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Abstract 

Despite some of the impressive results quoted in recent verification literature, the 
verification of even modestly sized "real" industrial designs is not yet feasible on a 
routine basis. The goal of the work discussedhere is to enable the verification of large(r) 
real systems than currently feasible with any one of the available techniques, and to 
dovetail the verification methodology with the an underlying design methodology. The 
specific design methodology considered here is targeted towards the custom design of 
digital signal processing architectures. Two important attributes of this class of designs 
are (1) custom-crafted leaf cells, and (2) significant data path components. Our strategy 
is to partition the subsystems involved into different categories that can be handled 
by different techniques, and use a divide-and-conquer paradigm. The complexity 
introduced by data paths is addressed by automating the abstraction of some of the 
natural equivalences induced, and exploiting this in the context of an extended finite 
state machine formalism. Specifically, we illustrate how it is possible to exploit the 
distinction between data and control in implicitly specified state machines (HDLs), 
and comment on useful abstractions in the presence of symmetry. We illustrate some 
aspects of the strategy via an example. We also suggest some evolutionary (rather than 
revolutionary) changes in the design methodology that enable the existing state of art 
in verification to be better exploited in practise. 

1 Introduction 

Over the last few years, there has been a rapid (even surprising) evolution in the 
capabilities of  techniques for formal verification of hardware. Examples include: state 
machine equivalence checking[6], symbolic simulation[2], automata-theoretic language 
containment[10], theorem proving based on various flavors of logic/algebra[8], and model 
checking[4]. It is reasonable to expect that the maturity and domain of applicability of most 
techniques will continue to improve, albeit at different rates. 

Despite some the impressive results quoted in literature, the verification of even modestly 
sized real industrial designs is not yet feasible on a routine basis. For example, state-based 
methods that use binary decision diagrams[l] (BDDs) can handle some state spaces having 
on the order of  212~ states[4]; a more accurate metric in practice is the space needed by the 
BDD representation for a particular circuit rather than the size of the state space. However, 
the observation that. one requires merely four 32-bit registers in a design to approach such 
a limit is rather sobering. More generally, it is recognized that each of the techniques 
listed above has its strengths and weaknesses. Often, some aspect of even a modest sized 
real system tends to defeat the specific technique being applied. It is therefore necessary 
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to evolve more sophisticated verification methodologies to address practical verification 
tasks. 

We believe that it is important for any practically viable verification methodology to 
be closely coupled to (as opposed to being completely divorced from) a "real" design 
methodology i.e., one that is in actual use, or that can be reasonably enforced in practice. 
One implication of this observation is that a verification methodology that assumes a 
purely top-down approach to design is unlikely to be widely applicable in the near term: 
this is because a strictly top-down development methodology is not widespread in practise 
(despite several papers over the last 20 years that have advocated it, and several more that 
continue to advocate it). 

Further, we believe that in the short to intermediate term, fully automated verification 
techniques will be absorbed into design methodologies and associated tools and envi- 
ronments more readily in comparison to interactive verification techniques, e.g., theorem 
proving based techniques. 

The overall goal of the work discussed here is the verification of large(r) "real"  
systems than currently feasible with any one of the existing techniques. The underlying 
design methodology considered here is targeted towards the custom design of digital signal 
processing architectures[14]. Two important attributes of this class of designs are (1) the 
use of custom-crafted circuits at the lower levels e.g., leaf cells; and (2) significant data 
path components. 

1.1 Strategy and Approach 

The objective of a verification task is usually either (1) to determine the consistency 
between two descriptions of a design (usually generated independently), or (2) to ascertain 
whether a given design description satisfies a specified property. The approach discussed 
here is motivated by the following observation: many medium-to-large scale systems often 
consist of subsystems that can be categorized as being control logic, data paths, regular 
iterative subsystems (e.g., systolic arrays), or specialized subsystems (e.g., memories). 
These subsystems have very different "verifiability" attributes in that different techniques 
are useful for each of these classes of subsystem. Our strategy is to leverage the strengths 
of different approaches to verify larger systems than each can individually verify, and to 
appropriately couple this into the underlying design process. 

In brief, given a layout, and the associated structural hierarchy, we delineate a 
strategy for abstracting the behavior of the components of the layout into modules 
that have increasing size (number of transistors). The abstraction process consists of 
combinational logic extraction, state machine abstraction, and the computation of state 
machine products. When the computational complexity of such an abstraction process 
exceeds the available resources, we establish a correspondence between the abstracted 
description and a second description arrived at by a top-down decomposition process. In 
order for this correspondence to be established, the two descriptions are required to have 
isomorphic submodule boundaries. 

More specifically, 
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�9 The complexity introduced by data paths is addressed by automating the abstraction 
of some of the natural equivalences induced by data paths, and exploiting this in 
the context of an extended finite state machine formalism. Such a formulation 
corresponds closely to many hardware description languages (HDLs) in common 
use. If applicable, algebraic structure can be used to further reduce the complexity. 

