
An Experimental Comparison of Force-Directed
and Randomized Graph Drawing Algorithms

Franz J. Brandenburg*, Michael Himsolt* and Christoph Rohrer

University of Passau, 94030 Passau, Germany
{brandenb, himsolt}@•

A b s t r a c t . We report on our experiments with five graph drawing algo-
rithms for general undirected graphs. These are the algorithms FR in-
troduced by Fruchterman and Reingold [5], KK by Kamada and Kawai
[11], DH by Davidson and Harel [1], Tu by T~nkelang [13] and GEM
by Frick, Ludwig and Mehldau [6]. Implementations of these algorithms
have been integrated into our GraphEd system [9]. We have tested these
algorithms on a wide collection of examples and with different settings
of parameters. Our examples are from original papers and by our own.
The obtained drawings are evaluated both empirically and by GraphEd's
evaluation toolkit. As a conclusion we can confirm the reported good be-
haviour of the algorithms. Combining time and quality we recommend
to use GEM or KK first, then FR and Tu and finally DH.

1 I n t r o d u c t i o n

Graph drawing has become an important area of research in Computer Science.
There is a wide range of applications including data structures, data bases, soft-
ware engineering, VLSI technology, electrical engineering, production planning,
chemistry and biology. Simply speaking, graph drawing is concerned with the
problem of obtaining aesthetically pleasing drawings of graphs. However, what
means aesthetically pleasing? A list of criteria has been laid down, including uni-
formity of the edge length and the node distribution, crossings and the display
of symmetries. Recent developments have brought a number of powerful and
sophisticated algorithms, which attempt to cope with these aesthetic criteria.
An excellent survey and classification can be found in [2].

In this study we consider five well-known algorithms for straight-line draw-
ings of general undirected graphs. Our implementations are called FR, KK, DH,
Tu and GEM, respectively. They are based on the algorithms introduced by
Fruchterman and Reingold [5], Kamada and Kawai [11], Davidson and Harel
[1], Tunkelang [13] and by Frick, Ludwig and Meldau [6]. The algorithms take
arbitrary undirected graphs as input and produce straight-line drawings. They
modify a given drawing iteratively and attempt to minimize some cost function or

* This research is partially supported by the Deutsche Forschungsgemeinschaft, Grant
Br 835/6-1, Forschungsschwerpunkt "effiziente Algorithmen ffir diskrete Probleme
und ihre Anwendungen"

77

the energy of the drawing. Their strategies are different, using the spring embed-
der or cost functions and randomization and the simulated annealing paradigms.
Each algorithm has been described in detail in an original research paper, where
examples of its performance and some comparisons can be found.

However, it is difficult to recall and check these results. This is partially due to
the random character of the algorithms. Also, it is the concrete implementation
that is in use. The implementation has a big influence particularly on the run
time. The drawings depend on the settings of parameters and to a less extend
on the initial drawings.

We have integrated FR, KK, DH, Tu and GEM into the GraphEd system,
which is a platform for our experiments and evaluations, and we have run the
programs on a wide collection of examples. This report includes only some graphs
which have been named elsewhere. Further data can be found in [12]. The draw-
ings are evaluated both empirically and by GraphEd's evaluation toolkit [10].
Our experiments confirm the good behaviour of the algorithms reported in the
literature. They reach the intended goals, in particular uniform distributions
of the edge lengths and the nodes. For many graphs their symmetries are well
displayed.

Related experimental work on graph drawing has been presented by Davidson
and Harel [1] and Fruchterman and Reingold [5], which mutually compare their
drawings, by Frick et al. [6] comparing their GEM with GraphEd's FR and an
earlier implementation of KK, Tunkelang [13], Himsolt [10] and di Battista et
al. [3]. Himsolt considers a broad collection of graph drawing algorithms with
different graph drawing standards and di Battista et al. test and compare three
algorithms producing rectlinear drawings. Our spirit is similar with a focus on
algorithms for straight line drawings of general graphs.

