
Issues Arising in the Analysis of L.0

Linda Ness

Bellcore, Morristown, NJ

linda@bellcore.com

1. Introduction

L.O is a programming language, which is currently being experimentally used at Bellcore as an
executable specification language for communications software. It's design was driven by the
special nature of communications systems. The most fundamental aspect of communications

systems is that many fairly simple things are happening at the same time, for all time. It is
precisely this aspect that is so difficult to specify in languages based on a sequential or
asynchronous model. It is easy to specify this in L.0 because L.0 has an abstract concurrent-read-
common-concurrent-write shared memory model, a notion of next, and because the basic
composition operator is conjunction. Another fundamental aspect of communications systems is
that many of the things happening simultaneously are very similar. Thus, another basic feature of
L.0 is quantification, which permits parametrized specifications.

The semantics of the language given originally Ill was a combination of declarative and
operational. Now that there is evidence that it is fairly easy to specify communications software
in L.0, it is important to try to develop analysis tools. For this it is preferable to have declarative
versions of the semantics given in several different stae/dard paradigms so that analysis tools or
algorithms previously developed might be applied to L.0.

One goal of this paper is to present the fundamental semantic constructs of L.0 in the framework
of linear predicate temporal logic. Temporal logic was chosen because there is a fairly natural fit,
and because there has been a great deal of work on its application to the specification and
verification of reactive systems [21 I31. Most of communications software can be viewed as a
reactive system. The algorithm for translating L.O syntax into the constructs given here is not

-[41 given in this brief paper. It is however given in . Neither is the focus of this paper is not on
examples. They may be found in a number of papers [1] [51 [6] [71

The main reason, that this presentation of the semantics does not immediately lead to the
applicability of the various decision procedures and model checkers developed for temporal logic,
is that L.0 is based on a subset of predicate (not propositional) temporal logic, and hence permits
restricted forms of quantification. Thus, the second goal of this paper is to indicate the uses of
quantification in L.0. The simple approach to developing some analysis tools for L.0, is to simply
develop them for programs, in which the quantification is restricted to he finite, and the state
spaces constructed during execution, are restricted to be contained in a finite universe. This
approach is very unsatisfying because quantification is one of the main reasons that L.0 is so
expressive. Furthermore, even if this restriction is made, the size of the finite universe, arising in
applications of interest is likely to be huge, relative to the size that can be handled by existing
tools. Kurshan [8] has developed a formal notion of homomorphism as one approach to handling
this problem. An approach would be to develop tools to perform more restricted analysis which
would work in presence of less stringents restrictions on quantification.

107

There has been quite a bit of work on the identification of executable subsets of temporal logic,
and the development of executable temporal logic languages, i.e. languages in which a program is
a temporal logic formula, and whose execution constructs a model for that formula. The subset of
temporal logic exploited by L.0 is very similar to that identified by Dov Gabbay I91 and developed
in MetateM. [101 The languages Tempura jill, Lustre [121 and Artic D3I carl each be viewed as
executable temporal logic languages. Tempura is based on interval temporal logic, rather than
propositional, and uses quantification in a more limited way. Unlike L.0 it does not assume any
solution to the frame problem. It has been used primarily to specify hardware. The semantics of
Lustre can be given in terms of linear temporal logic. However, it appears that quantification is
more restricted, since boolean Lustre may be compiled into a finite automaton. Arctic was
designed for the specification and implementation of real-time computer systems, and has been

applied to music. Its primary data-type is a real-valued function of time.

2. The fundamental constructs of L.0in terms of temporal logic

Recall that a predicate temporal logic formula is constructed from predicates using the standard

boolean operators, the temporal future operators next and until and universal and existential

quann'fication. In addition, temporal past operators may be used, although it has been shown that

the past operators do not add expressiveness [141. The only temporal past operator that will be

used here is previous.

