II. 

7 Future work 

Some improvements to our proposed verification system are planned. First of all, 
an RT level HDL language could be used to describe the circuit specification, 
component and hypotheses; the transfer formulas should be deduced directly from the 
syntax of the HDL (the partial specification of the WORP processor needs 200 lines of 
edit text and no syntactical analysis is performed). The type validation will be 
performed directly from the HDL circuit description. Secondly, like the operator BUS, 
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it seems possible to use other predefined operators that have a specific associated 
meaning. This will be essential in the verification of  microcode such as [10]; this 
requires to associate rewriting rules with the operators, as in [4]. Also to extend the 
range of  verifiable circuits, the pipeline behavior and precharged component  will be 
studied. The study o f  several circuit examples would help to establish the limitations of 
our approach. 

We try to improve the graph algori thm processing per formance  by  using 
techniques such as proposed in [11]. Last but not least, the system has to be integrated 
in a complete CAD system in order to assure the consistency o f  component models with 
their real behavior. 
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