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Abs t rac t .  Alain Martin has developed a design method for asynchronous 
circuits whereby a specification is refined through a series of distinct stages to 
a gate implementation. The Citcal system is able to check equivalence between 
terms of the Citcal process algebra. The system can be used to verify the 
results of some of Martin's refinements and the gate implementations. It can 
also be used to analyse the operator network for the necessity of isochronic 
forks. 

1 I n t r o d u c t i o n  

Alain Martin argues for the use of Delay-Insensitive (DI) asynchronous circuits for 
implementing large scale digital systems [5]. A DI circuit operates correctly regard- 
less of any delay, or variation of delay, in the circuit, whether in a gate or wire, 
which compared to synchronous design techniques can be seen to be a consider- 
able advantage. Unfortunately, as Martin points out, the class of entirely delay- 
insensitive circuits is very limited, so he has developed a design method based on 
Speed-independent techniques. Speed-independent design assumes that  delays in 
gates are arbitrary but that  wires have no delay. This assumption is valid until it 
becomes necessary to fanout a signal to a number of gates. Martin introduces the 
concept of the isochronic fork to deal with this situation. 

Martin's method involves transforming a specification through successive levels 
of refinement to a circuit implementation. These transformations are supposed to 
preserve correctness however Smith and Zwarico [10] accuse Martin of being less 
than rigourous in establishing validity of the transformations and have taken it upon 
themselves to reconstruct Martin's method. An alternative approach is to map the 
specification and implementation into a formal system and then establish equivalence 
between the two as a post design activity. This is the approach taken by Dill [4] using 
a variant of trace theory. 

Dill restricts himself to verifying the final design. Whilst this is very useful, it 
does mean that  the design of the circuit must be completed before verification takes 
place. Martin's method involves a top-down refinement approach to the design and 
it would be useful if any errors introduced during refinement were uncovered as early 
as possible. Tha t  is the aim of the verification approach described in this paper. 
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This paper is structured as follows: 

S e c t i o n  2 describes Circal and the Circal system and introduces the modelling of 
behaviours. 

S e c t i o n  3 outlines Martin's design method and introduces the L/R. process which 
is the example used throughout. 

S e c t i o n  4 describes how production rules, which are the major  intermediate design 
step, can be modelled in Circal and how sets of production rules can be verified. 

S e c t i o n  5 describes how the operators are modelled and how networks of operators 
can be verified. 

S e c t i o n  6 describes how the operator networks can be analysed for necessity of 
isochronic forks. 

S e c t i o n  7 discusses the work presented and areas of further work. 

2 C i r c a l  a n d  t h e  C i r c a l  S y s t e m  

The Circal process algebra was developed by Milne for describing and proving prop- 
erties of digital systems [8]. It consist of five operators to describe behaviour of a 
process and three operators to describe the interconnection of a number of processes. 
The behavioural operators are: 

/ \ c  - termination or deadlock. This represents a process that  can do no further 
communicating. The c indicates that  the deadlock is of a particular sort (The 
sort of a process is the set of actions to which it can respond). 

(a  b)P - guarding; the process P (any term constructed from the behavioural opera- 
tors) can be executed only after the actions a and b have occurred simultaneously. 

P + q - deterministic choice; this becomes process P or q depending on whether the 
environment in which it operates presents actions that  are part  of P or part  of 
r 

P tt q - nondeterministic choice; this is similar to the previous choice operator but 
its semantic is that  of an internal choice i.e., the process itself decides which of 
P and r to offer to the environment. 

P <- (a )q  - definition; this allows binding of a Circal term to an identifier. Since 
identifiers can also occur in s terms, this enables recursion to be used in 
describing infinite behaviours. 

The structural operators are: 

P*Q - concurrent composition; this Circal term denotes two process running in par- 
allel, communicating with each other according to the common actions of both. 

P - ( a  b) - abstraction; this denotes the process P with the actions a and b removed 
from its behaviour i.e. the resulting term can no longer synchronise with any 
external occurrences of these actions. 

P [ a / p , b / q ]  - relabelling; the process P containing actions p and q is changed to a 
process where these actions are renamed as a and b respectively. This enables 
the same behaviour to be instantiated for different sets of actions. 
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A formal semantic is given to each of these operators and a set of algebrMc laws 
are derived. This gives insight into the relationship between the operators e.g. + 
and ~ are commutative and associative and distribute through each other, * dis- 
tributes through �9 [9]. The most interesting laws enable a structural Circal term 
to be transformed into a behavioural one. In order to provide an effective, engineer 
friendly means of using Circal it has been embedded in XTC, a high level, interpreted, 
general purpose programming language [6]; this language is called XCircal [7]. 

