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Abstract.  COMAIDE is a toolkit for user-system cooperation through 
joint multi-focal graph browsing. It supports cooperative force-directed 
layout management, concurrent with dialogue handling, for heteroge- 
neous multi-layered 3D interactive diagrams. The layout manager's intu- 
itively 'natural' animations of multi-layered 3D graph drawings support: 

1. Cooperative tidying of user-maaipulable 3D layout; 
2. Optional 'lucid' 3D layout optimized for a favoured viewpoint; 
3. Layout annealing for good initial 3D diagram topologies; 

1 Introduct ion 

COMAIDE (Co-Operative Multilayer Application-Independent Diagram Envi- 
ronment) is a toolkit for cooperative Diagrammatic User Interfaces (DUIs) [15] 
to applications written in Prolog. It presents a simple artificial reality of 3D 
multi-layer node-and-link diagrams supporting multi-focal graph browsing. The 
nodes of the diagram occupy a set of parallel layers, each node's centre being 
constrained to lie in the plane of a layer. 

COMAIDE diagrams are animated by an innovative force-directed layout 
manager, dyn, the focus of this paper. As in most force-directed graph drawing 
systems, dyn simulates repulsion between diagram elements to keep them spread 
apart, and springiness in links to promote preferred link lengths and alignments. 

In dyn's normal, cooperative mode of use, the diagram is animated in a slow 
and intuitively predictable way which does not interfere with user manipulation 
of the diagram. This lets the user vary the diagram's 3D topology by dragging 
nodes. Each node can be dragged within a layer or to another layer by the 
user. dyn tidies up the result without changing the topology. This is important 
because the user may see ways of improving the layout that a layout manager 
cannot find or cannot apply without risk of causing disorientation; also purely 
automatic layout cannot address unpredictable or ramified user preferences, dyn 
also has a simulated-annealing mode for producing fresh layouts, e.g. of new 
diagram contents generated by an application. 

Concurrently with layout animation, COMAIDE supports user-application 
dialogues in which an application responds to mouse actions by modifying dia- 
gram content. These dialogues can employ built-in facilities for multi-focal brows- 
ing [5, 14, 16, 9] which let both user and application expand, shrink, hide and 



191 

reveal nodes. This is important in giving the user control of the allocation of 
screen space (external visual memory) to information whilst letting the appli- 
cation vary this allocation, e.g. to draw attention to important matters. User 
browsing manipulations incorporate a fast initial layout adjustment in the spa- 
tial neighbourhood of the affected node using the 'ductile space' metaphor [5]. 

Facilities for pop-up and pull-down menus are also built-in. A built-in pull- 
down menu allows selection of applications and control of the layout manager. 
Applications can also incorporate specialized layout algorithms for layout initial- 
ization as an alternative to the relatively slow but general annealing approach. 

COMAIDE is a Prolog environment including sub-systems for application 
management, menu operations, browsing operations, layout management and 
diagram I/0, along with various utility sub-systems. A SICStus Prolog process 
incorporating these sub-systems acts as a client of City's interactive diagram 
graphics server, icx, which implements ICD-Edit [4, 7, 8] for X/Motif. COMAIDE 
is currently undergoing further development in the EU CUBIQ project. The 
version outlined here uses the client-server protocol ADI 1.6.1b detailed in [7]. 

Section 2 outlines depth perception aspects of COMAIDE diagrams. CO- 
MAIDE's layout manager, dyn, is presented and discussed in Sec. 3. Section 4 
illustrates both a concept-demonstration of a cooperative Expert System DUI 
built using COMAIDE and the use of annealing for initial layout. Section 5 
concludes. 

2 D e p t h  P e r c e p t i o n  in  C O M A I D E  D i a g r a m s  

COMAIDE's graphics server, ICD-Edit, offers a limited 3-dimensionality, '23/4 D', 
in which nodes appear upright and face forwards irrespective of the variable 3D 
orientation of a diagram. Moreover, ICD-Edit nodes are simply fiat rectangles 
and the links between them are straight lines with optional arrowheads. These 
constraints allow fast diagram manipulation without 3D hardware but also limit 
the cues available for depth perception, which thus need special attention. 