�9 Modified forms of symbolic simulation[2] are used to verify iterative subsystems 
and memories, and 

�9 FSM-based verification, language containment and model checking techniques are 
used for verification of the control logic and the abstracted models. 

Thus, our strategy is to analyze the subsystems involved, partition them into different 
categories that can be handled by different techniques, and use a divide-and-conquer 
paradigm. 

The verification methodology developed here enables independent (and concurren0 
development of the top-down and bottom-up design threads if needed. By not requiring 
a strictly top-down "one-shot" path to the design, it supports design methodologies that 
more closely reflect practise. Additionally, it enables "property analysis" to be done at 
any level of the design hierarchy, and preserves the integrity of the analysis done at the 
higher levels (by virtue of the coupling of the descriptions arrived at by the top-down and 
bottom-up design processes). 

We also suggest some evolutionary (rather than revolutionary) changes in the design 
methodology that enable the existing state of art in verification to be better exploited in 
practise. The techniques advocated are targeted at (1) evolving the bottom-up, middle-out, 
and iterative design processes, and (2) synergistically merging bottom-up design and 
verification techniques with top-down design and verification techniques. 

The rest of this paper is organized as follows. Section 2 summarizes a methodology used 
within AT&T for the design of a subclass of digital signal processing (DSP) circuits, and 
outlines a verification methodology that dovetails with this design methodology. Section 3 
illustrates the use of this approach via an example. Section 4 elaborates on the formalism 
used for reducing the complexity of analyzing circuits that have large data paths, and 
comments on the computation of a minimized transition system described by an HDL 
program. Specifically, we illustrate how it is possible to exploit the distinction between 
data and control in implicitly specified state machines (HDLs), and comment on useful 
abstractions in the presence of symmetry in systems. Finally, Section 5 summarizes some 
of the main points of the paper, and mentions ongoing work. 

2 The Design/Verification Methodology 

In this section, we first highlight some of the distinguishing features of an existing 
methodology that is used for designing and debugging a subclass of custom signal processing 
circuits within AT&T. We then discuss a verification strategy for such designs. The 
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Figure 1: A prototypical design scenario motivating formal verification 

verification strategy in turn suggests some alterations to the extant design methodology that 
can assist certain verification tasks, while preserving the key strengths of the methodology. 

2.1 Current Design/Debugging Paradigm 

The design/debugging methodology we will use as a starting point here is used for 
developing custom DSP systems and assessing their logical "correctness" within AT&T 
(see Figure 1). It is essentially simulation-based, and as follows. A high level (C) program is 
used to model and prototype the functionality of the overall system. This model is also used 
to generate the test vectors that are used for simulating/debugging more detailed hardware 
models, e.g., at the register-transfer level (RTL). Such models are usually expressed in a 
C-based hardware description language (HDL). Many of the component chips are custom 
designed, and incorporate hand-crafted cells. A low-level structural description (called an 
LSL description) is (manually) generated to reflect the cell-level structure of the actual 
design. This LSL description is graph-matched to the netlist extracted from layout so as to 
establish a 1-1 correspondence; heuristic graph matching techniques are used in this task. 
The correspondence between the LSL-model and clock-level accurate HDL descriptions 
is approximated by running through a set of simulation vectors on the two descriptions, 
and checking for the consistency (equivalence) of the outputs. Additionally, and somewhat 
independently, lower-level timing simulations are done at the chip level to reduce the 
probability of timing errors in the fabricated chip. 

Since the overall systems and component chips are quite complex, two familiar 
problems are manifest in such a simulation-based debugging paradigm. First, it becomes 
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quite cumbersome to generate/obtain a reasonable set of test vectors. Secondly, it is 
quite difficult to obtain a reasonable degree of coverage with a set of vectors that can be 
simulated in a reasonable time span. Formal verification is therefore obviously appealing 
in this context, but not yet practical using existing techniques and tools. 

2.1.1 Distinguishing Characteristics of the Design Paradigm 

There are some aspects of the design process described above that provide significant 
leverage[14]. One of its distinguishing traits, pertinent to the development of a synthesis 
tool, is the (human) exploration of an application specific solution space that spans 
algorithms, architectures and circuit design/layout. Another feature, pertinent to the 
development of a verification methodology, is the use of custom circuit design and layout 
at the lower levels. The compactness of the resulting custom crafted layouts often enables 
associated improvements in both latency and throughput, and potentially a decrease in 
power consumption. A third noteworthy characteristic of this class of signal processing 
applications is that their data path component often tends to be significant and iterative. 

