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1. Introduction 

L.O is a programming language, which is currently being experimentally used at Bellcore as an 
executable specification language for communications software. It's design was driven by the 
special nature of communications systems. The most fundamental aspect of communications 

systems is that many fairly simple things are happening at the same time, for all time. It is 
precisely this aspect that is so difficult to specify in languages based on a sequential or 
asynchronous model. It is easy to specify this in L.0 because L.0 has an abstract concurrent-read- 
common-concurrent-write shared memory model, a notion of next, and because the basic 
composition operator is conjunction. Another fundamental aspect of communications systems is 
that many of the things happening simultaneously are very similar. Thus, another basic feature of 
L.0 is quantification, which permits parametrized specifications. 

The semantics of the language given originally Ill was a combination of declarative and 
operational. Now that there is evidence that it is fairly easy to specify communications software 
in L.0, it is important to try to develop analysis tools. For this it is preferable to have declarative 
versions of the semantics given in several different stae/dard paradigms so that analysis tools or 
algorithms previously developed might be applied to L.0. 

One goal of this paper is to present the fundamental semantic constructs of L.0 in the framework 
of linear predicate temporal logic. Temporal logic was chosen because there is a fairly natural fit, 
and because there has been a great deal of work on its application to the specification and 
verification of reactive systems [21 I31. Most of communications software can be viewed as a 
reactive system. The algorithm for translating L.O syntax into the constructs given here is not 

-[41 given in this brief paper. It is however given in . Neither is the focus of this paper is not on 
examples. They may be found in a number of papers [1] [51 [6] [71 

The main reason, that this presentation of the semantics does not immediately lead to the 
applicability of the various decision procedures and model checkers developed for temporal logic, 
is that L.0 is based on a subset of predicate (not propositional) temporal logic, and hence permits 
restricted forms of  quantification. Thus, the second goal of this paper is to indicate the uses of 
quantification in L.0. The simple approach to developing some analysis tools for L.0, is to simply 
develop them for programs, in which the quantification is restricted to he finite, and the state 
spaces constructed during execution, are restricted to be contained in a finite universe. This 
approach is very unsatisfying because quantification is one of the main reasons that L.0 is so 
expressive. Furthermore, even if this restriction is made, the size of the finite universe, arising in 
applications of interest is likely to be huge, relative to the size that can be handled by existing 
tools. Kurshan [8] has developed a formal notion of homomorphism as one approach to handling 
this problem. An approach would be to develop tools to perform more restricted analysis which 
would work in presence of less stringents restrictions on quantification. 
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There has been quite a bit of work on the identification of executable subsets of temporal logic, 
and the development of  executable temporal logic languages, i.e. languages in which a program is 
a temporal logic formula, and whose execution constructs a model for that formula. The subset of 
temporal logic exploited by L.0 is very similar to that identified by Dov Gabbay I91 and developed 
in MetateM. [101 The languages Tempura jill, Lustre [121 and Artic D3I carl each be viewed as 
executable temporal logic languages. Tempura is based on interval temporal logic, rather than 
propositional, and uses quantification in a more limited way. Unlike L.0 it does not assume any 
solution to the frame problem. It has been used primarily to specify hardware. The semantics of 
Lustre can be given in terms of linear temporal logic. However, it appears that quantification is 
more restricted, since boolean Lustre may be compiled into a finite automaton. Arctic was 
designed for the specification and implementation of real-time computer systems, and has been 

applied to music. Its primary data-type is a real-valued function of time. 

2. The fundamental constructs of L.0in terms of temporal logic 

Recall that a predicate temporal logic formula is constructed from predicates using the standard 

boolean operators, the temporal future operators next and until and universal and existential 

quann'fication. In addition, temporal past operators may be used, although it has been shown that 

the past operators do not add expressiveness [141. The only temporal past operator that will be 

used here is previous. 

Here the until used will be the weak until. In other words it is not required that the second 

argument of until is eventually tree on a state. Precisely, 

Si [ = f until g if 

Sj 1= f f o r  all j  > i 

or ( oppE k > i suchthatSk I = g and S j 1= f for aU j such that i < j < k) 

The temporal future operators always and eventually may be defined in terms of until, using the 

prec~cate false and negation. 