2 A l g o r i t h m s

In this section we give an outline of the algorithms and explain particularities
of our implementations. We followed the original descriptions unless otherwise
stated.

2.1 F R

FR is the GraphEd implementation of the algorithm by Fruchterman and Rein-
gold [5]. Based on the force-directed method, FR computes attractive and repul-
sive forces and simultaneously moves all nodes according to these forces, where
the moved distance is bounded by a temperature t. This process is iterated for
some rounds. The free parameters of the implemented algorithm are the optimal
node distance, the maximal number of iterations and the temperature t. These
parameters can be chosen by the user. The algorithm terminates if either the
maximal force acting at a node falls below a user defined threshold or if the
maximal number of iterations is exceeded.

78

2.2 K K

KK is the algorithm by Kamada and Kawal [11]. It computes the total en-
ergy of the drawing from the actual and the graph theoretic distances between
nodes. Solving a system of partial differential equations by the Newton-Raphson
method, the locally best node is moved to reduce the total energy of the drawing.
This is repeated until the energy falls below a preset threshold.

C. Rohrer has tuned KK for the GraphEd system by a more efficient imple-
mentation of the Newton-Raphson method. This leads to a significant speed-up
over an earlier version of KK, which was under study by Frick et al. [6] and Him-
solt [10]. In the original description of the algorithm the number of iterations
depends on the threshold and the structure of the drawing and thus is hard to
predict. Instead, our implementation uses 10*n iterations, where n is the size of
the graph.

2.3 D H

DH is the simulated annealing approach by Davidson and I-Iarel [1]. The goal
is to minimize a cost function f(G) = ~"]~hJi(G), which sums over (1) the
node distribution, (2) the edge length, (3) the edge crossings, (4) the node-edge
distances and (5) the borderlines. Each of these components has its individual
weight hi, which can be set by the user. Our implementation has a few individual
features: They have been introduced to increase the flexibility of our DH and to
save some running time, a critical factor for DH, as already stated in [1]. First, we
drop the borderlines. Our concern are graphs that are (hi-) connected. Secondly,
we normalize the weight parameters hi. For a given drawing, the related costs
vary by orders of magnitude. E.g., the edge length sums over the quadratic
distance between its nodes, the node distribution sums over the inverse quadratic
distances and crossings are counted as integers. Therefore these costs are first
normalized to 10, and then the user can set relative weights (hi, h2, h3, h4) with
1 _< hi, h2 ~ 10, 0 <_ hs ~ 1000 and 0 _< h4 ~ 10. The larger range for
h3 is chosen to force planarity. If h3 = 0 or h4 = 0, then the computations
for the detection of possible edge crossings and for the node-edge distances are
suppressed.

For the motion of a vertex DH has two options. The first one follows [1] and
attempts to move a randomly chosen node to some randomly chosen point on
a circle around v with radius r. Starting with an initially high value the radius
r decreases geometrically in each round. However, with a decreasing radius, the
neighbourhood shrinks and the validity of the underlying theory is in question.
Note that DH is an approximation to the simulated annealing process. In the
second option, for each round, the radius r is randomly generated and for the
trials of node movements the offsets are chosen randomly within a circle of radius
r. Furthermore, we have added a re-enforcement heuristic, which again can be
switched on/off. This concept is adopted from GEM [6]. If the last movement
of a node has lead to an improvement of the cost function, its next update is
restricted to almost the same direction, i.e. a point in the sector of width ~/2. As
in [1] the DH algorithm finishes with a fine-tuning phase, doing a linear number
of moves where only improvements of the cost functions are allowed.