In formulating a verification methodology, the guideline we follow is that any modifi- 
cation required of the underlying design methodology should preserve its key strengths. 
It is permissible, however, to incrementally alter other (i.e., "nou-key") aspects in order 
to better assist the verification task. In this instance, human intervention/involvement 
in low-level design is a key component of this technique. Consequently, completely 
automated synthesis and layout are unlikely to be deemed acceptable, since this would 
arguably compromise the quality of the resulting designs (given available synthesis and 
layout tools). 

2.2 A Formal  Verification Methodology 

We next outline a verification methodology that preserves the main strengths of the design 
methodology discussed above. For each step, we comment on the input information 
required, and indicate whether this is already available in the existing design process, or 
whether modifications are required. 

Note that the primary aim of the verification process is (1) to verify that the functionality 
of the circuit layout is consistent with the clock accurate RTL-level C(HDL) model and (2) 
to verify that the circuit/system description has a specified set of properties. The discussion 
below has a "bottom-up" flavor, with the primary focus being on the first mentioned task. 

Comparing the netlist extracted from the layout with the specified (low level) LSL 
netlisL As a first step, the netlists extracted from the layout and the hierarchical (low-level) 
structural description (manually generated) are compared for one-to-one correspondence. 

The inputs required for this process are: the circuit layout, the extracted netlist and the 
low-level structural description (henceforth referred to as the hierarchical LSL description). 
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Figure 2: Some aspects of the Verification Methodology 

These components are available in the current design process, and the netlist comparison 
task is done automatically using heuristic graph-isomorphism checkers. 

Methodological Modifications. It is possible to avoid the labor-intensive human 
generation of low-level structural descriptions that is required in the current design 
methodology. This is because the extraction of the gate level equivalents of the layout 
(and/or their behavioral description) can largely be automated) Such behavior extraction, 
however, benefits from and sometimes might require a demarcation of the structural 
hierarchy of the layout. It is noteworthy that this is painless for the designer to provide as 
input, since both the layout tool and/or the designer have ready access to this information. 
It should also be noted that such information (relating to the structural hierarchy) is often 
difficult to reverse-engineer i.e., to extract unassisted from the layout. 

Comparing the behavior of the specified structural description with the extracted 
neflist behavior. In the next step, the behaviors of the cells in the structural hierarchy 
and the circuit layout are compared. 

The inputs required for this step are (1) the LSL description for the cell and (2) the 
layout fragment corresponding to this LSL description. The first item is available as part 
of the specification. While the overall layout is always available, the extra information 
required by second item is the demarcation of the cells in the layout that correspond to the 
LSL description. Such identification may be done without much overhead by either a tool 

1The only exception to this are layouts for hand-crafted circuits that defeat analysis using switch-level models. 
Such circuits need lower levels of simulation/analysis in order for their functionality to be extracted. 
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(in case the layout is automatically generated) or by the designer (who is cognizant of the 
structural hierarchy). 

The behavior of each cell is extracted at the combinational or finite state machine 
level[13]. This is formally verified against the behavior corresponding to the LSL 
description. The comparison is performed automatically. 

Moving up in the hierarchy by behavioral abstraction. Using a technique such as that 
described in [13], the state-machine behavior of increasingly larger clusters of transistors 
in the structural hierarchy can be abstracted. The behavior of this collection of transistors 
can be verified against a corresponding structural (LSL) or behavioral HDL description. 

This step yields a partition of the layout into a set of medium grained modules. By a 
"medium gained module" we are here alluding to a collection of a few hundred to a few 
thousand transistors having meaningful behavior. 

Matching up the Behavioral and Structural Hierarchy. The preceding step yields 
a description consisting of a system of interacting finite state machines (FSMs) that 
are medium grained. This description can be compared against a corresponding HDL 
model (having no direct structural correspondence, but possessing identical submodule 
boundaries) that is generated by a "top-down" design development process. This step thus 
provides the meeting ground for the top-down and bottom-up design paths. 

More specifically, the layout/netlist segments of the design obtained as a result of the 
preceding step can be divide into two classes: (1) segments that have a corresponding 
(but independently specified) behavioral description; and (2) those that do not. In the 
first case, we consider the "immediate" verification problem as having been solved, since 
equivalence has been established between the specified behavior (HDL model) and the 
associated layout segment. In the second case, a combination of alternative techniques can 
be used for verification (including variants of symbolic simulation, symmetry annotations, 
and automatic abstractions), ff the set of available techniques proves inadequate, then we 
require the top-down description to be refined further to provide behavioral descriptions 
for modules that correspond to the structural hierarchy that has been abstracted. This then 
completes the immediate verification task in both cases. 

Useful Methodological Modifications.As an aid to the verification process, it is useful 
to replace/augment the individual simulation vectors that are used in traditional simulation 
by symbolic expressions capturing the property being checked for. Such properties can 
then be verified using variants of symbolic simulation techniques. 