2.1 Predicates on history and on extended history 

These are the simplest components of L.0 programs. A predicate on extended history is 

inductively defined to be either. 

1. a predicate or 

2. a boolean combination of predicates on extended history or 

3. the past temporal operator previous applied to a predicate on extended history or 

4. a universally quantified formula of the form r = > f , where r is a restricting predicate and 

f is a predicate on extended history or 
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5. an existentially quantified formula of the form r andsign f,  where r is a restricting 

predicate and f is a predicate on extended history. 

A predicate on history has the form previous p, where p is a predicate on extended history. The 

restricting predicates are a subset of the predicates on history. They may be used to ensure the the 

quantification is finite but unbounded. 

The "truth" of a predicate on history on a state in a model, may be deduced by examining only the 

interpretations for predicates in the previous states, i.e. the history. For predicates on extended 

history, the interpretation for predicates in the current state, may need to be examined as well. In 

other words, no future interpretations need to be examined. This is the key to exeeutability, since 

the future states of the model need not have been constructed yet. 

2.2 Cause-effect formulas 

The second fundamental building block of L.O programs is the cause-effect formula. Causality is 

specified using formulas of  the form: 

cause => effect 

where the cause is restricted to be apredicate on history, and the effect is any L.O program. Such 

a formula is true on a state in a sequence, if either the cause was not true on the history, or the 

cause was true on the history and the effect is true on the current state. I f  general formulas were 

allowed for the cause, the intuition would not correspond to causality, for the truth of  the eanse 

might depend on the current and future states. 

2.3 A restricted class of until formulas 

A restricted class of until formulas is used to specify that several cause-effect formulas apply until 

the first occurrence of at least one of a set of  events, and to also specify the effects of some of 

those events. Thus, the only until formulas allowed have the form: 

• the binary until operator, applied to a conjunction of cause-effect formulas and a deactivator 

formula 
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where a deactivator formula d either has form: 

where 

and 

cause(d) and effects(d) 

cause(d) = (c o or c 1 or ... or Cn) 

effects(d) = andsign i: i member s (c i => e l )  

Here S subse t  {1 . . . . .  n}, each of  the conjuncts o f  effects(d) is a cause-effect formula, and 

cause(d) is a predicate on history. If  none of  the events in c a u s e ( d )  have specified effects, the 

deactivator specification has the simpler form. 

d = cause(d) 

2.4 Universally quantified cause-effect formulas 

Universal first order quantification of  cause-effect formulas is allowed, providing that the cause 

contains a conjunct which is a restricting predicate. 

2.5 Names of formulas 

Formulas may be referred to by name, so that formulas may be structured modularly. Definitions 

of  formula names may be recursive, providing the recursive reference is "over time". This can be 

expressed in temporal logic using second order quantification. 

3. An inductive definition of temporal formulas permitted in L.0 

The temporal formulas permitted in L.0 programs are either: 

• a predicate 

• a conjunction of  L.0 programs 

° a cause-effect formula where the cause is a predicate on history and the effect is an L.0 

program 

• a binary until operator, applied to a conjunction of  cause-effect formulas and a deactivator 

formula 1 
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• the next operator applied to an L.0 program 

• a universally quantified cause-effect formula, where the cause contains a conjunct which is a 

restricting predicate 

• the name of an L.0 program 

The original until operator in L.0 had a slightly different semantics in the case of nested untils. 

However, as in proven in [41, there is an algorithm for mapping these non-standard until formulas 

to the until formulas of temporal logic, which applies in all reasonable cases. 

