
Automatic Verification of Speed-Independent
Circuit Designs Using the Circal System

Andrew Bailey

Dept. of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven,

The Netherlands.
Tel: +31 40 47 43 18,
Fax: +31 40 43 66 85,

E-mail: ambQwin, rue.n1

Abs t rac t . Alain Martin has developed a design method for asynchronous
circuits whereby a specification is refined through a series of distinct stages to
a gate implementation. The Citcal system is able to check equivalence between
terms of the Citcal process algebra. The system can be used to verify the
results of some of Martin's refinements and the gate implementations. It can
also be used to analyse the operator network for the necessity of isochronic
forks.

1 I n t r o d u c t i o n

Alain Martin argues for the use of Delay-Insensitive (DI) asynchronous circuits for
implementing large scale digital systems [5]. A DI circuit operates correctly regard-
less of any delay, or variation of delay, in the circuit, whether in a gate or wire,
which compared to synchronous design techniques can be seen to be a consider-
able advantage. Unfortunately, as Martin points out, the class of entirely delay-
insensitive circuits is very limited, so he has developed a design method based on
Speed-independent techniques. Speed-independent design assumes that delays in
gates are arbitrary but that wires have no delay. This assumption is valid until it
becomes necessary to fanout a signal to a number of gates. Martin introduces the
concept of the isochronic fork to deal with this situation.

Martin's method involves transforming a specification through successive levels
of refinement to a circuit implementation. These transformations are supposed to
preserve correctness however Smith and Zwarico [10] accuse Martin of being less
than rigourous in establishing validity of the transformations and have taken it upon
themselves to reconstruct Martin's method. An alternative approach is to map the
specification and implementation into a formal system and then establish equivalence
between the two as a post design activity. This is the approach taken by Dill [4] using
a variant of trace theory.

Dill restricts himself to verifying the final design. Whilst this is very useful, it
does mean that the design of the circuit must be completed before verification takes
place. Martin's method involves a top-down refinement approach to the design and
it would be useful if any errors introduced during refinement were uncovered as early
as possible. Tha t is the aim of the verification approach described in this paper.

168

This paper is structured as follows:

S e c t i o n 2 describes Circal and the Circal system and introduces the modelling of
behaviours.

S e c t i o n 3 outlines Martin's design method and introduces the L/R. process which
is the example used throughout.

S e c t i o n 4 describes how production rules, which are the major intermediate design
step, can be modelled in Circal and how sets of production rules can be verified.

S e c t i o n 5 describes how the operators are modelled and how networks of operators
can be verified.

S e c t i o n 6 describes how the operator networks can be analysed for necessity of
isochronic forks.

S e c t i o n 7 discusses the work presented and areas of further work.

2 C i r c a l a n d t h e C i r c a l S y s t e m

The Circal process algebra was developed by Milne for describing and proving prop-
erties of digital systems [8]. It consist of five operators to describe behaviour of a
process and three operators to describe the interconnection of a number of processes.
The behavioural operators are:

/ \ c - termination or deadlock. This represents a process that can do no further
communicating. The c indicates that the deadlock is of a particular sort (The
sort of a process is the set of actions to which it can respond).

(a b)P - guarding; the process P (any term constructed from the behavioural opera-
tors) can be executed only after the actions a and b have occurred simultaneously.

P + q - deterministic choice; this becomes process P or q depending on whether the
environment in which it operates presents actions that are part of P or part of
r

P tt q - nondeterministic choice; this is similar to the previous choice operator but
its semantic is that of an internal choice i.e., the process itself decides which of
P and r to offer to the environment.

P <- (a)q - definition; this allows binding of a Circal term to an identifier. Since
identifiers can also occur in s terms, this enables recursion to be used in
describing infinite behaviours.

The structural operators are:

P*Q - concurrent composition; this Circal term denotes two process running in par-
allel, communicating with each other according to the common actions of both.

P - (a b) - abstraction; this denotes the process P with the actions a and b removed
from its behaviour i.e. the resulting term can no longer synchronise with any
external occurrences of these actions.

P [a / p , b / q] - relabelling; the process P containing actions p and q is changed to a
process where these actions are renamed as a and b respectively. This enables
the same behaviour to be instantiated for different sets of actions.

169

A formal semantic is given to each of these operators and a set of algebrMc laws
are derived. This gives insight into the relationship between the operators e.g. +
and ~ are commutative and associative and distribute through each other, * dis-
tributes through �9 [9]. The most interesting laws enable a structural Circal term
to be transformed into a behavioural one. In order to provide an effective, engineer
friendly means of using Circal it has been embedded in XTC, a high level, interpreted,
general purpose programming language [6]; this language is called XCircal [7].