Here the until used will be the weak until. In other words it is not required that the second

argument of until is eventually tree on a state. Precisely,

Si [= f until g if

Sj 1= f f o r all j > i

or (oppE k > i suchthatSk I = g and S j 1= f for aU j such that i < j < k)

The temporal future operators always and eventually may be defined in terms of until, using the

prec~cate false and negation.

2.1 Predicates on history and on extended history

These are the simplest components of L.0 programs. A predicate on extended history is

inductively defined to be either.

1. a predicate or

2. a boolean combination of predicates on extended history or

3. the past temporal operator previous applied to a predicate on extended history or

4. a universally quantified formula of the form r = > f , where r is a restricting predicate and

f is a predicate on extended history or

lo8

5. an existentially quantified formula of the form r andsign f, where r is a restricting

predicate and f is a predicate on extended history.

A predicate on history has the form previous p, where p is a predicate on extended history. The

restricting predicates are a subset of the predicates on history. They may be used to ensure the the

quantification is finite but unbounded.

The "truth" of a predicate on history on a state in a model, may be deduced by examining only the

interpretations for predicates in the previous states, i.e. the history. For predicates on extended

history, the interpretation for predicates in the current state, may need to be examined as well. In

other words, no future interpretations need to be examined. This is the key to exeeutability, since

the future states of the model need not have been constructed yet.

2.2 Cause-effect formulas

The second fundamental building block of L.O programs is the cause-effect formula. Causality is

specified using formulas of the form:

cause => effect

where the cause is restricted to be apredicate on history, and the effect is any L.O program. Such

a formula is true on a state in a sequence, if either the cause was not true on the history, or the

cause was true on the history and the effect is true on the current state. I f general formulas were

allowed for the cause, the intuition would not correspond to causality, for the truth of the eanse

might depend on the current and future states.

2.3 A restricted class of until formulas

A restricted class of until formulas is used to specify that several cause-effect formulas apply until

the first occurrence of at least one of a set of events, and to also specify the effects of some of

those events. Thus, the only until formulas allowed have the form:

• the binary until operator, applied to a conjunction of cause-effect formulas and a deactivator

formula

109

where a deactivator formula d either has form:

where

and

cause(d) and effects(d)

cause(d) = (c o or c 1 or ... or Cn)

effects(d) = andsign i: i member s (c i => e l)

Here S subse t {1 n}, each of the conjuncts o f effects(d) is a cause-effect formula, and

cause(d) is a predicate on history. If none of the events in c a u s e (d) have specified effects, the

deactivator specification has the simpler form.

d = cause(d)

2.4 Universally quantified cause-effect formulas

Universal first order quantification of cause-effect formulas is allowed, providing that the cause

contains a conjunct which is a restricting predicate.

2.5 Names of formulas

Formulas may be referred to by name, so that formulas may be structured modularly. Definitions

of formula names may be recursive, providing the recursive reference is "over time". This can be

expressed in temporal logic using second order quantification.

3. An inductive definition of temporal formulas permitted in L.0

The temporal formulas permitted in L.0 programs are either:

• a predicate

• a conjunction of L.0 programs

° a cause-effect formula where the cause is a predicate on history and the effect is an L.0

program

• a binary until operator, applied to a conjunction of cause-effect formulas and a deactivator

formula 1

110

• the next operator applied to an L.0 program

• a universally quantified cause-effect formula, where the cause contains a conjunct which is a

restricting predicate

• the name of an L.0 program

The original until operator in L.0 had a slightly different semantics in the case of nested untils.

However, as in proven in [41, there is an algorithm for mapping these non-standard until formulas

to the until formulas of temporal logic, which applies in all reasonable cases.