Naturally, ICD-Edit uses hidden object removal, but this only indicates the 
sign of the depth difference wherever a node overlaps a node or link, 

Perspective is used too. Brookes [1] observes that perspective is very effective 
as a depth cue when parallel lines and right angles abound in the 3D model. A 
more detailed analysis for the case of 3D node-and-link diagrams is offered here: 

1. Perspective projection is not in itselfa depth cue. 
2. Recognizable spatial arrangements of diagram elements are good depth cues; 

perspective usually enhances, and in particular disambiguates, this effect. 
3. The more parallel lines and right angles there are in the spatial arrangement, 

the better its depth cueing effect. 
4. Significant uniformity of sizes in the model, e.g. amongst nodes or amongst 

distances between nodes, is needed for perspective to aid depth cueing. 



192 

ICD-Edit's optional 'rocking' motion, inspired by SemNet 1, approximates a 
sinusoidM rotational oscillation with just three co-maintained images. This often 
seems disturbing at first, but seems generally acceptable. It very usefully depth- 
cues ICD-Edit diagrams which richly populate 3D space. 

COMAIDE diagrams use parallel rectangular layers visualized by 3D bound- 
ing boxes and perspective viewing to exploit the potential for depth cueing in 
ICD-Edit diagrams. Though not shown here, intensity cueing is supported too. 

3 T h e  L a y o u t  M a n a g e r ,  dyn 

As a layout manager, dyn runs as a background activity, repeatedly adjust- 
ing diagram layout. The successive adjustments approximate the motion of the 
mutually-repulsive springy diagram elements in a viscous medium. Links are 
assumed to have negligible mass. Newton's second law applies to each node: 

F ---- m~ r (i) 

where m is the mass of the node and ~r (i.e. dV/dt) is its acceleration vector. 
The force vector F is the sum of the motive force on the node and the drag due 
to viscosity. Using a simple model of viscosity, neglecting node size, this gives: 

m~ r = FMOTXVB -- kV (2) 

where k is a viscosity coefficient. The option of treating nodes as having negligible 
mass is usually taken, so that the motion equation degenerates to: 

V = F~oT,v~/k (3) 

In this case, in each time step, movement is proportional to applied force - -  a 
common feature of force-directed graph drawing following its use in [10]. 

Fig. 1 summarizes dyn's layout animation algorithm. Table 1 lists control 
parameters which can be varied using pull-down menus while dyn is running. 

3.1 Mot ive  Forces in dyn 

Nine different types of motive-force interaction are considered, as follows. 
3D N o d e - b o u n d a r y  repulsion:  Each node is repelled inwards by each face 

of a model-axis-aligned cuboid [6] by a force increasing linearly from zero at the 
cuboid's centre to 1 at a distance of bdry_rim_width from the boundary and then 
to max_repulsion for a node touching, crossing or outside the boundary. 

3D Node-node  repulsion:  Each node pair within a layer undergoes inverse 
square law repulsion subject to a force limit of max_repulsion and a distance limit 
of repel_horizon. 

3D Node-l ink repulsion:  For each node, for each link which is not a link 
of that node and which either lies in the same layer as the node or crosses that 

1 SemNet [11] demonstrated fully 3D, mainly viewpoint-navigated knowledge browsing 
with scale-driven recursive decomposition of spatial cluster nodes) 
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For each node n: Set V(n) {the ve loc i ty  of n} to [0 ,0 ,0] ;  
While ts>O {where ts is the assumed size of time step in seconds}: 

<<< FORCE Computation: >>> 

For each node n: Set F(n) {the motive force on n} to [0,0,0]; 

For each node n: Add its boundary repulsion forces to F(n), also 

For each force couple between two diagram elements: 

For each member E of the pair of elements: 

If E is a node n: Add the relevant force to F(n) 

else (E is a link from node nl to node n2): 

Add the relevant forces to F(nl) and F(n2); 

<<< MOTION Computation: >>> 

If inertia>O then: 

tss :ffi ts/5; 

For each node n, repeat 5 times: 

Posn(n) := Posn(n) + V(n)*tss; 

V(n) := V(n) + (F(n)-V(n)*viscosity)*tss/(mass(n)*inertia); 

else For each node n: 

V(n) := F(n)/viscosity; 

Posn(n) := Posn(n) + V(n)*ts; 

viscosity :ffi min( end_viscosity, viscosity*(lOO+anneal_rate)/lO0 ); 