4. Only safety properties are expressible in L.0 

It is not possible to express eventually in this subset of temporal logic, because negation of 

programs is not permitted. The omission of eventually, means that it is not possible to express 

liveness properties in L.0. However, this omission is not as alarming as it first may seem, for it is 

possible in L.0 to express pseudo-random sequences, using predicates. This is probably more 

practical than specifying sequences via the eventually operator. Also, the notion of fairness, for 

which eventually is crucial, is not essential to L.0, because L.0 does not base its semantics on the 

interleaving of atomic events. Instead, the semantics of L.0 is fundamentaUy the semantics of 

temporal logic, which is synchronous, and which permits simultaneous occurrence of "events". 

4.1 An execution strategy for basic L.0 programs 

The subset of temporal logic, consisting of basic L.0 programs is executable, in the sense that 

there is an algorithm for inductively determining from a basic L.0 program, the obligations it 

imposes on the current state, and the obligation it imposes on the subsequent sequence of states. 

This strategy extends to an execution algorithm for general L.0 programs. The decomposition of a 

basic L.0 program into current obligations and future obligations uses a recursive semantic 

tautology for basic L.0 until formulas. In fact, an operational semantics for L.0 can be given in 

terms of  a dynamically changing rule set [15l. 

A fundamental characteristic of the execution strategy is that history, once constructed will never 

be altered. The key to this it that cause formulas must be predicates on history. 

An L.0 program may impose several obligations on the current state, in the sense that a 

conjunction of predicates must be true on the current state. It is in this sense that L.0 exploits the 

synchronous semantics of temporal logic. If these obligations conflict, execution of the L 0  

program halts. Since there is more than one possible state which satisfies the current obligations, 

the execution strategy is intrinsically non-deterministic. 
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$. The current restrictions on the data domain, expressions, and states 

Currently the data domain is restricted to be the set of all trees with labeled edges, with the 

property that all of the child edges of a node have unique labels. The labels are restricted to be 

from the alphabet of strings of aschii characters. Such a tree is called a namespaee. States in L.0 

are restricted to be namespaces. Each non.root node of a namespace has a name, which is the 

sequence of labels along the path from the root to the node. Because of the restriction on 

namespaces, the name of a non-root node in a namespaee uniquely identifies it. In general, a 

names is a sequence of labels. Note that namespaces may be equivalently characterized as prefix- 

closed sets of names. The suffix-value of a name on a namespace is the set of strings prefixed by 

that name in the namespace. 

An expression in L.0 programs is either a name, a ~nction symbol applied to expressions, a 

concatenation or union of expressions, or the suffix value of a name. The suffix value of a name on 

a namespace is just the set of  strings prefixed by the name in that namespace. Geometrically, if 

the namespaee is finite, the value is the tree with labeled edges rooted at the name. The suffix 

value expression permits simulation of standard variable-value programming, within the more 

general declarative paradigm. Note that indirection is possible because the suffix value of a 

namespace is a namespace(whieh might be a name). 

The value of an expression in an L.0 program is a namespace. The algorithm used to interpret 

expressions is tl~ expected ~ .  The expressions in an L.0 program are only used as arguments 

of  predicates or functions. 

6. A restriction on the interpretations of predicate symbols 

In an L.0 model, each predicate symbol must be assigned a predicate definition. The simplest type 

of definition is for a predicate symbol of arity 0. Then the definition is either undefined or consists 

of  a single set-theoretic predicate, which consists of two sets: a domain, which is a set of  names, 

and a set of solutions, each of which is a subset of the domain 1151. Such a predicate is interpreted 

as being true on a state, if  the intersection of the domain, with the state, is one of the solutions. 

This is equivalent to a very strong disjunctive normal form, where each element of the domain or 

its negation occurs in each disjunet. Negation is interpreted as non-existence. There is no 

restriction that the domain must be finite, here. (With this set-theoretic interpretation, finding a 

solution of a conjunction of predicates, can be interpreted as finding a global section of a sheaf.) 

The definition of an n-ary predicate symbol p, is a mapping from the n-fold cartesian product of 

Name.spaces(Labels) to the set of such set-theoretic predicates cup undefined. 
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6.1 Restrictions on the set of predicate symbols permitted 

Currently, the predicate definitions allowed are equality of expressions, existence and non- 

existence of a name, true and false, and membership in a set of consecutive integers, or in an 

explicitly given set of names. Furthermore, only limited kinds of equality may be used in effects, 

and even that in a restricted way: equality of the suffix values of two names, and equality of the 

suffix value of  a name and an expression. 