There are several approaches to modelling when using Circal in hardware design
[3]. In this paper transit ion based modelling is used. In this style actions are used to
represent changes in value e.g. an action a0 might be used to represented a change
for 1 to 0 on a port a which has two possible values. Similarly a l represents a change
for 0 to 1. To demonstrate how logic functions are modelled, and how the features
of XTC can be used to ease description, a model for a two input AND function is
presented.

i
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16

enuJa 12_states {SO0,SIO,SO1,Sll}

P r o c e s s AND2(Bool i a , i b , i x , i 2_s ta t e s s t a r t _ s t a t e) {
s t a t i c Boo1 a ,b ,x
s t a t i c Process ANV[i2_states]{

AND[S00] <- (a.1)AND[S10] + (b.1)AND[S01] +
(a.1 b.1 x.I)AND[Sll]

AIID[S10] <- (a.0)MtD[S00] + (b.1 x.1)AND[S11] +
(a.0 b. 1)MtD [S01]

AND[S01] <- (a.1 x.1)AND[Sll] + (b.0)AND[S00] +
(a. 1 b.0)AIID[S10]

AND[Sll] <- (a.O x.O)AND[S01] + (b.O x.O)AND[SIO]
(a.O b.O x.O)ANDESO0]

}
r e tu rn (AND[start_state] [i a / a , i b / b , ix/x])

}

Explanation: Lines 3-16 define an XCircal function AND2 which returns an object of
type P roces s . Variables of type Boo1 denote two actions name . 0 and name . 1 which
are used to denote the changes of value of the physical port name in the manner
described above. Line 5 declares an array of type P r o c e s s with an index being the
enumerated type of line 1. Each element in this type is used to denote the possible
combination of values on the input ports. Lines 6-13 are Circal definitions for the
behaviour of an AND function. Each definition has all the possible changes of input
values given which are dictated by the numerals of the array index. Should the output
need to change this occurs simultaneously with the input action(s) tha t caused it.
Thus this is a zero delay model. The four definitions can be regarded as defining a
s ta te machine which models the AND behaviour. The initial state is selected in the
r e t u r n statement along with the required relabelling as specified in the parameters
to the function, e.g. ANV2(p,q,u,S10) gives an AND behaviour with inputs p and
q of starting values 1 and 0 respectively, and output u.

1 zo

3 A n O v e r v i e w of the~Martin Des ign Method

Martin describes his design method in terms of three levels; source code, object code
and VLSI implementations. The source code is based on Hoare's CSP and als0 uses
Martin's concept of the probe [5]. This level of description is subject to manipulation
prior to the generation of the object code. These manipulations involve refining the
specification into a larger set of concurrent processes that make the object code
generation tractable for each process.

As an example Martin's L /R design [5] is used and the schematic is shown in
figure 1. With respect to the verification the handshake expansion is used as a spec-
ification. The two channels L and R are each implemented by two boolean ports
conforming to a four phase handshake protocol. L is passive (o) and R is active(o).
A passive channel waits for communication to be initiated by the environment in
which it operates, whilst with an active channel the circuit is the initiator. It follows
that the active channels of a process connect to the passive channels of another. The
handshake behaviour for L/R is:

�9 [[/q; ,.o 1; [,-i]; ,.o l ; [-,,'q; 1o T; [-,/q; Zo l]

The �9 means repeat forever the behaviour in parentheses. [boolezp] means wait until
boolezp is true. The semicolon is a sequencing operator, whilst the other expressions
are assignments e.g. ii T means li becomes true. It is quite easy to see the difference
between the passive and active handshake behaviours of each channel. For L the
circuit first waits for the input, ii, to become true, whilst the first action on the R
channel is to make ro true.

 L:t I 0 0 R

Fig. 1. Schematic for L/R Process

This handshake behaviour maps in to Circal in an obvious way:

LR <- l i . l r o . l r i . l r o . 0 r i . 0 i o . I l i . 0 i o . 0 LR

Martin's object code consists of a set of production rules. These have the following
form:

G ~ S

where G is a boolean expression, called the guard, and S an unordered list of simple
assignments. If G is true the rule 'fires' and the assignments will take place (However,
no timing is given, all that can be said is that the assignments will eventually take
place).