4. Only safety properties are expressible in L.0

It is not possible to express eventually in this subset of temporal logic, because negation of

programs is not permitted. The omission of eventually, means that it is not possible to express

liveness properties in L.0. However, this omission is not as alarming as it first may seem, for it is

possible in L.0 to express pseudo-random sequences, using predicates. This is probably more

practical than specifying sequences via the eventually operator. Also, the notion of fairness, for

which eventually is crucial, is not essential to L.0, because L.0 does not base its semantics on the

interleaving of atomic events. Instead, the semantics of L.0 is fundamentaUy the semantics of

temporal logic, which is synchronous, and which permits simultaneous occurrence of "events".

4.1 An execution strategy for basic L.0 programs

The subset of temporal logic, consisting of basic L.0 programs is executable, in the sense that

there is an algorithm for inductively determining from a basic L.0 program, the obligations it

imposes on the current state, and the obligation it imposes on the subsequent sequence of states.

This strategy extends to an execution algorithm for general L.0 programs. The decomposition of a

basic L.0 program into current obligations and future obligations uses a recursive semantic

tautology for basic L.0 until formulas. In fact, an operational semantics for L.0 can be given in

terms of a dynamically changing rule set [15l.

A fundamental characteristic of the execution strategy is that history, once constructed will never

be altered. The key to this it that cause formulas must be predicates on history.

An L.0 program may impose several obligations on the current state, in the sense that a

conjunction of predicates must be true on the current state. It is in this sense that L.0 exploits the

synchronous semantics of temporal logic. If these obligations conflict, execution of the L 0

program halts. Since there is more than one possible state which satisfies the current obligations,

the execution strategy is intrinsically non-deterministic.

111

$. The current restrictions on the data domain, expressions, and states

Currently the data domain is restricted to be the set of all trees with labeled edges, with the

property that all of the child edges of a node have unique labels. The labels are restricted to be

from the alphabet of strings of aschii characters. Such a tree is called a namespaee. States in L.0

are restricted to be namespaces. Each non.root node of a namespace has a name, which is the

sequence of labels along the path from the root to the node. Because of the restriction on

namespaces, the name of a non-root node in a namespaee uniquely identifies it. In general, a

names is a sequence of labels. Note that namespaces may be equivalently characterized as prefix-

closed sets of names. The suffix-value of a name on a namespace is the set of strings prefixed by

that name in the namespace.

An expression in L.0 programs is either a name, a ~nction symbol applied to expressions, a

concatenation or union of expressions, or the suffix value of a name. The suffix value of a name on

a namespace is just the set of strings prefixed by the name in that namespace. Geometrically, if

the namespaee is finite, the value is the tree with labeled edges rooted at the name. The suffix

value expression permits simulation of standard variable-value programming, within the more

general declarative paradigm. Note that indirection is possible because the suffix value of a

namespace is a namespace(whieh might be a name).

The value of an expression in an L.0 program is a namespace. The algorithm used to interpret

expressions is tl~ expected ~ . The expressions in an L.0 program are only used as arguments

of predicates or functions.

6. A restriction on the interpretations of predicate symbols

In an L.0 model, each predicate symbol must be assigned a predicate definition. The simplest type

of definition is for a predicate symbol of arity 0. Then the definition is either undefined or consists

of a single set-theoretic predicate, which consists of two sets: a domain, which is a set of names,

and a set of solutions, each of which is a subset of the domain 1151. Such a predicate is interpreted

as being true on a state, if the intersection of the domain, with the state, is one of the solutions.

This is equivalent to a very strong disjunctive normal form, where each element of the domain or

its negation occurs in each disjunet. Negation is interpreted as non-existence. There is no

restriction that the domain must be finite, here. (With this set-theoretic interpretation, finding a

solution of a conjunction of predicates, can be interpreted as finding a global section of a sheaf.)

The definition of an n-ary predicate symbol p, is a mapping from the n-fold cartesian product of

Name.spaces(Labels) to the set of such set-theoretic predicates cup undefined.

112

6.1 Restrictions on the set of predicate symbols permitted

Currently, the predicate definitions allowed are equality of expressions, existence and non-

existence of a name, true and false, and membership in a set of consecutive integers, or in an

explicitly given set of names. Furthermore, only limited kinds of equality may be used in effects,

and even that in a restricted way: equality of the suffix values of two names, and equality of the

suffix value of a name and an expression.