Higher level verification/Property checking. At this stage, the behavioral description 
can be compared with other descriptions at higher levels of abstraction, and/or can be 
checked for properties using a variety of techniques. Such techniques include automated 
model checking and automata-theoretic approaches, as well as more interactive methods. 
A discussion of these tasks can be found elsewhere, and is beyond the scope of this paper. 
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However, we will comment on the techniques used for addressing the complexity that 
arises due to the presence of a large state space. 

Useful Methodological Modifications. As widely advocated, integrating the top-down 
design and verification processes expedites the overall development c~,cle. 

2.3 Property Verification 

In the early stages of the verification process discussed above, the focus is on checking for 
the consistency between an HDL specification and the layout. Once the system behavior is 
abstracted (e.g., as a set of interacting state machines, or some alternate form), it is often 
useful to check if the system description satisfies some set of properties that are not usually 
explicit in the HDL description. Examples of such properties include liveness, safeness, 
or fairness properties. Model checking techniques enable/accomplish this by exploring 
(searching) the state space of the system description. The property to be checked can be 
specified, for example, using a temporal logic formula[4], an automaton[ 10], or some other 
m e a n s .  

One of the main problem that arises in this context is that the complexity of naively 
exploring [he state space can easily overwhelm the available computational resources. A 
common way to combat this problem relies on user-supplied homomorphisms to abstract 
the initial description to another description that has a much reduced state space, but such 
that a search of this reduced search space is still sufficient. The drawback with this approach 
is that it requires the user to provide the homomorphisms: this is an added burden placed 
on an "engineer" not necessarily well-versed in formal methods. It is therefore desirable 
to automate their discovery to the extent feasible. 

Here, we cope with the problem using a variety of techniques: 

�9 Some forms of data-path homomorphisms are automatically extracted. 

�9 An efficient algorithm for computing the reachable state space, given a partition of 
the states induced by the equivalence relations on states/inputs is used to reduce the 
complexity of the problem. 

�9 User annotations related to the symmetry of data path components are used to reduce 
the state space that needs to be searched. 

We will briefly comment on some of the techniques used in Section 4. Of course, it is 
still possible to overwhelm the available resources, in which case additional user guidance 
is needed. 
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3 An E x a m p l e :  A F I F O  Contro l ler  

The example we use here to illustrate some of the concepts discussed in this paper is a FIFO 
controller (see Figure 3), which in turn is a subsystem of a larger video-codec system. The 
FIFO controller (denoted FIFO-C) consists of 

�9 an input FIFO of size 4K (1024 * 4) bits, 

�9 an output FIFO of size 2K (512 * 4) bits, 

�9 an external DRAM (1 MB) that serves as a FIFO buffer, 

�9 a finite state controller (denoted FC-FSM) that interfaces to the host, the input and 
output FIFOs, and the DRAM. 

The task of the FIFO controller is to accept 16-bit data from the input bus, store it into a 
local input FIFO (V1), use an off-chip DRAM (with a 4-bit wide I/O bus) as an overflow 
FIFO (supplying refresh strobes for the DRAM at the required intervals), transfer data from 
the DRAM into the output FIFO (V3), and eventually provide the data to the system host 
when requested. 

The first point to observe is that both the control logic and the data path taken together 
have approximately 7000 bits of memory. Thus, at first blush, the FIFO controller has 
a state space on the order of 27000 nodes. However, despite its modest size, the FIFO 
controller system description cannot be directly verified (or analyzed) by any verification 
tool that we are aware of. 

3.1 Desired I/O behavior of the FIFO Controller 

The basic property to be proved about the FIFO controller behavior is that data read into 
the input FIFO willeventually be output at the output FIFO when requested by the system 
(i.e., after an appropriate sequence of system commands). 

Additionally, several secondary properties specific to the architecture can be Verified. 
Such properties include, for example, 
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�9 "the DRAM is refreshed at the required intervals"; 

�9 "the read, write and refresh modes alternate as prescribed by the DRAM interface"; 

�9 etc. 

There are some caveats. The input/ontput data rate is assumed to be such that the input 
FIFO/DRAM/Output FIFO combination do not overflow. The actual sizes of the FIFOs are 
based on some application specific information which ensures, with high probability, that 
such overflow will not occur. However, an additional safety catch has been engineered in. 
When the DRAM is half full, an interrupt signal is sent to the external host that results in 
either the input data rate being reduced or the output FIFO being drained. If this interrupt 
is ignored, the FIFOs can overflow, but this is not construed to be an error. 

3.2 Identifying Subsystems 

The first step in the verification strategy involves identifying the various components 
of the system and partitioning them into categories that will be addressed using distinct 
techniques. 

The major subsystems of the FIFO controller system are the 2 internal FIFOs (having 
significant data path components), and the controlling finite state machine. Since the input 
and output FIFOs are somewhat similar, we will here consider only the input FIFO and the 
FSM controller. 

