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Abst rac t .  Although there is a linear time algorithm to decide whether 
an ordered set has an upward drawing on a surface topologically equiv- 
alent to a sphere, we shall prove that the decision problem whether an 
ordered set has an upward drawing on a sphere itself is NP-complete. 
To this end we explore the surface topology of ordered sets highlighting 
especially the role of their saddle points. 

Introduct ion  

The search for an efficient upward planarity testing algorithm for ordered sets 4 
is a longstanding problem, much sought after by theoreticians of graphical data  
structures. It has always been a mystery how upward planarity testing for orders 
could be so difficult if its undirected companion, planarity-testing for graphs is 
so easy. In spite of well-known linear time algorithms for graph planarity testing 
(e.g. [ H o p c r o f t  and T a r j a n  1974]), it is not even self-evident that  there is a 
finite algorithm for upward planarity testing. 

For many years progress has been slow. 

- Planar lattices are dismantlable [Baker ,  F i s h b u r n  and R o b e r t s  1971] 
- Algorithmics of planar lattices [Kel ly  and Riva l  1975]. 
- Planarity-testing for lattices using graph planarity-testing [ P l a t t  1976]. 
- Straight lines for planar upward drawings [Kel ly  1987] . 
- Bipartite planar upward drawings [di B a t t i s t a ,  L iu  and Riva l  1990]. 

4 In fact, by adjoining subdivision points as needed we may just as well consider 
directed acyclic graphs. 
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Three-dimensional hypercube Its covering graph 

Fig. 1. The three-dimensional hypercube is a nonplanax ordered set (with planar cov- 
ering graph). 

- Planar ordered sets of width two [Czyzowicz, Pele  and Rival  1990]. 
- Planar ordered sets with bottom [Hu t ton  and Lub iw  1991]. 
- Planar triangle-free graphs have planar orientations [Kisielewiez and 1%ival 

1993]. 

Recently, [A. Garg  and R. Tamass ia  (1995)] made a major breakthrough. 
By transforming the NOT-ALL-EQUAL-3-SAT decision problem into an aux- 
iliary flow decision problem with integer coordinates, and then providing yet 
another transformation to upward planarity, they proved that upward planarity- 
testing is NP-eomplete. 

The results presented here are based on our work of recent years whose 
twofold purpose is to understand upward drawings of orders through the two- 
dimensional surfaces in 1%3 on which they may be embedded (without crossing 
edges), and conversely, to better understand two-dimensional surfaces in 1% 3 
by means of the upward drawings that fit on them (cf. [Hashemi  and Rival  
(1994)]. 

Our main result bears on this problem. 

Upward Spher ic i ty  Test ing 

INSTANCE Given an ordered set P. 
QUESTION Does P have an upward drawing on the sphere {(x, y, z) : x 2 + y2 + 
z 2 = 1} without the crossing of edges? 

Although much is already written about planarity for graphs and ordered 
sets, there is much less about sphericity. Indeed, apart from bits and pieces in 
the topological graph theory and differential geometry literature there is virtually 
a blank about the algorithmics of sphericity. 
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The doublecube Its planar covering graph 

Upward drawing with saddle points 

Fig. 2. Upward drawing of the doublecube on a surface of genus zero. 

Like upward planarity testing the complexity of upward sphericity tesling 
seems far from obvious. Indeed, according to [Ewacha ,  Li and Riva l  (1991)]  
- -  and unlike upward planarity testing, the decision problem whether an ordered 
set has an upward drawing on a surface of genus zero (that  is, a topological sphere) 
is itself polynomial. The reason is that  its planar covering graph can be "lifted" 
to an upward drawing on a surface of genus zero. On the other hand, it is our 
main result that  upward sphericity is still NP-complete. 

The  two-dimensional cube {0, 1, 2, 12} has an upward drawing on the plane, 
(e.g. 0 = (1, 0, 0), 1 = (0, 1, 0), 2 = (2, 1, 0), 12 = (1,2, 0 ) ) :  the two-dimensional 
cube is a planar ordered set. The three-dimensional cube (cf. Figure 1) is a 
nonplanar ordered set. 