Restricting predicates must contain a conjunction which is either a set membership predicate, or

an exists predicate.

Users may provide interpretations for function symbols in "C".

7. A frame assumption

A model for a temporal formula consists of a data domain, an interpretation for expressions, an

interpretation for predicate symbols, and a sequence of states. Each of these have been restricted.

However, there is one final restriction imposed on a sequence of states, that is to be a model for

an L.O program. This restriction is that successive states arc related by one of the replacement

hales determined by the predicate, which is the conjunction of predicates, which are to be true on

the next state, i.e. the current program obligations. The point is that each predicate (when specific

values are supplied for its arguments), has an associated domain and set of solutions. Each

solution determines a replacement rule for namespaces, namely replace the intersection of the

domain with the namespace by one of its solutions. For a restricted set of predicates (such as are

currently in L.0), the result is again prefix-closed, and hence a namespace.

This is nothing but a generalization of the usual frame assumption in sequential programming:

namely replace the value of the variable by the new value being assigned. However, this

generalization permits the size of the state space to be dynamic. For if the intersection of the

domain of a predicate with the previous state space is empty, the set of names making up a

solution are added. Conversely, if the intersection of the domain of a predicate with the previous

state space is "too large" to be a solution, some of the names are removed to obtain a solution.

One of the conveniences in using L.0 as a ~ f i c a t i o n language lies is this concise dynamic

a i I~ t i on and deallocation of "space". To apply analysis algorithms developed for logical

formulas, it would be necessary to be able to explicitly specify the frame within an L.0 program,

and then consider only the class of programs which explicitly specified it. Fortunately, it appears

that this can be done easily, and does not restrict the class of programs, because of the restriction

that each predicate must have a specified domain.

113

8. Uses of quantification in L.0

Universal quantification is extremely powerful. For, as is shown in[4] it permits specification of

parameter passing by value, indirection, and the analogue of a set of simultaneous "calls" to the

same "procedure". When all three of these uses are combined, one can program in a table driven

manner. Thus it is easy to specify a generic non-deterministic finite state machine Ill, request

handlers that are able to handle a finite but unbounded set of requests each time Ils] and specify

reconstruction of predicates of particular restricted types [171 In fact using universal quantification,

one can easily specify SIMD parallelism.

As seems to be well-known/hI, encapsulation can be added by adding existential quantifica_tion.

Finally, since L.O permits equality of names, pass by reference can be specified using equality of

names and existential quantification. Thus, L.O augmented by existential quantification, provides

permits programmers to program, in a well-structured manner, in temporal logic.

9. Remarks about conjunction and equality

Conjunction permits functional decomposition of specifications. The communication is via

shared variables. It seems that well structured L.0 programs are based on a clearly articulated

dynamic read-write protocol, among functional components. This permits writing of observer

programs which may, for example, filter data, watch for bugs, or write to the screen, to animate

the program. Conjunction also makes programs exponentially shorter.

It is interesting to note that when programs are written using encapsulation, it seems possible to

restrict the use of equality of names to equality between names local to the parent and child

modules. Thus, apart from parameter passing, the uses of equality that seem necessary are

standard assignment, and one-way derivations, which deduce that the suffix-value of a name can

be the value of a function applied to arguments, which may refer to other current suffix-values.

I0. Acknowledgments

L.O was developed primarily through the joint efforts of Jane Cameron, David Cohen, B.

Gopinath, and the author. Prem Uppaluru and Diane Sonnenwald also made contributions to the

language, as did a number of the users. B. Gopinath was also the head of the IC* project, during

the period wben the first version of L.O was developed. The language implementation was done

by David Cohen and Bill Keese (on a sequential machine). The most recent debugger was done

by Tun Guintber.