Restricting predicates must contain a conjunction which is either a set membership predicate, or 

an exists predicate. 

Users may provide interpretations for function symbols in "C". 

7. A frame assumption 

A model for a temporal formula consists of a data domain, an interpretation for expressions, an 

interpretation for predicate symbols, and a sequence of states. Each of these have been restricted. 

However, there is one final restriction imposed on a sequence of states, that is to be a model for 

an L.O program. This restriction is that successive states arc related by one of the replacement 

hales determined by the predicate, which is the conjunction of predicates, which are to be true on 

the next state, i.e. the current program obligations. The point is that each predicate (when specific 

values are supplied for its arguments), has an associated domain and set of solutions. Each 

solution determines a replacement rule for namespaces, namely replace the intersection of the 

domain with the namespace by one of its solutions. For a restricted set of predicates (such as are 

currently in L.0), the result is again prefix-closed, and hence a namespace. 

This is nothing but a generalization of the usual frame assumption in sequential programming: 

namely replace the value of the variable by the new value being assigned. However, this 

generalization permits the size of the state space to be dynamic. For if the intersection of the 

domain of a predicate with the previous state space is empty, the set of names making up a 

solution are added. Conversely, if the intersection of the domain of a predicate with the previous 

state space is "too large" to be a solution, some of the names are removed to obtain a solution. 

One of the conveniences in using L.0 as a ~ f i c a t i o n  language lies is this concise dynamic 

a i I~ t i on  and deallocation of "space". To apply analysis algorithms developed for logical 

formulas, it would be necessary to be able to explicitly specify the frame within an L.0 program, 

and then consider only the class of programs which explicitly specified it. Fortunately, it appears 

that this can be done easily, and does not restrict the class of programs, because of the restriction 

that each predicate must have a specified domain. 
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8. Uses of quantification in L.0 

Universal quantification is extremely powerful. For, as is shown in[4] it permits specification of 

parameter passing by value, indirection, and the analogue of a set of simultaneous "calls" to the 

same "procedure". When all three of these uses are combined, one can program in a table driven 

manner. Thus it is easy to specify a generic non-deterministic finite state machine Ill, request 

handlers that are able to handle a finite but unbounded set of requests each time Ils] and specify 

reconstruction of predicates of particular restricted types [171 In fact using universal quantification, 

one can easily specify SIMD parallelism. 

As seems to be well-known/hI, encapsulation can be added by adding existential quantifica_tion. 

Finally, since L.O permits equality of names, pass by reference can be specified using equality of 

names and existential quantification. Thus, L.O augmented by existential quantification, provides 

permits programmers to program, in a well-structured manner, in temporal logic. 

9. Remarks about conjunction and equality 

Conjunction permits functional decomposition of specifications. The communication is via 

shared variables. It seems that well structured L.0 programs are based on a clearly articulated 

dynamic read-write protocol, among functional components. This permits writing of observer 

programs which may, for example, filter data, watch for bugs, or write to the screen, to animate 

the program. Conjunction also makes programs exponentially shorter. 

It is interesting to note that when programs are written using encapsulation, it seems possible to 

restrict the use of equality of names to equality between names local to the parent and child 

modules. Thus, apart from parameter passing, the uses of equality that seem necessary are 

standard assignment, and one-way derivations, which deduce that the suffix-value of a name can 

be the value of a function applied to arguments, which may refer to other current suffix-values. 

I0. Acknowledgments 

L.O was developed primarily through the joint efforts of Jane Cameron, David Cohen, B. 

Gopinath, and the author. Prem Uppaluru and Diane Sonnenwald also made contributions to the 

language, as did a number of the users. B. Gopinath was also the head of the IC* project, during 

the period wben the first version of L.O was developed. The language implementation was done 

by David Cohen and Bill Keese (on a sequential machine). The most recent debugger was done 

by Tun Guintber. 