The FSM controller FC-FSM is basically a random collection of logic with no 
particular structure. The behavior of this logic collection is extracted hierarchically, 
first at the cell level, and then at the module boundary level. This is verified 
against the corresponding behavior expressed in an I-IDL, and translated into an FSM 
representation. 

The input FIFO description has data paths that can be abstracted out for the purposes 
of reasoning at the level of the overall controller. The abstracted machine description 
can also be used for analysis using higher level tools, e.g., model checking and 
language containment. 

3.3 Verification of the Controller FSM 

The steps described in Section 2.2 are used in the verification of the FSM controller 
FC-FSM: 

�9 A bottom-up abstraction of the behavior of the layout is performed, conforming to 
the hierarchical specification. 

�9 The equivalence of cell behaviors is established using FSM equivalence techniques. 
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Figure 4: Input FIFO: Block diagram 

While many of the cells abstracted did not pose any problems, some points are worth 
noting. 

A few of the cells have a behavior that is sensitive to the relative transistor sizes. 
This was discovered only as a consequence of the verification task having failed in 
an instance when an input having default transistor sizes was used. 

A set of cells that are designed to function as edge detectors have a behavior, which, 
when viewed in isolation, causes the output pulse to be unobservable when the output 
is sampled only after the rising clock edge. The expected behavior is indeed observed 
when the output is observed on the falling clock edge. However, when this cell is 
used as part of a larger circuit, the singularity does not cause any problems. 

The BDD was successfully constructed for the initial stage of the abstraction of 
the overall controller, but there was inadequate memory available for the computation 
to complete. Certain optimizations in the BDD package are expected to enable this 
computation to proceed to completion. The FSM-based verification of the controller then 
follows this stage. 

3.4 Input FIFO: Modeling and Verification 

The input FIFO has a structure that is shown in Figure 4. In essence, it consists of 

�9 a 16-bit wide inputbus; 

�9 a 4-bit wide output bus; 

�9 status registers indicating whether the FIFO is f u l l  or em p ty ;  

�9 Internal read and write pointers. Each 16-bit value input is read into 4 words of the 
FIFO, each 4-bits wide. 
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The block diagram for the input FIFO is shown in Figure 4. The initial I-IDL-modcl 
of this description yields the following variables as being "control" variables: the rcad 
and write command lines, the full/empty status registers, the write control for the DRAM, 
and the clock. This identification of control variables used in the construction discussed in 
Section 4. 

3.4.1 FIFO Properties 

The properties verified of the FIFO are of the form: 

Initialization. If the reset signal is raised, then the full, empty, data out, lines are set 
appropriately; 

Data Delivery. If the data is input (written into the FIFO), then it is output (in the same 
order); 

Fullness, Emptiness. That the fullness and emptiness of the FIFO are properly indicated 
(as a function of the size of the FIFO and the number of data items held). 

There are a few peculiarities of the input FIFO that are complicating factors. The input 
data is 16 bits wide, while the output data is 4 bits wide. This can be handled in several 
ways. One alternative is to view the 16-bit input data as being made up of four 4-bit pieces, 
and then view a single write into the FIFO as a series of 4 writes. (Other alternatives are 
different variants of this scheme.) 

3.4.2 FIFO Verification 

We will here restrict our comments to the FIFO behavior without the 4 way interleaving 
mentioned above. The initial HDL specification of the FIFO is analyzed to yield the 
control variables. The resulting specification has a form that can be cast as an automaton 
analyzable by Cospan[10]. Appropriate abstractions were then used to perform the needed 
property verifications. 

Examples of FIFO Abstractions A FIFO consisting of N words each of width W bits 
would yield a state space of size 2 N*W. The proof of correctness of a FIFO benefits 
from abstraction. Some the (somewhat standard) abstractions of a queue that were used in 
different contexts of the FIFO-C verification are listed below[10]. 

�9 To verify data-delivery in a data-independent system, we verify first the validity of 
collapsing the data items to 2 tokens (one modeling the item to be delivered, the 
second modeling all others), and establish this as a homomorphism. This model can 
then be reduced to yield a model having a much smaller number of states. 
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�9 At the level of the overall system, when the functionality of a FIFO, say Q, is only 
peripheral to the property which is to be verified, we replace the model Q with a 
1-state model Q' which non-deterministically outputs from its single state all the 
output tokens of Q. Let L(Q) denotes the language accepted by the automaton Q. As 
L(Q) < L(Q'), any (regular) property we can verify using Q' therefore holds with 
Q as well; however, Q' is too small to hold the information necessary to verify, for 
example, data-delivery. 

In the next section, we indicate how we can automatically extract some of the data path 
abstractions based on the structure of an HDL description. 