A connection between L.0 and temporal logic has also been recognized by Bob Kurshan, Fred

Schneider, Ambuj Singh, and Prem Uppaluru.

114

REFERENCES

1. EJ. Cameron, D.M. Cohen, L.A. Ness, H.N. Srinidhi, "L.0: A Language for Modeling and
Prototyping Communications Software",(to appear in Proceedings of the Third International
Conference on Formal Description Techniques, Madrid, November 5-8, 1990.)

2. A. Pnueli, ~ I ~ Temporal Logic of Programs", Proceedings of the 18th Annual Symposium
on Foundations of Computer Science(1977) pp. 46-57.

3. A. Pnueli, "The Temporal Logic of Programs", Proceedings of the 18th Annual Symposium
on Foundations of Com4~uter Science(1977) pp. 46-57.

4. L. Ness, "L.O: A Parallel Executable Temporal Logic Language", Bellcore Public Released
TM-ARH-014974 September, 1989.

5. E. J. Cameron, N. H. Petsehenik, L. Ruston, S. Shah, H. Srinidhi, "From Description to
Simulation to Architecture: An Approach to Service-Driven System development",
Proceedings of the First International Conference on Systems Integration, Morristown, N.J.
April 23-26, 1990.

6. D. M. Cohen, T. M. Guinther, L. Ness, "Rapid Prototyping of a Communication Protocol
Using a New Parallel Language", Proceedings of the First International Conference on
Systems Integration, Morristown, N.J. April 23-26, 1990.

7. S. Aggarwal, F.S. Dworak_, and P.Obenour, "An Environment for Studying Switching System
Software Architecture", Proceedings of lEEE Global Telecommunications Conference, 1988.

8. Kurshan, R.P., "Reducibility in Analysis of Coordination", Discrete Event Systems: Models
and Applications, LNCIS 103(1987), pp. 19-39.

9. D. Gabbay, "Declarative Past and Imperative Future: Executable Temporal Logic for
Interactive Systems", in A. Galton, editor, In B. Banieqbal, H. Barringer, and A. Pnueli,
editors, Proceedings of Colloquium on Temporal Logic in Specification, Altrineham, 1987,
pages 402-450. Springer-Verlag, LNCS Volume 398, 1989.

10. H. Barringer, M. Fisher, D. Gabbay, G. Gough, R. Owens, "MetateM: A Framework for
Programming in Temporal Legie".

11. B. Moszkowsld. Executing Temporal Logic Programs. Cambridge University Press,
Cambridge. 1987.

12. D. Pilaud, N. Halbwaehs, "From a synchronous declarative language to a temporal logic
dealing with multiform time", Proc. Sym4~osium on Formal Techniques in Real Time and
Fault Tolerant Systems, Warwick, Sept 88.

13. R. Dannenberg, "Arctic: Functional Programming for Real-Time Systems", Proceedings of
the Nineteenth Annual Hawaii International Conference on System Sciences, 1986.

14. O. Lichtenstein, A. Pnueli, L. Zuck, 'q'he Glory of the Past", Proc. Conf. on Logics of

Programs, Springer-Veflag LNCS #193, 1985, pp. 196-218.

115

15. E.J.Cameron, D.M.Cohen, B.Gopinath, L.Ness, W.M.Keese, P.Uppaluru, LR.VolIaro, "The

IC* Model of Parallel Computation and Programming Environment," IEEE Transactions on

Software Engineering, Vol. 14, No 3, March 1988, pp. 317-327.

16. E.J. Cameron, D.M. Cohen, B. Gopinath, L. Ness, "IC*: An Environment for Designing

Communications Software", Proceedings of SETSS "90 7th Int'l Conference on Software

Engineering for Telecommunication Switch Systems, Boumemouth, England, July 3-6, 1989.

17. E.L Cameron, L. Ness, A. Sheth, "A Universal Executor for Flexible Transactions Which

Permits Maximal Parallelism".