79

2.4 Tu

Tu is our implementation of Tunkelang's incremental algorithm [13]. Tunkelang
uses a template of 16 locations. These are the 8 local neighbour positions and 8
positions at distance d resp. dye, where d is the so-called quality parameter set
by the user. d = 4 is the default value. Tu inserts the nodes one after another
in some precomputed order, here breadth first from the graph theoretic center.
For a new node, Tu checks the template positions of each of its neigbours and
of the corners of the screen as a candidate position and chooses the locally best.
After each insertion, there is a recursive finetuning. All neighbours of the current
node are checked for an improved position, using the template from above for
the candidate positons. The cost function is that of DH.

2.5 G E M

The graph embedder GEM has been introduced by Frick et al. [6]. It is a tuned
and randomized version of a spring embedder, and combines ideas from FR and
DH. GEM has been explained in detail in [6], where it is compared with FR
and an earlier version of KK. A. Ludwig has made the implementation of GEM
available to us.

2.6 Compar i son and M e a s u r e m e n t s

We can present only an excerpt of our tests and examples. There are too many
graphs and varieties of parameter settings.

For our measurements we consider the run time on a Sparc 10, the ratio
of the length of the longest and the shortest edges, the normalized standard
deviation of the edge length and the number of edge crossings. Furthermore, the
distribution of the nodes, the ratio of the farthest and nearest pair of nodes, the
number of edge crossings and the area have been computed. But this data gives
a less significant picture.

In our tests we have made several runs, starting from a randomly generated
input drawing, and collected the data of the best, the worst and the average
run. The so obtained data is not significantly different, except for the number of
crossings and when the number of iterations is too low. There it happened that
the best drawings of some planar graphs such as trees, grids and triangular nets
came out planar and others had many crossings.

Figures 1, 2 and 3 show test data on complete graphs up to K24 and on a
set of mixed graphs, which consists of 59 graphs from the papers by Davidson
and Harel [1] and Fruchterman and Reingold [5], ordered by the sum of the
nodes and the edges. Further examples have been tested in [12]. The drawings
are computed with our default settings as mentioned before. For DH they are
(1, 2, 0, 0) for the relative weights and 900n iterations split into 30 rounds of 30n
trials and followed by 80n fine-tuning iterations, where n is the size of the graph.
Since edge crossings and node edge distances are ignored, the inner loops of all
five algorithms are of the same asymptotic complexity.

80

Figure 4 shows a comparison of DH without crossing costs (1, 2, 0, 0) and
with high crossing costs (1, 2,100, 0).

2.7 Evaluat ions

1. Overall, we can confirm the behaviour of the algorithms reported in the orig-
inal papers. The algorithms reach the intended goals and produce drawings
with uniform edge length and uniform node distribution. In this sense, the
obtained drawings are aesthetically pleasing. This can also be said empiri-
cally for the visual impressions of the pictures.

2. The algorithms are stable against random input graphs. They converge to-
wards one of the usually few stable drawings, which are of comparable qual-
ity, both empirically and by the collected data on the edge length etc.

3. FR, KK, GEM and DH without crossing optimization often produce draw-
ings with a similar appearance. They display symmetry and perfom particu-
larly well on (almost) complete graphs and on graphs from regular polytops
and with a 3-D appearance, such as hypercubes, dodecahedron, icosahedron
etc. or tori. Distorted drawings occurred for loosely connected graphs.

4. Tu often yields drawings that are different from those of the other programs.
Thus, Tu is worth a trial, if the others fail. Tu does not display symmetry,
which may be useful, if symmetries are not important. It performs well on
grids and net structures, where the other algorithms sometimes failed to un-
tangle distored inputs. However, its behaviour is hard to predict. Its quality
parameter has an estimated exponential impact on the run time.

5. DH is the most flexible, but also the most time consuming algorithm. From
our experiments we recommend to use more iterations than proposed by
Davidson and Harel. This gives better and more stable results. However,
DH is difficult to steer. It is difficult to find the proper mix for the relative
weights. High penalties for crossings and close node edge distances often
destroy the balance and the symmetry of the drawings and the uniformity
of the edge length and the node distribution. And due to our implementa-
tion they cost time. This is underpinned by the data shown in Fig. 4. Some
drawings produced by DH are illustrated in Fig. 5.