4 Dealing with data paths 

4.1 HDLs and Extended Finite State Machines 

Systems are described (in the context of this paper) either by using an HDL, or are 
represented internally, e.g., using transition relations. An I-IDL program is expressed 
compactly in a notation that uses (typed) variables, and operations (e.g., +, *) on 
the variables. When such a description is converted into an "explicit" state machine 
representation, for example by enumerating all of the possible values for the variables, the 
size of the resulting representation (i.e., the state space) can increase significantly; indeed, 
it may even become infinite (depending upon the variable types allowed by the HDL). This 
is widely referred to as the "state explosion problem". Thus, while the reachable space 
may itself be small, there may still be severe limitations in the analysis that is feasible. 

A common reason for the "non-essential" growth of the state space is the presence of 
a significant data path component in a circuit. The data path component of some circuits 
can be significant. However, in many cases, the actual data values in the "data path" of a 
hardware system are of no consequence to the property being analyzed. Thus, it is often 
possible to abstract the large set of values 2 n in an n-bit data path to a small set (perhaps 
even one) for the purposes of analysis. (Note that this is not directly feasible for arithmetic 
circuits.) 

More generally, while the actual state space may be large, many states may be equivalent 
to each other (where the actual definition of equivalence is context dependent). In principle, 
the complexity of the analysis should at least be bounded by the number N of reachable 
equivalence classes. (The problem in general is PSPACE-hard for finite domains and 
undecidable for infinite domains.) Often N tends to be much smaller than either the total 
number of reachable states or the total number of equivalence classes. 

There are several ways to combat the increase in the state space caused by the presence 
of data paths. These include: 

�9 Writing the HDL model so as to explicitly separate the data path computations and the 
underlying control logic, and then dealing with the two components independently. 
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This option can exploit model checking techniques, for example. The drawback with 
this approach is that the rewriting of the HDL model is typically manual. 

Using user specified abstractions (homomorphisms) in the context of a lan- 
guage/automata theoretic framework[ 10]. 

Using an extended finite state machine formalism (suited for HDLs) for analyzing 
the reachable space, and exploiting data path equivalences to reduce the size of the 
space to be explored. 

We will briefly elaborate on the third option below. 

4.2 Reducing State Transition Systems 

A state transition system M is defined by a tuple < S, R, I,  T, O, Out > consisting of 
a set of states S, an equivalence relation R on S (that serves to induce a partition P on 
S), a finite set of input actions I,  and a set T of transition relations No C_ S x S for 
each action a E I. This definition allows the system to be nondeterministic. In the case 
of a deterministic system, the next state for a specific input is uniquely defined, and the 
transition relation can be defined by a map T : S x I ~ S. The other components of M 
optionally include an output domain 0 and output function Out that can be specified either 
as a deterministic map Out : S x I ~ 0 or as a nondeterministicrelation Out a C_ S x 0 
for each input a E I. Often, the relation Out can be treated in a manner similar to the 
relation T (it may even be merged with T for certain computations). 

The set of states in this definition may be potentially infinite, although in the case of 
hardware systems the set is large but not infinite. The equivalence relation R on S is 
intended to capture the set the equivalences relevant to a specific application context. For 
example, if a set of system states {sl, ..., s,,} differ only in the value of data associated 
with a data path component (e.g., values on a bus), and we do not care about the actual 
values, then this set of states may be coalesced by R. 

We are interested in the reduced or "minimized" system whose states are given by the 
quotient S / R .  Further, while S may be potentially infinite, we require S / R  to be finite. If R 
preserves the transition relation for M, the quotient algebra M / R  is well defined. Given an 
initial partition of S, we can iteratively converge to S / R  by the algorithm discussed below. 
The primary advantage in doing this lies in the fact that the representation complexity is 
significantly reduced, since M need not be constructed in its entirety. 

Pictorially, a transition system can be though of as a labeled graph. The nodes of this 
graph correspond to the states S of the system. There is an arc from state sl to sj labelled 
with input a E I if, the state si can transition to sj on input a. 

Correlating implicit and explicit representations 

State Space interpretations. The state space of an HDL program can be viewed as being 
defined by a vector of variables taken from a domain D = D1 x D2 x ... x Dn. The actual 
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interpretation of the domains typically depends upon the HDL (and the program) being 
considered. We give 2 examples. 

In the case of HDL such as VHDL[11], the implicit state space is defined by the 
location (program counter, or labelled statement), the values of variables that denote 
internal registers, buses, etc., and the inputs of this process (equivalently, the outputs 
of the processes that communicate with this process). 

�9 In case of a language such as S/R[10], where the state space is explicit, the state 
may be interpreted as < symbolic state, variable values >, where the variable 
values can refer to both internal states as well as inputs (output selections of other 
processes). In this case, we will denote the state space by SS • D for convenience. 