Fig. 1. Outline of dyn's layout management algorithm 

Parameter Description 
bdry_rim_width Distance at which node-boundary repulsion is 1 
n_n_3_repel_factor Coefficient of 3D node-node repulsion 
n_h3_repel_factor Coefficient of 3D node-link repulsion 
1A_3__repehfactor Coefficient of 3D link-link repulsion 
repel_horizon Distance limit of repulsion between diagram elements 
max_repulsion Limit on each 3D repulsion force 
perpendicity Stiffness coefficient of between-layer links 
preferredAength Ideal forward size of in-layer links 
fwd_rigidity Forward stiffness coefficient of in-layer links 
planar_field Stiffness coefficient of 'magnetic' link alignment 
n_n_2_repehfactor Coefficient of 2D node-node repulsion 
nA_2_repel_factor Coefficient of 2D node-link repulsion 
max_2d_repulsion Limit on each 2D repulsion force 
viscosity Ratio of drag force to velocity (negated) 
anneal_rate % increase in viscosity per layout step 
end_viscosity Limit to increase of viscosity 
inertia Ratio of inertia to mass 

Table 1. dyn's Control Parameters 

layer, inverse square law repulsion occurs between them subject to a force limit 
of max_repulsion and a distance limit of repel_horizon. 
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3D Link-link repulsion: Each pair of links such that one is in a layer which 
the other crosses or both cross the same gap between layers experience inverse 
square law repulsion acting along the line of shortest distance between the links, 
subject to a force limit of max_repulsion and a distance limit of repel_horizon, 
provided they would not be closer if extended to infinity. 

Between- layer  link alignment stiffness: Each link from a node in one 
layer to a node in another exerts a pair of forces, one on each node, of magni- 
tude perpendicity*tan(angle from the perpendicular), seeking to make the link 
perpendicular to the layers. The effect is analogous to barycentering [17], but 
generalized to 3D. 

In- layer  link alignment stiffness: Each link in a layer with a forward (i.e. 
upward) direction is Considered to be 'magnetic' if planar_field exceeds zero. 

A non-magnetic link exerts a force pair seeking, with a linear elastic stiffness 
of fwd_rigidity, to make it preferred_length long in its current orientation. 

A 'magnetic' link exerts a force pair seeking alignment in the layer's forward 
direction, D. The force components in D are zero if the length component in D 
is preferred_length, and otherwise reflect a linear elastic stiffness of fwd_rigidity. 
The force components in the perpendicular direction S within the layer are zero 
if the length component in S is zero, and otherwise reflect a stiffness proportional 
to planar_field. This crude but fast approximation of magnetism seems to avoid 
instability and to have intuitive appeal and a barycentering-like effect [17]. 

2D Node-node  and node-link repulsion:  These weak 2D repulsions are 
somewhat similar to their 3D counterparts, but arise in the display plane, ignor- 
ing depth differences between nodes. Their effects are, respectively, to minimise 
node overlap and to resist node-link crossings in the 2D display. 

3.2 Force, Mass and Heat in Nature and in dyn 

COMAIDE animates the diagram approximately as if suspended in a thick fluid 
which continually promotes equilibrium by extracting energy from it. Low-energy 
equilibrium states in force-directed layout have no kinetic energy because they 
are static, and have low potential energy in force interactions, implying good 
satisfaction of the separation and alignment preferences modelled by the force 
interactions, averaged over the diagram. The motion and heat that would be 
induced in a real fluid is ignored, but compared to most force-directed graph 
drawing systems, e.g. [13, 2, 12], dyn's dynamics are relatively natural. 

dyn's universal inertial constant, inertia, controls the magnitude of the effect 
of mass, i.e. delay in response of motion to force and tendency to overshoot. 
When inertia is zero, diagram layout typically seems to converge faster with 
similar or perhaps better results, though no formal comparison has been made. 
Moreover, the animation seems more open to intuitive prediction when mass 
effects do not need to be considered. Indeed, naturally speaking, the more vis- 
cosity dominates mass (i.e. the smaller velocities are than they would be in the 
absence of viscosity), the smaller the effect of mass on trajectory. 