6. GEM and KK are very competitive in speed; the difference in speed in Fig. 1
is neglectible. They outperfom the others.

7. FR is fast on small graphs, but slows down on larger graphs with more than
60 nodes and edges.

8. KK produces smooth drawings with a low ratio of the longest and shortest
edges and a small deviation of the edge length.

3 C o n c l u s i o n

Each of the tested algorithms is a good tool for straight-line drawings of general
undirected graphs. But there is no universal winner. For each algorithm we have
found examples, where it produces the most pleasing drawings.

81

If you use these algorithms with the GraphEd system, we recommmend to
t ry GEM or KK first, or FR if the graph is small with up to 60 nodes and edges.
Next, try FR or Tu and finally DH. If time doesn't count, t h e n play with the
parameters of DH or Tu until you get a pleasing drawing. This recommendation
takes quality and time into account.

If you have some knowledge of your input graph, e.g. planarity, and you
insist on having a planar drawing, then do heavy-duty preprocessing and apply
modified and adapted versions of these force-directed or randomized algorithms
as a beautification step, as proposed in [7]. DH with high weights on crossings
does not perform well, and it is difficult to find the proper mix of the parameters
for reasonable or good drawings.

Acknowledgements. We wish to thank A. Ludwig for making the GEM available
to us, and F. Dichtl for tests with the algorithms.

References

[1] Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. Depart-
ment of Applied Mathematics and Computer Science (1991)

[2] Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom. Theory Appl. 4 (1991) 235-282

[3] Di Battista, G., Garg, A., Liotta, G., Tassinari, E., Tamassia, R., Vargiu, F.: An
experimental comparison of three graph drawing algorithms. Proc. 1 lth AMC Sym-
pos. Comput. Geom. (1995)

[4] Eades, P.: A heuristic for graph drawing. Congressus Numeratium 42 (1984) 149-
160

[5] Fruchtermann, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software, Practice and Experience 21 (1991) 1129-1164

[6] Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs. Proc. Workshop on Graph Drawing 94. LNCS 894 (1994) 389-403

[7] Harel, D., Sardas, M.: Randomized graph drawing with heavy-duty preprocessing.
Department of Applied Mathematics and Computer Science Weizmann Institute
of Science, Rehovot/Israel, Technical Report CS93-16 (1993)

[8] Himsolt, M.: Konzeption und Implementierung von Grapheneditoren. Dissertation,
UniversitEt Passau, Shaker Verlag Aachen (1993)

[9] Himsolt, M.: GraphEd: A graphical platform for the implementation of graph al-
gorithms. Proc. Workshop on Graph Drawing 94, LNCS 894 (1994) 182-193

[10] Himsolt, M.: Comparing and evaluating layout algorithms within GraphEd. J.
Visual Languages and Computing 6 (1995)

[11] Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Proc. Letters 31 (1989) 7-15

[12] Rohrer, C.: Layout yon Graphen unter besonderer Beriicksichtigung von proba-
bilistischen Algorithmen. Diplomarbeit, Universit~t Passau (1995)

[13] Tunkelang, D.: A practical approach to drawing undirected graphs. Carnegie Mel-
lon University (1994)

82

lOO

T ime (Mixed Graphs)

10

0,1

0,01

f . . y C " - - - : - - - ' - - - - T u

_ ; _ ~ ~ . - "

u J "|: | [r~b'~. :

I I I I I " I I

20 40 60 80 100 120 140 160

Number of Nodes + Number of Edges

I

18o

lO

o, !

0 ,o l

T i m e (Comp le te Graphs)

Tu FR

-- d . . . * .

/ - ~ J / -

i 1 I I ~ ' ~ I ," " ~ . _ . J "

J i l l " " , *

f . _ . - - : ~ . . - " "

/.:..