171

E x a m p l e : a A b ~-* c T
Explanation: if a and b are true then c will become true (after some arbitrary

amount of time).
Several properties of these production rules are required in order that a circuit

may eventually derived from them.

- Stability - G is either false or remains true until S has completed.
- Noninterference - Complimentary production rules (i.e. G1 ~-+ z T and G2 ~-* z &)

must not execute at the same time. This is assured by requiring that "-G1 V-~G2
holds invariantly.

Once a suitable set of production rules has been devised they can be manipulated,
using global invariants for example, to yield an operator implementation. Operators
are the basic building blocks having the behaviour of combinational functions or
simple sequential circuits such as registers or Muller-C elements. The final stage is
to analyse the production rules to determine where it is necessary to insert isochronic
forks.

4 V e r i f y i n g P r o d u c t i o n R u l e s

In order to validate the production rules they must be first modelled in Circal. In
Martin's method each production rule operates in parallel so the natural method of
modelling would be to have one or more processes to model each rule. It has already
been shown how to model logic functions which can be used in the construction of
the G term, so a model for the ~-* must be constructed. The key requirement for
proper behaviour is that of stability of the guard. Since the model that is to be
constructed is a computation it must detect and signal if the stability requirement
is violated.
Circal model for ~-~

Process TRANS(Bool ia, Event ix){
static Bool a
static Event x
static Process TRAN,/\t(a.O a.l x){

TRAN <- (a.1)((x)(a.O)TRAN + (a.O)/\t + (x a.O)/\t)
}

return (TRAN[iala, ix/x])

Explanation: The Boo1 identifier a is the guard and the Event x is the assignment. If
the guard becomes true (a. 1) then TRAIl evolves into the inner parenthesised term.
The behaviour has then three possibilities;(i) the assignment takes place (x) and
then the guard becomes false (a. 0); (ii) the guard becomes false (a. 0); (iii) the guard
becoming false and the assignment occur at the same time. In the last two cases the
behaviour terminates after the actions. Termination is used to flag violation of the
stability criteria.

The other major criteria is that of non-interference between complimentary pairs
of production rules. Another process, IlOilT is defined which connects to pairs of TRAIlS

172

processes as shown in figure 2. It monitors pairs of guards and filters out vacuous
firings. A vacuous firing occurs when a guard is enabled to cause a variable to be
assigned a value that it already has. Should such firings be passed to the TITANS
process it will try to produce the appropriate output. This means that two x . 0s
might occur without an intervening x. 1. This violates the modelling method.

Process NONI(Bool i a , i b , i x , i y , i3_sta tes s t a r t_ s t a t e){
s t a t i c Bool a ,b ,x ,y
s t a t i c Process NI [i3 - s t a t e s] , /~n(a b x y){

NI[S000] <- (a.1 x.1)NI[S100] + (b.1)NI[S010] + (a.1 b . 1) / \ n
NI[S100] <- (a.0 x.0)NI[S001] + (b.1)/kn + (a.0 b.1 x.0 y.1)NI[S011]
NI[S010] <- (a.l)/\n + (b.O)NI[S000] + (a.l b.O x.I)NI[SIO0]
NI[SO01] <- (a.I)NI[SI01] + (b.l y.I)NI[SOII] + (a.l b.l)/\n
NI[S011] <- (a.l)/\n + (b.O y.O)NI[SO00] + (a.1 b.O x.l y.O)NI[SIO0]
NI[SIOI] <- (a.O)NI[SO01] + (b.l)/\n + (a.O b.l y.1)NI[SOII]
}
re turn NI [s ta r t_s ta te] [i a /a , ib/b, ix/x, iy /y]

Explanation: The Bool variables a and b denote the changes of values of the guards
and x and y are used to trigger the TEALS processes as appropriate. If the non-
interference criteria is violated the process terminates. The last digit denotes the
value of the variable to which the production rules are assigning values. Vacuous
firings are detected and absorbed by detecting whether the output is already at the
value required by the guard becoming true.

cl [~.~.n F - - - ~ TRANS - - L1

c2 I~'L""L ~ - ' ~ TITANS - - Le

Fig. 2. Processes for Modelling Production Rules

Process PROO(Bool g l ,g2,x){
Bool xx,yy
re turn (NONI(gl,g2,xx,yy,SOOO)*

TBANS(xx,x.1)*
TP~NS(yy,x.O) -(xx yy))

For the L / R element the following production rules are generated by Martin's
design method. Note that these are in what Martin calls program order, and that
a state variable, z, has been introduced to get the required functionality. Bringing
together the complementary pairs an XTC script can be constructed to model these
in Circal.