There are several approaches to modelling when using Circal in hardware design 
[3]. In this paper transit ion based modelling is used. In this style actions are used to 
represent changes in value e.g. an action a0 might be used to represented a change 
for 1 to 0 on a port  a which has two possible values. Similarly a l  represents a change 
for 0 to 1. To demonstrate how logic functions are modelled, and how the features 
of XTC can be used to ease description, a model for a two input AND function is 
presented. 
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enuJa 12_states {SO0,SIO,SO1,Sll} 

P r o c e s s  AND2(Bool i a , i b , i x ,  i 2_s ta t e s  s t a r t _ s t a t e ) {  
s t a t i c  Boo1 a ,b ,x  
s t a t i c  Process ANV[i2_states]{ 

AND[S00] <- (a.1)AND[S10] + (b.1)AND[S01] + 
(a.1 b.1 x.I)AND[Sll] 

AIID[S10] <- (a.0)MtD[S00] + (b.1 x.1)AND[S11] + 
(a.0 b. 1)MtD [S01] 

AND[S01] <- (a.1 x.1)AND[Sll] + (b.0)AND[S00] + 
(a. 1 b.0)AIID[S10] 

AND[Sll] <- (a.O x.O)AND[S01] + (b.O x.O)AND[SIO] 
(a.O b.O x.O)ANDESO0] 

} 
r e tu rn  (AND[start_state] [ i a / a , i b / b ,  ix/x]  ) 

} 

Explanation: Lines 3-16 define an XCircal function AND2 which returns an object of 
type P roces s .  Variables of type Boo1 denote two actions name .  0 and name .  1 which 
are used to denote the changes of value of the physical port  name in the manner  
described above. Line 5 declares an array of type P r o c e s s  with an index being the 
enumerated type of line 1. Each element in this type is used to denote the possible 
combination of values on the input ports. Lines 6-13 are Circal definitions for the 
behaviour of an AND function. Each definition has all the possible changes of input 
values given which are dictated by the numerals of the array index. Should the output  
need to change this occurs simultaneously with the input action(s) tha t  caused it. 
Thus this is a zero delay model. The four definitions can be regarded as defining a 
s ta te  machine which models the AND behaviour. The initial state is selected in the 
r e t u r n  statement along with the required relabelling as specified in the parameters 
to the function, e.g. ANV2(p,q,u,S10) gives an AND behaviour with inputs p and 
q of starting values 1 and 0 respectively, and output  u. 
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3 A n  O v e r v i e w  of the~Martin Des ign  Method  

Martin describes his design method in terms of three levels; source code, object code 
and VLSI implementations. The source code is based on Hoare's CSP and als0 uses 
Martin's concept of the probe [5]. This level of description is subject to manipulation 
prior to the generation of the object code. These manipulations involve refining the 
specification into a larger set of concurrent processes that make the object code 
generation tractable for each process. 

As an example Martin's L /R design [5] is used and the schematic is shown in 
figure 1. With respect to the verification the handshake expansion is used as a spec- 
ification. The two channels L and R are each implemented by two boolean ports 
conforming to a four phase handshake protocol. L is passive (o) and R is active(o). 
A passive channel waits for communication to be initiated by the environment in 
which it operates, whilst with an active channel the circuit is the initiator. It follows 
that the active channels of a process connect to the passive channels of another. The 
handshake behaviour for L/R is: 

�9 [[/q; ,.o 1; [,-i]; ,.o l ;  [-,,'q; 1o T; [-,/q; Zo l] 

The �9 means repeat forever the behaviour in parentheses. [boolezp] means wait until 
boolezp is true. The semicolon is a sequencing operator, whilst the other expressions 
are assignments e.g. ii T means li becomes true. It is quite easy to see the difference 
between the passive and active handshake behaviours of each channel. For L the 
circuit first waits for the input, ii, to become true, whilst the first action on the R 
channel is to make ro true. 