The data type domains Di may have further algebraic structure that can at times be 
exploited. For example, integers modulo 8 can be represented using the set of values 0..7. 
Further, if 0 is an initial value, and only increments of 4 are allowed, then the reachable 
values in this domain can be represented by {0,4}. 

Computing the state transition relation When the state machine specification is not 
explicit, the state transition relation can be derived from the program specification. In 
general, a state transition si ~ sj is triggered by some predicate Pij on the internal state 
being true. Such a predicate can be separated into (1) a triggering event on the input(s), 
such as a clock tick (e.g., for synchronous clocked systems), or signal transitions (e.g., for 
asynchronous systems) and (2) an associated predicate on the variable values. 

In VHDL for instance, the conjunction of predicates along a path from one wa• 
statement to another, comprises the predicate corresponding to a state transition. (Such 
a correspondence is also useful in a tool for correlating error traces arising out of an 
execution of the explicit state model with the programmatic representation that only has 
implicit states.) 

Iteratively computing M/R. 

Given an equivalence relation R, it is easy to compute the reduced transition system M / R  
whose states are the partitions induced by R. The initial partition of S is derived from the 
HDL description. If B, C are blocks of states, then (in the reduced transition system) there 
is a transition from B to C labelled by an input action a E I iff each state in block B has 
an a-arc to some state in block C. If this condition is satisfied, then this arc labelled a from 
B to C is said to be stable, otherwise it is said to be unstable. If an arc is unstable, then the 
block B can be split into two blocks B'  and B"  such that B'  contains all of the states that 
have a-transitions leading to a state in C, while the states in B"  have a-transitions that 
do not lead to C. This procedure can be iterated until no further splitting of the blocks is 
necessary i.e., until no new blocks are being formed and all arcs are stable. 
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The sets of states can be compactly represented by using BDDs for their characteristic 
functions. The manipulations needed for the minimization task are: representation of the 
intersection of two blocks; the inverse of a block B; set difference, and test for emptiness. 

An algorithm for computing the reachable part of a minimized system was proposed 
in [12]. The algorithm arrives at this reachable minimal graph in O ( N M )  operations, 
where N is the number of nodes (state partitions), and M is the number of edges in the 
graph. However, in the absence of any other information, the algorithm may not know 
that it has found the final graph, and may continue working. In general, therefore, it is 
necessary to verify that a given graph is the desired one. In certain special cases, it is 
possible to efficiently answer this question. This method can be applied to extended finite 
state machines with separable affine transformations, i.e., machines with variables that are 
modified via separate affine transformations. 

An affinetransformation f from D n to D n isoftheform.~/i = fi(a:) = )-~ a i j x j  q-bi. 
The transformation is separable if there is at most one variable on the RHS of each 
equation. It is strongly separable if the i - t h  variable maps to the i - t h  variable i.e., 
Yi "- ~ a i z i  q- bi, otherwise it is weakly separable. In the case where the coefficients 
are integers, the termination problems can be solved in linear time. In the case of arbitrary 
real coefficients, the termination problem of verifying the result graph can be reduced to 
a Linear Programming problem with two variables per inequality, which admits a strong 
polynomial solution. These results can be applied in the context of the hardware/system 
verification tasks of interest here. 

4.3 Some useful examples of R (abstractions) 

We now list some useful examples of the equivalence relation R. The first example 
captures the notion of the separation of control and data in an I-IDL description. The second 
example is aimed at exploiting the existence of symmetry in a system. 

4.3.1 Equivalences induced by data path abstraction 

Consider the case where the variables comprising the state are conceptually partitioned 
into a "symbolic state" S S  of an underlying finite state machine, and the remaining 
components of the state are variable values over a domain D. (The overall state space is 
S S  • D as discussed earlier.) The initial partition of the state space is induced by the 
homomorphism h defined as follows: Vs E S S  Vdi, dj E D h(< s, di >) = h(< s, dj >) 
This is tantamount to initially merging all states that have the same "symbolic state" value 
into one equivalence class, independent of the remaining variable values. 

The iterative refinement performed by the stabilization procedure will refine the initial 
partitions. At each step in the refinement, if a transition [si] ~ [sj] depends on a predicate 
Pii on D, where P~j is not true on all the elements in D, this causes [si] to be split into 
parts [si, Pij (D)] and [si,-~Pij (D)] which correspond to a partitioning of the domain D 
by Pij. More generally, we require that ~ d  E D(Pij(d) A Pik(d)). This notion can be 
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Figure 5: Refined transition structure for a FIFO of capacity 2 

generalized to the case where the underlying types are user defined, in which case their 
semantics can be captured by either the initial or final algebra defined on the underlying 
Herbrand universe. The initial algebra captures the notion of congruence defined by a set 
of equations on the terms in the Herbrand universe, while the final algebra captures the 
notion of externally observable behavior. 