173

-~x A l i ~-* r o

r i ~ z T

z A - , r i ~-* 1o

- ~ r i ~ x

-.= ~ Io I

Process PR[4]
Bool li,lo,ri,ro,x
Bool a,b,c,d,e,f
Bool gl,g2,g3,g4,g5,g6

PR[I] <- NOT(x,a,SO)*AND2(a,li,gI,SIO)*
PROO(gl,x,ro) - a

PR[2] <- NOT(ri,a,S0)*AND2(x,a,g3,S01)*
NOT(x,g4,S0)*
PROl(g3,g4,1o) - a

PR[3] <- NOT(li,g6,SO)*PROl(ri,g6,x)

Unfortunately, as they stand, the behaviour of the production rules above can not be
shown equivalent to the specification. The reason may be deduced from examining
the differences in style between the specification and the AND model. In each Circal
definition for the AND model all possible input changes are allowed; it has the
property that Dill calls receptiveness [4]. In contrast the inputs of the specification
only change in accordance with the four phase handshake protocol, In order to
carry out the verification this difference must be resolved. This is accomplished by
providing a process or processes that model an environment for the production rules.

Two constraints are used to construct environments for this type of production
rule; one for each type of channel.
Constraint for passive channel

Process PASSIVE_CON(Boo1 req, ack){
static Bool a
static Bool b
static Process CONSI,CONS2,CONS3,CONS4,/\c(a b){

CONSI <- (a.1)CONS2 + (b.1)/\c + (a.1 b.1)/\c
CONS2 <- (b.I)CONS3
CONS3 <- (a.O)CONS4 + (b.O)/\c + (a.O b.O)/\c
CONS4 <- (b.O)CONSI

}
return (CONSl[req/a,ack/b])

Explanation: From the relabelling in the return statement it can be seen that a
connects to the request port and b to the acknowledge. The required handshake
behaviour is seen by examining the first guard in each of the definitions. Where a
choice exists this is to fulfill the receptiveness criteria, however should it occur then
this constitutes an error, h e n c e / \ c .

174

Constraint for active channel

Proces s ACTIVE_CON(Boo1 r e q , ack){
s t a t i c Bool a
static Bool b
static Process CONS1,CONS2,CONS3,COMS4,/\c(a b){

CONS1 <- (a.1)CONS2
CONS2 <- (b.I)CONS3 + (a.O)/\c + (a.O b.l)/\c
CONS3 <- (a.O)CONS4
COIS4 <- (b.O)CONSI + (a.l)/\c + (a.l b.O)/\c

}
return (CONSl[req/a,ack/b])

Explanation: Similar to above but the request behaviour should be receptive.
Now it is possible to formulate a model which should be equivalent to the Circal

specification for L/R.

!

PR_BEH <- "(PASSIVE_CON (l i , l o) * I
ACTIVE _CON (ro, r i) *

I PR[1]*PR[2]*PR[3] - (x g l g3 g4 g6))

Explanation: The composition represents the production rules and environment ex-
ecuting in parallel, whilst the abstraction hides the state variable and the guard
values. The - applies the laws of Circal to generate a behaviour from a structure
which can then be checked for equivalence with the specification.

5 V e r i f i c a t i o n o f O p e r a t o r I m p l e m e n t a t i o n

Once a satisfactory set of production rules have been arrived at, a network of oper-
ators can be derived. The behaviour of an operator is also specified by production
rules, for example the AND operator behaviour is:

a A b ~ x T
~ a V ~ b ~ x 1

Thus operators can be modelled in Circal using the models already described, however
if an operator is supposed to have the behaviour of a common logic function then
it might be better to use the direct model of the behaviour, such as presented in
section 2, rather than the production rules. This can be achieved using the following
process that can be composed with the logic function models.

Proces s CDELAY (Boo1 i a , i x , i 2 _ s t a t e s s t a r t _ s t a t e) {
static Bool a,x
static Process CD[i2_states] ,/\t(a x){

CD[SO0] <- (a.1)CD[SIO]
CD[SIO] <- (x.1)CD[S11] + (a.O)/\t
CDES01] <- (x.O)CD[SO0] + (a.1)l\t
CD[SII] <- (a.O)CD[SOI]
}

return (CD [start _state] [ia/a, ix/x])
}

+ (a.0 x .1) / \ t
+ (a.1 x .0) / \ t

175

Explanation: This behaviour is that of a causal delay, and is similar to that of TRANS,
but x is now a Bool. As with TITANS, if the input changes before the previous value
has propagated to the output then this constitutes an error in the design hence the
process terminates.