 L:t I 0 0 R 

Fig. 1. Schematic for L/R Process 

This handshake behaviour maps in to Circal in an obvious way: 

LR <-  l i . l  r o . l  r i . l  r o . 0  r i . 0  i o . I  l i . 0  i o . 0  LR 

Martin's object code consists of a set of production rules. These have the following 
form: 

G ~ S  

where G is a boolean expression, called the guard, and S an unordered list of simple 
assignments. If G is true the rule 'fires' and the assignments will take place (However, 
no timing is given, all that can be said is that the assignments will eventually take 
place). 
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E x a m p l e :  a A b ~-* c T 
Explanation: if a and b are true then c will become true (after some arbitrary 

amount  of time). 
Several properties of these production rules are required in order that  a circuit 

may eventually derived from them. 

- Stability - G is either false or remains true until S has completed. 
- Noninterference - Complimentary production rules (i.e. G1 ~-+ z T and G2 ~-* z &) 

must not execute at the same time. This is assured by requiring that  "-G1 V-~G2 
holds invariantly. 

Once a suitable set of production rules has been devised they can be manipulated, 
using global invariants for example, to yield an operator implementation. Operators 
are the basic building blocks having the behaviour of combinational functions or 
simple sequential circuits such as registers or Muller-C elements. The final stage is 
to analyse the production rules to determine where it is necessary to insert isochronic 
forks. 

4 V e r i f y i n g  P r o d u c t i o n  R u l e s  

In order to validate the production rules they must be first modelled in Circal. In 
Martin's method each production rule operates in parallel so the natural method of 
modelling would be to have one or more processes to model each rule. It has already 
been shown how to model logic functions which can be used in the construction of 
the G term, so a model for the ~-* must be constructed. The key requirement for 
proper behaviour is that  of stability of the guard. Since the model that  is to be 
constructed is a computation it must detect and signal if the stability requirement 
is violated. 
Circal model for ~-~ 

Process TRANS(Bool ia, Event ix){ 
static Bool a 
static Event x 
static Process TRAN,/\t(a.O a.l x){ 

TRAN <- (a.1)((x)(a.O)TRAN + (a.O)/\t + (x a.O)/\t) 
} 

return (TRAN[iala, ix/x]) 

Explanation: The Boo1 identifier a is the guard and the Event x is the assignment. If 
the guard becomes true (a. 1) then TRAIl evolves into the inner parenthesised term. 
The behaviour has then three possibilities;(i) the assignment takes place (x) and 
then the guard becomes false (a. 0); (ii) the guard becomes false (a. 0); (iii) the guard 
becoming false and the assignment occur at the same time. In the last two cases the 
behaviour terminates after the actions. Termination is used to flag violation of the 
stability criteria. 

The other major criteria is that  of non-interference between complimentary pairs 
of production rules. Another process, IlOilT is defined which connects to pairs of TRAIlS 
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processes as shown in figure 2. It monitors pairs of guards and filters out vacuous 
firings. A vacuous firing occurs when a guard is enabled to cause a variable to be 
assigned a value that  it already has. Should such firings be passed to the TITANS 
process it will try to produce the appropriate output.  This means that  two x .  0s 
might occur without an intervening x. 1. This violates the modelling method. 

Process NONI(Bool i a , i b , i x , i y ,  i3_sta tes  s t a r t_ s t a t e ){  
s t a t i c  Bool a ,b ,x ,y  
s t a t i c  Process NI [ i3 - s t a t e s ] , /~n(a  b x y){ 

NI[S000] <- (a.1 x.1)NI[S100] + (b.1)NI[S010] + (a.1 b . 1 ) / \ n  
NI[S100] <- (a.0 x.0)NI[S001] + (b.1)/kn + (a.0 b.1 x.0 y.1)NI[S011] 
NI[S010] <- (a.l)/\n + (b.O)NI[S000] + (a.l b.O x.I)NI[SIO0] 
NI[SO01] <- (a.I)NI[SI01] + (b.l y.I)NI[SOII] + (a.l b.l)/\n 
NI[S011] <- (a.l)/\n + (b.O y.O)NI[SO00] + (a.1 b.O x.l y.O)NI[SIO0] 
NI[SIOI] <- (a.O)NI[SO01] + (b.l)/\n + (a.O b.l y.1)NI[SOII] 
} 
re turn  NI [ s ta r t_s ta te ]  [ i a /a ,  ib/b,  ix/x,  iy /y]  

Explanation: The Bool variables a and b denote the changes of values of the guards 
and x and y are used to trigger the TEALS processes as appropriate. If the non- 
interference criteria is violated the process terminates. The last digit denotes the 
value of the variable to which the production rules are assigning values. Vacuous 
firings are detected and absorbed by detecting whether the output  is already at  the 
value required by the guard becoming true. 