The  three-dimensional cube, although nonplanar, has an upward drawing 
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Fig. 3. Upward drawing of the three-dimensional hypercube on the sphere. 

on the sphere, (e.g. with vertex placement according to 0 = ( 0 , 0 , - 1 ) ,  1 = 
1 , 1 i : : 

- 7 ~ ) , 2  = ( 0 , 7 ~ , - 7 ~ ) , z  = ( -7~ ,0 ,  
( o , ~  2 1 ;~ ) ,~3  = ( - ~ , o ,  1 , :~7~), 123 : (0, 0, 1), and monotonic arcs joining the 

appropriate pairs of vertices - -  cf. Figure 1 and Figure 3). The doublecube, on 
the other hand, while it has a planar covering graph, and has an upward drawing 
on a surface with no handles or holes, has no upward drawing on a sphere: any 
smooth surface in t t  3 on which the doublecube has an upward drawing has a 
saddle point (cf. Figure 2). 

T h e o r e m  1. Upward sphericity testing is NP-complete. 

The proof, in part, runs parallel to this important  recent result of [A. G a r g  
and R.  T a m a s s i a  (1995)].  Despite initial appearances, though, we see no way 
to derive our theorem, directly, or by way of corollary, from it. 

T h e o r e m  2. Upward planarity testing is NP-complete. 

In the process, we shall derive a proof (which seems to us simpler and more 
transparent) based on 

E x a c t  C o v e r  B y  3-Se t s  
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INSTANCE Given a set X with IXI = 3q and a collection C of 3-element subsets 
of X.  
QUESTION Does C contain an exact cover for X,  i.e., a subcollection C ~ C C 
such that  every element of X occurs in exactly one member of C~? 

Both the present proof, and the earlier one of [A. G a r g  and I t .  T a m a s s i a  
(1995)] ,  rely on "gadgets" that they call tendrils and wiggles, in our jargon 
spirals. An example, S(1, 0) a spiral with a "frame" illustrated in Figure 4, has a 
planar covering graph and yet no upward drawing on a plane. Moreover, although 
it does have an upward drawing on a smooth surface of genus one, such a surface 
must always have a saddle point. The  argument is based on this technical result 
which seems to be of independent interest. 

T h e o r e m 3 .  Let P be an ordered set, let S be a smooth surface in R 3 on which 
P has an upward drawing. Let F be a face of this upward drawing and let m 
stand for the number of paths of vertices of this face F, all members of which 
are interior, or all members of which are exiremal. If  

interior (F) > extremal (F) + 2m 

then S must have a saddle point. 

Although upward planarity testing is difficult, it may be that,  if it is known 
that  an ordered set already has an upward drawing on a genus zero surface then 
there is an efficient procedure to decide whether it has an upward drawing on a 
plane, too. 

U p w a r d  P l a n a r i t y  T e s t i n g  o f  S p h e r i c a l  O r d e r e d  Sets  

INSTANCE Given an ordered set P with upward drawing on a sphere. 
QUESTION Does P have an upward drawing on a plane? 

Problem 4. Is U p w a r d  P l a n a r i t y  T e s t i n g  o f  S p h e r i c a l  O r d e r e d  Se t s  poly- 
nomial? 

Our analysis here has made no distinction between one or more saddle points. 

m-Saddle  Po in t  Surfaces 

INSTANCE Given an ordered set P with planar covering graph and a nonneg- 
ative integer s. 
QUESTION Does P have an upward drawing on a smooth surface of genus zero 
with at most s saddle points? 

Problem 5. Is the s-saddle point problem NP-complete? 

In spite of the intractability of upward spherical testing it is still of interest 
to know just  which ordered sets have an upward drawing on a sphere. 
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Fig. 4. (a) The Spiral S(1, 0). (b) The planar covering graph of S(1, 0) (c) An upward 
drawing of S(1, 0) on a surface with a saddle point. 

Problem 6. Characterize those ordered sets which have an upward drawing on a 
sphere. 

The bridge between the NP-completeness of upward planarity testing and 
upward sphericity testing is built over spirals. In effect, a spiral is spherical if 
and only if it is planar. 

Problem 7. Characterize those ordered sets for which sphericity implies planarity. 
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S t r a t e g y  o f  t h e  P r o o f  

S p h e r i c a l  O r d e r e d  Se t s  a t  a G l a n c e  

What  is the difference between the sphere {(x, y, z) : x ~ + y2 + z 2 = 1} and an 
arbitrary homeomorph of it, that  is, any smooth (compact and closed) surface 
in I t  3 of genus zero? 