There are two state holding operators commonly used, the Muller-C and the flip-
flop. In the implementation of the L/R element both can be used, here the flip-flop
implementation is described. For the flip-flop the production rule specification is:

- ~ y ~ z

In fact the behaviour is that of an RS flip-flop but with the reset being active low.
Using this observation it is easiest to create a model for an RS flip-flop and use the
NOT process to invert the reset input.

Process F2 (Bool is, it, ib, 13_states start_state) {
static Bool s,r,b
static Process F[i3-states] ,/\f(s r b){
F[S000] <- (s.l b.I)F[SI01] + (r.l)F[S010] + (s.l r.l)/\f
F[S010] <- (r.0)F[S000] + (s.l)/\f + (r.0 s.l b.I)F[SI01]
F[SIO1] <- (s.O)F[SO01] + (r . 1) / \ f + (s .O r . 1 b.O)F[SOlO]
F[SO01] <- (s . 1) F [S I 0 1] + (r . 1 b.O)F[S010] + (s . 1 r . 1) / \ f

}
return F [st art -state] [i s / s , i r / r , ib/b]

The model for the flip-flop is generated by composing this model with the CDELAY
and WOT models.

An operator network for the L/R process is show in figure 3. An alternative
network is formed by replacing the flip-flop with a MuUer-C. Capturing this net-
work in Circal is simply a matter or instantiating the requisite operator models with
appropriate actions. As with the production rules it is necessary to include the con-
straints in order to show testing equivalence between the operator network and the
specification.

Fig. 3. Flip-Flop Implementation of L/R

YY q

176

6 I s o c h r o n i c Forks

The operator implementation assumes that all delay is associated with the operators
and none with the wires. However if an output is fanned out to several operators
then problems might possibly arise. Consider figure 4(a); this represents a circuit
where as soon as the output of the CDI~.LAY changes the value is propagated to
each of the F processes. This is what Martin calls an isochronic fork which means
that the signal should arrive at all it 's destinations simultaneously. All forks in
the operator implementations are isochronic which may not be necessary. Martin
analyses the production rules to check where isochronic forks are necessary. However
it is possible to use Circal and the Circal system diagnostics to perform this analysis
on the operator implementation.

The method is as follows: each CDEALY that is connected to more than one F type
process is replaced by a WIRv._F01~ as shown in figure 4(b). The behaviour of the
WIP,.E_FOP,.K is as follows:

Process WIPe_FORK (Boo1 ia , ix , iy , i l _s ta tes s t a r t _ s t a t e) {
s t a t i c Bool a , x , y
s t a t i c Process WF[il_states] , / \w(a x y){
WF[SO] <- (a . 1) ((x . 1) ((y . 1) W F [S 1] + (a . O) / \ e + (y . 1 a . O) / \ e) +

(y . 1) ((x . 1) W F [S 1] + (a . O) / \ e + (x . 1 a . O) / \ e) +
(x.1 y.1)WF[S1] +
(a . O) / \ e + (x .1 y . 1 a . O) / \ e)

WFFS1] <- (a.O)((x.O)((y.O)WFrS1] + (a . 1) / \ e + (y.O a .1) / \w) +
(y.O)((x.O)WF[S1] + (a . 1) / \ e + (x.O a .1) / \w) +
(x.O y.O)WFFSI] +
(a . 1) / \ w + (x.O y.O a . 1) / \ w))

}
r e tu rn WF [s t a r t _state] [i a /a , ix /x , iy /y]

Explanation: Each definition represents the current input value. Only one action can
occur but this guards a choice of actions. The first three represent the possible
sequences on the two outputs. The first two represent one branch being faster than
the other so the process must then generate the appropriate action for the slower
branch. In each choice the model is receptive to a change on the input but if this
occurs then, as before, this is considered an error so the process terminates.

Fig. 4. Implementation with (a) Isochronic fork (b) Wire fork

177

Having introduced WIRE_FORKS the operator implementation is checked for equiv-
alence against the specification. If they are equivalent then all forks in the circuit
maybe implemented with wire forks. If the check fails then one or more of the forks
need to be implemented either as isochronic or asymmetric isochronic forks. The
asymmetric isochronic fork guarantees that one branch of the fork is always faster
than the other. By examining the diagnostics from the system it may be possible to
determine which forks this applies to. It is also possible to systematically substitute
the isochronic fork models for wire fork models.