cl [~.~.n F - - -  ~ TRANS - -  L1 

c2 I~'L""L ~ - ' ~  TITANS - -  Le 

Fig. 2. Processes for Modelling Production Rules 

Process PROO(Bool g l ,g2,x){  
Bool xx,yy 
re turn  (NONI(gl,g2,xx,yy,SOOO)* 

TBANS(xx,x.1)* 
TP~NS(yy,x.O) -(xx yy)) 

For the L / R  element the following production rules are generated by Martin's 
design method. Note that  these are in what Martin calls program order, and that  
a state variable, z, has been introduced to get the required functionality. Bringing 
together the complementary pairs an XTC script can be constructed to model these 
in Circal. 
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-~x A l i  ~-* r o  

r i ~ z T  

z A - , r i  ~-* 1o 

- ~ r i  ~ x 

-.= ~ Io I 

Process PR[4] 
Bool li,lo,ri,ro,x 
Bool a,b,c,d,e,f 
Bool gl,g2,g3,g4,g5,g6 

PR[I] <- NOT(x,a,SO)*AND2(a,li,gI,SIO)* 
PROO(gl,x,ro) - a 

PR[2] <- NOT(ri,a,S0)*AND2(x,a,g3,S01)* 
NOT(x,g4,S0)* 
PROl(g3,g4,1o) - a 

PR[3] <- NOT(li,g6,SO)*PROl(ri,g6,x) 

Unfortunately, as they stand, the behaviour of the production rules above can not be 
shown equivalent to the specification. The reason may be deduced from examining 
the differences in style between the specification and the AND model. In each Circal 
definition for the AND model all possible input changes are allowed; it has the 
property that  Dill calls receptiveness [4]. In contrast the inputs of the specification 
only change in accordance with the four phase handshake protocol, In order to 
carry out the verification this difference must be resolved. This is accomplished by 
providing a process or processes that model an environment for the production rules. 

Two constraints are used to construct environments for this type of production 
rule; one for each type of channel. 
Constraint for passive channel 

Process PASSIVE_CON(Boo1 req, ack){ 
static Bool a 
static Bool b 
static Process CONSI,CONS2,CONS3,CONS4,/\c(a b){ 

CONSI <- (a.1)CONS2 + (b.1)/\c + (a.1 b.1)/\c 
CONS2 <- (b.I)CONS3 
CONS3 <- (a.O)CONS4 + (b.O)/\c + (a.O b.O)/\c 
CONS4 <- (b.O)CONSI 

} 
return (CONSl[req/a,ack/b]) 

Explanation: From the relabelling in the return statement it can be seen that a 
connects to the request port and b to the acknowledge. The required handshake 
behaviour is seen by examining the first guard in each of the definitions. Where a 
choice exists this is to fulfill the receptiveness criteria, however should it occur then 
this constitutes an error, h e n c e / \ c .  
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Constraint for active channel 

Proces s  ACTIVE_CON(Boo1 r e q ,  ack){  
s t a t i c  Bool a 
static Bool b 
static Process CONS1,CONS2,CONS3,COMS4,/\c(a b){ 

CONS1 <- (a.1)CONS2 
CONS2 <- (b.I)CONS3 + (a.O)/\c + (a.O b.l)/\c 
CONS3 <- (a.O)CONS4 
COIS4 <- (b.O)CONSI + (a.l)/\c + (a.l b.O)/\c 

} 
return (CONSl[req/a,ack/b]) 

Explanation: Similar to above but the request behaviour should be receptive. 
Now it is possible to formulate a model which should be equivalent to the Circal 

specification for L/R. 

! 

PR_BEH <- "(PASSIVE_CON ( l i ,  l o ) *  I 
ACTIVE _CON (ro, r i  ) * 

I PR[1]*PR[2]*PR[3] - (x g l  g3 g4 g6))  

Explanation: The composition represents the production rules and environment ex- 
ecuting in parallel, whilst the abstraction hides the state variable and the guard 
values. The - applies the laws of Circal to generate a behaviour from a structure 
which can then be checked for equivalence with the specification. 