In practice, in the course of a time step, diagram elements tend to approach 
each other more closely than their initial energy would allow in reality. This 
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happens because the crude simulation algorithm does not foresee the escalation 
of repulsion between them in the course of their approach. Compared with a hy- 
pothetical perfectly natural animation the effect is to provide a source of random. 
mechanical energy. A positive viscosity is needed just to counterbalance this ef- 
fect. Adopting the analogy between diagram structure and molecular structure, 
an increase in energy equates to heating. Thus a low viscosity in dyn tends to 
produce heating, whilst a high viscosity tends to produce cooling. 

3.3 Normal  and Annealing Modes  of  Layout Management  

dyn's 'normal' mode of cooperative operation occurs when diagram energy is low 
enough for diagram elements to succeed in repelling each other. In other words, 
between one force computation and the next, no diagram element (node or link) 
passes through another due to motion so fast that their high mutual repulsion 
when close together is not sampled - -  or if sampled, is insufficient to prevent 
through-passing. This equates to the ordinary reality of solid objects. In some 
sense, the 3D topology of the diagram remains constant. 

At high energy levels, the diagram moves chaotically with lots of through- 
passing. This is somewhat analogous to the behaviour of fluids, particularly as 
the positions of nodes are much less constrained by the links between them. 

The term annealing traditionally meant the slow cooling Of a metal such that 
the boundaries between its crystals have time to migrate, relative to its atoms, 
to a particularly low energy state associated with large crystal size and with high 
ductility. Through metaphor, it can be now used for analogous slow reductions of 
energy which tend to yield particularly low-energy equilibrium states. Dropping 
the qualification 'simulated' from annealing seems particularly valid when, as in 
graph drawing, reality is being created more than simulated. 

Unlike many simulated annealing systems, such as [2], dyn is deterministic, 
being controlled by increasing viscosity rather than by explicitly reducing the 
probability of random energy increase. Annealing is used to solidify the diagram 
into a low-energy 3D topology. The diagram can initially be melted with low 
viscosity and/or by 'crushing' it, which positions each node at the centre of its 
layer, creating high initial potential energy. If the diagram 'explodes' excessively, 
'sandbags' can be switched on to limit node positions to a cuboid model space. 

3.4 3D and 2D Layout 

Diagram annealing in dyn using 3D forces leads to fairly good 3D layouts, al- 
though some cooperative user input is often helpful once the diagram is solid. 
These layouts are not however optimized for a particular direction of viewing. To 
maintain familiar visual context and aid fast recognition of familiar content, the 
diagram needs to be arranged appropriately for some principal viewing direc- 
tion. dyn achieves this using 2D node-node and node-link repulsions which arise 
in the 2D display projection of the diagram. By making these 2D repulsions 
small compared to the 3D repulsions, they minimize node-node and node-link 
overlap in the projected view, without significantly impairing the quality of the 
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3D layout. The resulting layout is good both in 3D and in the 2D-displayed view. 
The 2D forces also tend to maintain the 2D topology of a solid diagram and are 
not useful to consider until the diagram is solid, especially as they currently take 
longer to compute than the 3D ones. 

Gas, liquid and solid are familiar thermodynamic phases of everyday sub- 
stances. VIM diagrams have three thermodynamic phases too: the fluid phase, 
the ordinary solid phase, and a third phase obtained with added 2D repulsions 
which can add perspicuity to solid diagrams. This third phase is the lucid phase. 

Clearly there is much more to be gained from the correspondence between 
materials science and 3D force-directed graph drawing than is uncovered here. 

4 Sample Results 

Note that when COMAIDE presents the diagrams shown below, ICD-Edit's rock- 
ing motion makes them look far more 3-dimensionM. This makes them look less 
tangled and resolves structural ambiguities. 

4.1 Cooperat ive  Browsing  S u p p o r t e d  by Cooperat ive  Layout  

This example shows VIM [9], a visual expert system prototype, running in CO- 
MAIDE. The underlying expert system shell is IM1 [3]. 