A connection between L.0 and temporal logic has also been recognized by Bob Kurshan, Fred 

Schneider, Ambuj Singh, and Prem Uppaluru. 



114 

REFERENCES 

1. EJ. Cameron, D.M. Cohen, L.A. Ness, H.N. Srinidhi, "L.0: A Language for Modeling and 
Prototyping Communications Software",(to appear in Proceedings of the Third International 
Conference on Formal Description Techniques, Madrid, November 5-8, 1990.) 

2. A. Pnueli, ~ I ~  Temporal Logic of Programs", Proceedings of the 18th Annual Symposium 
on Foundations of Computer Science(1977) pp. 46-57. 

3. A. Pnueli, "The Temporal Logic of Programs", Proceedings of the 18th Annual Symposium 
on Foundations of Com4~uter Science(1977) pp. 46-57. 

4. L. Ness, "L.O: A Parallel Executable Temporal Logic Language", Bellcore Public Released 
TM-ARH-014974 September, 1989. 

5. E. J. Cameron, N. H. Petsehenik, L. Ruston, S. Shah, H. Srinidhi, "From Description to 
Simulation to Architecture: An Approach to Service-Driven System development", 
Proceedings of the First International Conference on Systems Integration, Morristown, N.J. 
April 23-26, 1990. 

6. D. M. Cohen, T. M. Guinther, L. Ness, "Rapid Prototyping of a Communication Protocol 
Using a New Parallel Language", Proceedings of the First International Conference on 
Systems Integration, Morristown, N.J. April 23-26, 1990. 

7. S. Aggarwal, F.S. Dworak_, and P.Obenour, "An Environment for Studying Switching System 
Software Architecture", Proceedings of lEEE Global Telecommunications Conference, 1988. 

8. Kurshan, R.P., "Reducibility in Analysis of Coordination", Discrete Event Systems: Models 
and Applications, LNCIS 103(1987), pp. 19-39. 

9. D. Gabbay, "Declarative Past and Imperative Future: Executable Temporal Logic for 
Interactive Systems", in A. Galton, editor, In B. Banieqbal, H. Barringer, and A. Pnueli, 
editors, Proceedings of Colloquium on Temporal Logic in Specification, Altrineham, 1987, 
pages 402-450. Springer-Verlag, LNCS Volume 398, 1989. 

10. H. Barringer, M. Fisher, D. Gabbay, G. Gough, R. Owens, "MetateM: A Framework for 
Programming in Temporal Legie". 

11. B. Moszkowsld. Executing Temporal Logic Programs. Cambridge University Press, 
Cambridge. 1987. 

12. D. Pilaud, N. Halbwaehs, "From a synchronous declarative language to a temporal logic 
dealing with multiform time", Proc. Sym4~osium on Formal Techniques in Real Time and 
Fault Tolerant Systems, Warwick, Sept 88. 

13. R. Dannenberg, "Arctic: Functional Programming for Real-Time Systems", Proceedings of 
the Nineteenth Annual Hawaii International Conference on System Sciences, 1986. 

14. O. Lichtenstein, A. Pnueli, L. Zuck, 'q'he Glory of the Past", Proc. Conf. on Logics of 

Programs, Springer-Veflag LNCS #193, 1985, pp. 196-218. 



115 

15. E.J.Cameron, D.M.Cohen, B.Gopinath, L.Ness, W.M.Keese, P.Uppaluru, LR.VolIaro, "The 

IC* Model of Parallel Computation and Programming Environment," IEEE Transactions on 

Software Engineering, Vol. 14, No 3, March 1988, pp. 317-327. 

16. E.J. Cameron, D.M. Cohen, B. Gopinath, L. Ness, "IC*: An Environment for Designing 

Communications Software", Proceedings of SETSS "90 7th Int'l Conference on Software 

Engineering for Telecommunication Switch Systems, Boumemouth, England, July 3-6, 1989. 

17. E.L Cameron, L. Ness, A. Sheth, "A Universal Executor for Flexible Transactions Which 

Permits Maximal Parallelism". 