In a word, saddles. 
An ordered set is spherical if it has an upward drawing on the unit sphere 

such that  no two edges cross and all edges are monotonic paths with respect 
to the positive z-axis, the northerly direction (although the precise direction 
is arbitrary).  IS. Fo ldes ,  I.  I t iva l  and J .  U r r u t i a  (1992)]  showed that  an 
ordered set is spherical if it has a top, a bottom, and its covering graph is planar. 
Actually, an ordered set is spherical if  and only if, by adjoining new edges as 
needed, it can be extended to a directed acyclic graph, with top and bottom, and 
with planar covering graph. (This echoes a characterization of planar ordered 
sets in terms of planar lattices [D. K e l l y  (1987)]  or, equivalently, st-graphs [G. 
di  B a t t i s t a  and I t .  T a m a s s l a  (1988)] .)  

Fix an upward drawing (without crossing of its edges) of an ordered set P 
on a surface S. To any covering edge a ~- b in P we associate two values, + to 
that  end of the covering edge outgoing from a and - to that end of it incoming 
to b. In this way, every covering edge acquires two values and, for every element 
a 6 P ,  every incident covering edge associates, in this way, a sign (+  or - ) ,  to 
a. A minimal element of P will acquire all - values and a maximal element all 
+ values. In general, to every element there is associated a circular sequence of 
+ ' s  and - ' s  corresponding to a clockwise orientation in a neighbourhood about  
it. What  is of importance is the number of alternations of + 's  and - ' s .  Thus, we 
call an element ordinary just if this sequence consists of an interval of + ' s  and 
an interval of - ' s  - -  one alternation. An extremai element, that  is, a maximal 
or a minimal element has no alternations at all. If an element's circular sequence 
has two or more alternations then it must be a saddle point - -  the surface on 
which the ordered set is drawn cannot be spherical. 

On the boundary vl, v2 , . . . ,  vm of a face F we consider all vertices which are 
extremal with respect to F ,  that is, all vertices vi such that  either vi-1 >- vi and 
Vi+l >.- vi, or else, vi-1 -< vi and vi+l -< vl. Such a vertex is extremai if all of  its 
neighbours are either larger or all are smaller. We call it interior with respect 
to this face F if it has a neighbour v, not on the boundary of this face, with 
opposite sign, that  is, v -< vi if vi-1 >.- vi and vi+l ~- vi, while v >- vi if vi-1 -< vi 
and vi+l -< vl. 

An algorithmic analysis of a graph on a surface ultimately entails a trian- 
gulation of it. Any face which itself (as an ordered subset) contains a top and 
bot tom can be triangulated without increasing the alternation about any of its 
vertices. The essential conclusion to which all of these observations lead is this. 

An ordered set has an upward drawing on a sphere if and only if  its covering 
graph has a triangulation with no saddle point at all. 



(d) 

Iteduction Gadgets 

The NP-completeness reduction is based on standard techniques of "component 
design" (cf. [M. It. G a r e y  and D. S. J o h n s o n  (1979)]). 
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Fig. 5. (a) The spiral Sj (b) Q (c) P(m) (d) R 

Here is the system of gadgets that are used in the reduction. 
Loosely speaking, our aim is to construct a directed acyclic graph P such 

that "flipping" its components corresponds to an instance of Exact  Cover  By  
3-Sets.  

- Spirals Sj, j a positive integer, constitute the "flipping" components. 
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- We collect four spirals at a time to build an ordered set (we call Q) to 
represent the elements of the set X. More precisely, Q consists of three copies 
of $3 and one $9. (The point is that Q has a spherical upward drawing if 
and only if either MI of the three spiral components are "flipped" or none 
at all are "flipped" .) For every member c E C we associate a copy of Q and 
"flipping" the components shall correspond to choosing the member c to be 
an element of the desired exact cover. 

- Construct ordered sets P(m), with m + 1 spirals, m of which are copies of 
$3 and one Sam-6, intended to represent members of C, such that P(m) has 
a spherical upward drawing if and only if exactly one of the spiral sets is 
"flipped". (For every element z E X there is a suitable copy of P(m) and 
"flipping" a component corresponds to choosing the member of C to cover 
the element x. 

- We construct "communication" edges in P to ensure that choices in the Q- 
components and the P(m)-components agree. Because these communication 
edges may cross, we replace each by a "crossover" R. 

In summary, the directed acyclic graph is constructed in polynomial time 
and has a spherical upward drawing if and only if the corresponding instance of 
Exact  Cover By 3-Sets has a positive solution. 
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