Fig. 2. VIM on first selecting a question to be answered 
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Figure 2 shows a view of a 3D overview diagram comprising 89 nodes and 
c.100 links. It shows a small IM1 knowledge base of 42 particulars (the oblong 
nodes) and 47 rules (the square nodes and their links). The user has entered, 
as the initial input, the proposition that the patient complains of amenorrhoea 
(particular pl, top right front). As a result, IM1 has updated various weights 
of evidence (visually encoded mainly with '+ '  and ' - '  characters) by forward 
rule application (i.e. with the data flow shown by arrowheads). It has then also 
updated 'investigative importances' (visually encoded by oblong-node border 
density) by reverse rule application. VIM has used these updates to estimate 
the pertinence (i.e. desired salience) of the affected nodes and has updated the 
diagram accordingly, dyn has then executed two cycles of layout adjustment, 
chiefly spreading out enlarged nodes to reduce overlap. Finally the user has 
clicked on the 'men cg dur' node causing a data entry pop-up to appear. 

Fig. 3. Later in the same VIM consultation 

Figure 3 shows a later stage in the consultation. The layout manager has 
executed a further 12 layout adjustment cycles. Concurrently, the user has: 

1. Provided 3 answers to questions; 
2. Rearranged three nodes to release a snag which inhibited layout improve- 

ment, without altering the 3D topology of the diagram; 
3. De-selected most of the 'tiny' particulars from view (Ideally VIM would 

keep impertinent particulars hidden, but at the time of writing its automatic 
browsing actions vary node salience but not node selection.) 
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Node de-selection can be reversed by clicking on the 'link stubs' which point 
in the direction of omitted detail. Each such click reveals a linked rule node, 
together with any other links from that  rule to particulars shown in the diagram. 

dyn currently takes almost two minutes per animation step for the full lucid 
VIM diagram shown in Fig. 2, using lists for vectors in SICStus Prolog on a Sun 
SPARCclassic. Software tuning and quadrupled hardware power are expected to 
yield an acceptable speed of 1 to 5 seconds per cycle for such a diagram. 

4:2 Cooperat ive  A n n e a l i n g  

Fig. 4 shows a diagram which has been crushed and then given 29 annealing steps 
with an initial viscosity of 0.2, rising 2% per step. All of the other parameters 
have their default values, with 2D forces off. The diagram solidified within 11 
annealing steps, and moved very little after 20 steps. Each layout step took about 
2 seconds, including Prolog, ICD-Edit and X server execution time. 

~ublect 1 browsing 1 , a y o u t m o t i o n ~  
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Fig. 4. A Diagram after 29 Annealing Steps 

After repositioning one node by simple dragging, 10 more annealing steps 
produced the layout shown in Fig. 5, in which the dragged node is emphasized. 
dyn was stopped to aid this, as node dragging was not suppressing repositioning 
by dyn at that  time, making dragging prone to failure in small diagrams. 

The right hand half of the diagram was then manually repositioned to make 
the diagram r o u g h l y  symmetrical, again with dyn turned off. After about ten 
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Fig.  5. A f t e r  39 Steps 

more layout cycles, the node velocities were below 1 pixel per cycle. Fig. 6 shows 
the layout a minute later. A further 250 steps produced no noticeable result 
except for a very slight clockwise rotation as viewed from above. 

5 C o n c l u s i o n  

COMAIDE demonstrates a lot of support for user-application cooperation in 
joint multi-focal graph browsing, illustrating key benefits of 3D in this con- 
text. The key ingredient is a cooperative layout manager, dyn, which animates 
multi-layered 3D graph drawings in a fairly graceful, subjectively natural and 
intuitively comprehensible way. Animation by dyn supports: 

1. Cooperative management of 3D layout, in tidying layouts without changing 
their topology while allowing user manipulation; 

2. Optional combined 3D and 2D 'lucid' layout for a favoured viewpoint; 
3. Layout annealing, finding good 3D diagram topologies. 

dyn's novelty rests largely on its rich model of diagram structure and forces: 

1. Both sorts of diagram element (links as well as nodes) repel each other. 
2. Links within planes are treated distincity from links between planes. 
3. An optional pseudo-magnetic force promoting link alignment within a plane 

is modelled as an orthogonal pair of simple spring forces. 
4. 2D forces which arise in the display plane are used to gently coerce good 3D 

layouts into being good 2D ones from the chosen viewpoint. 
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Fig. 6. After another 5 Drags and 40 Steps 

5. The force computation ignores hidden diagram elements and the motion 
computation ignores any component of force on a node normal to its layer. 

Further details including references to related work can be found using the 
World Wide Web URL: http://web.cs.city.ac.uk/research/dig/digpapers.html 
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