As an example, in the case of a FIFO description, the refinement procedure does not 
cause the data values to be expanded. However, the pointer values used for the head and 
tail, and the status bit indicating whether the FIFO is full or empty are indeed expanded. 
The equivalence classes resulting from a refinement of the a FIFO of size 2 are shown in 
Figure 5. Note that the states < ful l . ,  h ~ 1; > are unreachable. This partitioning exploits 
the structure on the domains of h and 1= indicated earlier, viz., they are integers modulo 8, 
with initial values of 0, and updated only in increments of 4. 

4.4 Equivalences induced by the presence of symmetry 

On occasion, a system (or part thereof) may embody some form of symmetry. Examples 
include registerfiles, memory and cache structures, regular iterative structures (e.g., systolic 
arrays), buses, etc. The presence of symmetry in a system implies that some sets of states 
or structural configurations are equivalent for the purpose of analyzing some of the system 
properties. Such equivalences can potentially lead to a reduction in the complexity of the 
associated analysis. 2 

Note that a system is typically associated with both a structure and a behavior. Symmetry 
can correspondingly be described at, these two levels. At the structural level, symmetry 
may be described by stating that the circuit behavior is invariant under certain permutations 
of the components. The state space of the transition system characterizing the behavior 
of the circuit is related to the structure. Alternatively, symmetry may be described by 
permutations on the state space, which leave the transition relation invariant. 

2The notion of exploiting symmetry by explicit specification in an HDL is also independently being explored 
by Dill et al. and Clarke et al. in the context of model checking. Unfortunately, at the time of writing this draft we 
are unaware of enough details to make a detailed comparison. 
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SIZE = 8; /* initialize FIFO size */ 

/* initialize head (h), tail (t), and fullness status */ 

h=0; t=0; full=0; 

/* main loop */ 

case (op) [ 

insert: 

if (Ifull) { 

FIFO[h] = d; /*read in data from bus */ 

h = (h+4) mod SIZE ; /* a datum takes 4 FIFO slots */ 

if (h==t) full=l; /* update status */ 
] 

delete: 

if ((hl=t) [ (full)) { 

t = t+4 mod SIZE; 

full = 0; /* FIFO no longer full */ 
} 

] 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 6: Skeletal FIFO description (cf. Figure 5). 

A permutation tr is a 1-1 onto map S ~ S. (Note that a set of permutations S = {tri } 
that is closed under composition forms a group.) Consider now the equivalence relation 
R on S defined by < si, sj > 6 R fff g(si) = sj for some permutation tr 6 2?. 
If the R is a congruence with respect to the transition relation T, i.e., the permutations 
in 27 do not change the transition structure, then the quotient algebra M/R is well 
defined. Formally, the requirement that R be a congruence with respect to T states that 
(Vs, s' �9 S)(Vo- 6 Z:)((s, s') 6 R ig(~(s), a(s')) 6 R). 

For example, let D represents the data domain for the values on a bus. An abstraction 
at the level of an HDL specification stating that h : D ~ d, where d is a distinguished 
representative of D, is a way of stating that the actual values on the bus are indistinguishable 
for the behavior under consideration. 

This abstraction at the HDL level is tantamount to stating that the wires in the bus 
representing D can be arbitrarily permuted without affecting the behavior being examined. 
While this may have been intended, a wiring interconnection error may have indeed rendered 
this untenable. It is therefore necessary to verify that the relevant group of permutations 
leaves the behavior of the circuit invariant. (Formally, a behavior under investigation can 
be expressed in terms of an appropriate set of operations (functions) defined on a universal 
algebra[9]. If an equivalence relation R induced by the generators of the permutations is 
a congruence with respect to the generators of the algebra, then the quotient M/R is well 
defined.) Unfortunately, the BDD representation of the equivalence classes induced by 
symmetries as defined above can still be quite large, and the computational complexity of 
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this problem is still quite hard. 

Thus, while such abstractions are easy to make at the level of an HDL specification, 
they are not always computationaUy easy to verify at the level of the circuit. The way 
we currently address this complexity is by combining inductive reasoning based on a 
representation of the iterated structure of the circuit. However, this area needs further 
research. 

5 Conclusions 

We have described a divide-and-conquer paradigm to scale up the size of systems that can be 
verified. We are experimenting with the viability of this paradigm in the context of a design 
methodology that is targeted at the design of custom, high-performance, high-thronghput 
digital signal processing circuits and systems. While the focus on this class of circuits 
does not restrict the applicability of the concepts, it highlights the challenge of dealing 
with bottom-up design methodologies in the context of verification, and the necessity of 
coping with the data path problem. Although we have had some initial success in our 
experiments, a significant amount of work is needed before the techniques described here 
can be considered mature. Further, while functionality is obviously of primary importance, 
issues related to the timing of such circuits and systems increasingly become the bottleneck 
in the design cycle. Ongoing work is directed at alleviating these bottlenecks. 
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