5 V e r i f i c a t i o n  o f  O p e r a t o r  I m p l e m e n t a t i o n  

Once a satisfactory set of production rules have been arrived at, a network of oper- 
ators can be derived. The behaviour of an operator is also specified by production 
rules, for example the AND operator behaviour is: 

a A b ~ x T  
~ a  V ~ b  ~ x 1 

Thus operators can be modelled in Circal using the models already described, however 
if an operator is supposed to have the behaviour of a common logic function then 
it might be better to use the direct model of the behaviour, such as presented in 
section 2, rather than the production rules. This can be achieved using the following 
process that can be composed with the logic function models. 

Proces s  CDELAY (Boo1 i a ,  i x ,  i 2 _ s t a t e s  s t a r t _ s t a t e )  { 
static Bool a,x 
static Process CD[i2_states] ,/\t(a x){ 

CD[SO0] <- (a.1)CD[SIO] 
CD[SIO] <- (x.1)CD[S11] + (a.O)/\t 
CDES01] <- (x.O)CD[SO0] + (a.1)l\t 
CD[SII] <- (a.O)CD[SOI] 
} 

return (CD [start _state] [ia/a, ix/x] ) 
} 

+ (a.0 x .1 ) / \ t  
+ (a.1 x .0 ) / \ t  
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Explanation: This behaviour is that of a causal delay, and is similar to that of TRANS, 
but x is now a Bool. As with TITANS, if the input changes before the previous value 
has propagated to the output then this constitutes an error in the design hence the 
process terminates. 

There are two state holding operators commonly used, the Muller-C and the flip- 
flop. In the implementation of the L/R element both can be used, here the flip-flop 
implementation is described. For the flip-flop the production rule specification is: 

- ~ y ~  z 

In fact the behaviour is that of an RS flip-flop but with the reset being active low. 
Using this observation it is easiest to create a model for an RS flip-flop and use the 
NOT process to invert the reset input. 

Process F2 (Bool is, it, ib, 13_states start_state) { 
static Bool s,r,b 
static Process F[i3-states] ,/\f(s r b){ 
F[S000] <- (s.l b.I)F[SI01] + (r.l)F[S010] + (s.l r.l)/\f 
F[S010] <- (r.0)F[S000] + (s.l)/\f + (r.0 s.l b.I)F[SI01] 
F[SIO1] <- (s.O)F[SO01] + ( r . 1 ) / \ f  + (s .O r . 1  b.O)F[SOlO] 
F[SO01] <- ( s . 1 ) F [ S I 0 1 ]  + ( r . 1  b.O)F[S010] + ( s . 1  r . 1 ) / \ f  

} 
return F [st art  -state] [ i s / s ,  i r / r ,  ib/b] 

The model for the flip-flop is generated by composing this model with the CDELAY 
and WOT models. 

An operator network for the L/R process is show in figure 3. An alternative 
network is formed by replacing the flip-flop with a MuUer-C. Capturing this net- 
work in Circal is simply a matter or instantiating the requisite operator models with 
appropriate actions. As with the production rules it is necessary to include the con- 
straints in order to show testing equivalence between the operator network and the 
specification. 

Fig. 3. Flip-Flop Implementation of L/R 

YY q 
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6 I s o c h r o n i c  Forks  

The operator implementation assumes that  all delay is associated with the operators 
and none with the wires. However if an output  is fanned out to several operators 
then problems might possibly arise. Consider figure 4(a); this represents a circuit 
where as soon as the output  of the CDI~.LAY changes the value is propagated to 
each of the F processes. This is what Martin calls an isochronic fork which means 
that  the signal should arrive at all it 's destinations simultaneously. All forks in 
the operator implementations are isochronic which may not be necessary. Martin 
analyses the production rules to check where isochronic forks are necessary. However 
it is possible to use Circal and the Circal system diagnostics to perform this analysis 
on the operator implementation. 

The method is as follows: each CDEALY that  is connected to more than one F type 
process is replaced by a WIRv._F01~ as shown in figure 4(b). The behaviour of the 
WIP,.E_FOP,.K is as follows: 

Process WIPe_FORK (Boo1 ia ,  ix ,  iy ,  i l  _s ta tes  s t a r t _ s t a t e )  { 
s t a t i c  Bool a , x , y  
s t a t i c  Process WF[il_states] , / \w(a  x y){ 
WF[SO] <- ( a . 1 ) ( ( x . 1 ) ( ( y . 1 ) W F [ S 1 ]  + ( a . O ) / \ e  + ( y . 1  a . O ) / \ e )  + 