For the L/R circuit there are two forks, both on inputs. Introducing the wire
forks into the circuit the equivalence check fails. The relevant part of the diagnostics
are produced here.

F a i l e d a f t e r f o l l o w i n g t r a c e : l i . 1 r o . 1 r i . 1
SPEC = ro .O
LR_IMP_FORKS = / \ & ((r o . O l o . 1) + ro .O + l o . 1) & ro .O

Failed after following trace: ii.1 ro.1 ri.1 ro.O ri.O lo.1 li.O io.0
SPEC can do ii.1
LR_INP_FORKS can do no actions

Explanation: The check fails because the two processes behave differently after the
indicated trace. LR_IttP_FORKS can clearly do more things than the specification
as shown by the regenerated behaviour. First there is a non-deterministic choice
between three deterministic behaviours. T h e / \ indicates that the constraint on the
flip-flop has been violated. Recall that this occurs if s is 1 and r is 0; this condition
arises because the wire fork allows the signal to reach the AND before it reaches
the flip-flop. By the handshake protocol this causes the input on r i which can then
propagate to s. All of this can occur before the Xi signal reaches r (due to the
unbounded delay in the fork model). Clearly that fork cannot be a wire fork In fact
in turns out that it must be asymmetric with the faster branch being connected to
the flip-flop. The second trace indicates violation of the flip-flop constraint by the
symmetrical case to the one discussed above.

7 Discussion

The work described here supersedes the previous work using Circal in asynchronous
circuit design [2] [1]. In the first reported work it was found that the approach to
verification was inadequate. This lead to the formulation of verification using con-
straints as described here and first reported in the second work. Upon critically
examining that work I decided that the operator models were in adequate and so set
about reformulating them. Subsequently I discovered that this reformulation coin-
cided with Dill's concept of receptiveness, thus lending support to my new operator
models.

There are two major differences between the approach described here and that
of Dill with respect to models and use. Here operators models are constructed from
t w o processes; the CDELAY and a process that models the operator function. This
hopefully leads to less errors in the models and increasing confidence that when

178

in-equivalence arises it is due to a design error. Secondly, rather than applying the
verification to the final design, I have shown how Circal can be applied to the verifica-
tion of the production rules. Again a constructive approach to the models was taken,
separating out the active assignment using TRANS from the detection of computation
interference using NONI.

As well as the example here these models and the method have been applied to
Martin's distributed mutual exclusion design and the Handshake circuits from the
previous work have been verified using the new operator models.

Acknowledgements

Thanks go to Ad Peeters for his comments on the drafts of this paper and the Eind-
haven VLSI Club for listening and commenting on a presentation of this material.
I also acknowledge HardLab, Dept. of Computer Science, University of Strathclyde
for allowing me to use the Circal system.

References

1. A. Barley and George Milne. Verifying the correctness of asynchronous design modules.
Technical Report HDV-23-92, University of Strathclyde, Department of Computer Sci-
ence, Glasgow, February 1992.

2. A. Bailey and G.J. Milne. Verification of Philips' Operators for VLSI Programming.
Technical Report HDV-17-91, University of Strathclyde, Glasgow, August 1991.

3. Andrew Bailey. Modelling, design and analysis of digital circuits using Cireal. PhD
thesis, University of Strathclyde, forthcoming in 1993.

4. D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed.Independent
Circuits. MIT Press, 1989.

5. Alain J. Martin. Programming in VLSI. In G.A.R. Hoare, editor, Developments in
Communication and Concurrency, pages 1-64. Addison-Wesley, 1989.

6. G.A. McCaskill. The XTC language reference manual. Technical Report HDV-14-91,
Univeristy of Strathclyde, Department of Computer Science, 1991.

7. G.A. McCaskill. XOircal: Users' guide and reference manual. Technical Report HDV-
18-91, University of Strathclyde, Department of Computer Science, Glasgow, October
1991.
G.J. Milne. Circa] and the representation of communication, concurrency and time.
ACM Trans. on Programming Languages and Systems, 7(2), 1985.
F. Moller. The semantics of Circal. Technical Report HDV-3-89, University of Strath-
clyde, Department of Computer Science, Glasgow, Scotland, April 1989.
Scott F. Smith and Amy E. Zwarico. Provably correct synthesis of asynchronous cir-
cuits. In J. Staunstrup and R. Sharp, editors, Designing Correct Circuits, pages 237-
260. North-Holland, 1992.

8.

9.

10.