I I I I I I I I t I I ~ I I I I I I I

I - D , - ~ - T u ~ . ~ ~ I G E M K K FR

Fig. 1. Runtimes

83

5

4,5

4

3,5

3

2,5

2

1,5

1

0,5

0

Longes l Edge / Shor tes t Edge (Mixed Graphs)

/ ' , \
/ "\

/ " Tu ,, ,,'~ � 9

, j ,~/~ ,~. jK ... , - " . - . , ~ m

.~ ~1 :t;~"t~"~ ~ ; ~ - z ' ~ ~-- . ~" ~ " ' . - .

I , . ' :I ,,, . ' . J .-" "" ,,
') :: ' ~1 ' , 1. ' ,

I - - i I I I I I I I

20 40 60 80 100 120 140 160 180

Number of Nodes + Number of Edges

Longest Edge I Shor tes t Edge (Comple te Graphs)

, ' " "" (3B~

�9 ' . . . TU

, " / ,

. , ..j., ,,"-- E14.

. _ _ _ % _ _ ~

I I I I I I I I I I I I I I I I I I I

[• - Tu GEM KK FR I

F i g . 2 . Edge Length Ratios

84

0,3

0,25

O,2

0, t5

0,1

0,05

0

i
! !,

! '1!
I �9

20 40

Deviation of Edge Length, Normalized (Mixed Graphs)

I
I
,I

' " : J . " \ R t

.. ,.. .:,.-.." ~-. ..~- ..

1,'1 ~ '-

!

I I I I I l I

60 80 I O0 120 J 40 160 180

Number of Nodes + Number of Edges

0,25

0,24

0,23

0,22

0,21

0,2

0.19

0,18

0,17

0,16

0,15

Deviation of Edge Length, Normalized (Complete Graphs)

�9 " " . G E ~

~ - " .
KK

�9 ~ . - . .

t

"1

I I I I I 1 t I I - - I 4 - - - - - I - - I -I I I 1 I

L _ _ _ _ - - - I

Fig. 3. Edge Length Deviation

,,-z
'J

O

C,

CD

I=
"

O

Cr
q O

c..
i..

O
 l=t

10
00

0

to
oo

to
o

Ti
m

e
(C

on
-tp

let
e G

rlp
hl

~)

lO
,

1

/

I

Lo
ng

es
t E

dg
e

I
S

ho
rl

el
~

E
dg

e
(C

om
pl

el
e

Gr
m

gh
s)

20

//
/

1,

/

//
/

12

lO

//

--

s
/

/

Nu
m

be
r ~

 C
m

s~
ng

ll
(C

om
~e

to
 G

m
p~

)

s~
17

61
76

t

70
00

SO
00

so
oo

~

a~
17

61
76

i

3o
~

i

20
00

1 ,oo
:I

-
-

S

im
ul

at
ed

 A
nn

ea
lin

g

O
ev

la
tlo

n o
t E

dg
lm

 ~
No

m
la

llz
ed

 (C
om

ple
tm

l G
ra

ph
s)

0,
19

0~
B

T
0.

17
 T

0,
16

 l

o.
ls

J
]

i
p

~
i

I
I

i
p

.
.
.
.
.

Si
mu

la
te

d
An

ne
al

in
g

wi
th
 H
ig

h
Co

st
s

o
n

C
ro

ss
in

gs

CO

86

FIR, (optimal distance GEM KK
3 x nodesize)

~ (quality ~arameter 4) Tu (quality parameter 20) Tu (quality parameter

DH (2,2,0,0) DH (2, 2, 100, 0) DH (2, 2, 100, 10) j
DH (2, 2, 50, 5) DH (10,10, 100, 5) DH (10, 10,100, 10)

Fig. 5. Several drawings of the Ks

87

KK DH

GEM Tu

C

FR

Fig. 6. Graphs from the graph drawing competition drawn with several algorithms