( y . 1 ) ( ( x . 1 ) W F [ S 1 ]  + ( a . O ) / \ e  + ( x . 1  a . O ) / \ e )  + 
(x.1 y.1)WF[S1] + 
( a . O ) / \ e  + (x .1  y . 1  a . O ) / \ e )  

WFFS1] <- (a.O)((x.O)((y.O)WFrS1] + ( a . 1 ) / \ e  + (y.O a .1 ) / \w)  + 
(y.O)((x.O)WF[S1] + ( a . 1 ) / \ e  + (x.O a .1 ) / \w)  + 
(x.O y.O)WFFSI] + 
( a . 1 ) / \ w  + (x.O y.O a . 1 ) / \ w ) )  

} 
r e tu rn  WF [s t  a r t  _state] [ i a /a ,  ix /x ,  iy /y]  

Explanation: Each definition represents the current input value. Only one action can 
occur but  this guards a choice of actions. The first three represent the possible 
sequences on the two outputs.  The first two represent one branch being faster than 
the other so the process must then generate the appropriate action for the slower 
branch. In each choice the model is receptive to a change on the input but if this 
occurs then, as before, this is considered an error so the process terminates. 

Fig. 4. Implementation with (a) Isochronic fork (b) Wire fork 
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Having introduced WIRE_FORKS the operator implementation is checked for equiv- 
alence against the specification. If they are equivalent then all forks in the circuit 
maybe implemented with wire forks. If the check fails then one or more of the forks 
need to be implemented either as isochronic or asymmetric isochronic forks. The 
asymmetric isochronic fork guarantees that one branch of the fork is always faster 
than the other. By examining the diagnostics from the system it may be possible to 
determine which forks this applies to. It is also possible to systematically substitute 
the isochronic fork models for wire fork models. 

For the L/R circuit there are two forks, both on inputs. Introducing the wire 
forks into the circuit the equivalence check fails. The relevant part of the diagnostics 
are produced here. 

F a i l e d  a f t e r  f o l l o w i n g  t r a c e :  l i . 1  r o . 1  r i . 1  
SPEC = ro .O 
LR_IMP_FORKS = / \  & ( ( r o . O  l o . 1 )  + ro .O + l o . 1 )  & ro .O 

Failed after following trace: ii.1 ro.1 ri.1 ro.O ri.O lo.1 li.O io.0 
SPEC can do ii.1 
LR_INP_FORKS can do no actions 

Explanation:  The check fails because the two processes behave differently after the 
indicated trace. LR_IttP_FORKS can clearly do more things than the specification 
as shown by the regenerated behaviour. First there is a non-deterministic choice 
between three deterministic behaviours. T h e / \  indicates that the constraint on the 
flip-flop has been violated. Recall that this occurs if s is 1 and r is 0; this condition 
arises because the wire fork allows the signal to reach the AND before it reaches 
the flip-flop. By the handshake protocol this causes the input on r i  which can then 
propagate to s. All of this can occur before the Xi signal reaches r (due to the 
unbounded delay in the fork model). Clearly that fork cannot be a wire fork In fact 
in turns out that it must be asymmetric with the faster branch being connected to 
the flip-flop. The second trace indicates violation of the flip-flop constraint by the 
symmetrical case to the one discussed above. 

7 Discussion 

The work described here supersedes the previous work using Circal in asynchronous 
circuit design [2] [1]. In the first reported work it was found that the approach to 
verification was inadequate. This lead to the formulation of verification using con- 
straints as described here and first reported in the second work. Upon critically 
examining that work I decided that the operator models were in adequate and so set 
about reformulating them. Subsequently I discovered that this reformulation coin- 
cided with Dill's concept of receptiveness, thus lending support to my new operator 
models. 

There are two major differences between the approach described here and that 
of Dill with respect to models and use. Here operators models are constructed from 
t w o  processes; the CDELAY and a process that models the operator function. This 
hopefully leads to less errors in the models and increasing confidence that when 
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in-equivalence arises it is due to a design error. Secondly, rather than applying the 
verification to the final design, I have shown how Circal can be applied to the verifica- 
tion of the production rules. Again a constructive approach to the models was taken, 
separating out the active assignment using TRANS from the detection of computation 
interference using NONI. 

As well as the example here these models and the method have been applied to 
Martin's distributed mutual  exclusion design and the Handshake circuits from the 
previous work have been verified using the new operator  models. 
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