
Towards Verifying Large(r) Systems:
A strategy and an experiment

P~A.Subrahmanyam
AT&T Bell Laboratories, Rm 4E-530, Holmdel, N.J. 07733

electronic-mail: subra@research.att.com

Abstract

Despite some of the impressive results quoted in recent verification literature, the
verification of even modestly sized "real" industrial designs is not yet feasible on a
routine basis. The goal of the work discussedhere is to enable the verification of large(r)
real systems than currently feasible with any one of the available techniques, and to
dovetail the verification methodology with the an underlying design methodology. The
specific design methodology considered here is targeted towards the custom design of
digital signal processing architectures. Two important attributes of this class of designs
are (1) custom-crafted leaf cells, and (2) significant data path components. Our strategy
is to partition the subsystems involved into different categories that can be handled
by different techniques, and use a divide-and-conquer paradigm. The complexity
introduced by data paths is addressed by automating the abstraction of some of the
natural equivalences induced, and exploiting this in the context of an extended finite
state machine formalism. Specifically, we illustrate how it is possible to exploit the
distinction between data and control in implicitly specified state machines (HDLs),
and comment on useful abstractions in the presence of symmetry. We illustrate some
aspects of the strategy via an example. We also suggest some evolutionary (rather than
revolutionary) changes in the design methodology that enable the existing state of art
in verification to be better exploited in practise.

1 Introduction

Over the last few years, there has been a rapid (even surprising) evolution in the
capabilities of techniques for formal verification of hardware. Examples include: state
machine equivalence checking[6], symbolic simulation[2], automata-theoretic language
containment[10], theorem proving based on various flavors of logic/algebra[8], and model
checking[4]. It is reasonable to expect that the maturity and domain of applicability of most
techniques will continue to improve, albeit at different rates.

Despite some the impressive results quoted in literature, the verification of even modestly
sized real industrial designs is not yet feasible on a routine basis. For example, state-based
methods that use binary decision diagrams[l] (BDDs) can handle some state spaces having
on the order of 212~ states[4]; a more accurate metric in practice is the space needed by the
BDD representation for a particular circuit rather than the size of the state space. However,
the observation that. one requires merely four 32-bit registers in a design to approach such
a limit is rather sobering. More generally, it is recognized that each of the techniques
listed above has its strengths and weaknesses. Often, some aspect of even a modest sized
real system tends to defeat the specific technique being applied. It is therefore necessary

136

to evolve more sophisticated verification methodologies to address practical verification
tasks.

We believe that it is important for any practically viable verification methodology to
be closely coupled to (as opposed to being completely divorced from) a "real" design
methodology i.e., one that is in actual use, or that can be reasonably enforced in practice.
One implication of this observation is that a verification methodology that assumes a
purely top-down approach to design is unlikely to be widely applicable in the near term:
this is because a strictly top-down development methodology is not widespread in practise
(despite several papers over the last 20 years that have advocated it, and several more that
continue to advocate it).

Further, we believe that in the short to intermediate term, fully automated verification
techniques will be absorbed into design methodologies and associated tools and envi-
ronments more readily in comparison to interactive verification techniques, e.g., theorem
proving based techniques.

The overall goal of the work discussed here is the verification of large(r) "real"
systems than currently feasible with any one of the existing techniques. The underlying
design methodology considered here is targeted towards the custom design of digital signal
processing architectures[14]. Two important attributes of this class of designs are (1) the
use of custom-crafted circuits at the lower levels e.g., leaf cells; and (2) significant data
path components.

1.1 Strategy and Approach

The objective of a verification task is usually either (1) to determine the consistency
between two descriptions of a design (usually generated independently), or (2) to ascertain
whether a given design description satisfies a specified property. The approach discussed
here is motivated by the following observation: many medium-to-large scale systems often
consist of subsystems that can be categorized as being control logic, data paths, regular
iterative subsystems (e.g., systolic arrays), or specialized subsystems (e.g., memories).
These subsystems have very different "verifiability" attributes in that different techniques
are useful for each of these classes of subsystem. Our strategy is to leverage the strengths
of different approaches to verify larger systems than each can individually verify, and to
appropriately couple this into the underlying design process.

In brief, given a layout, and the associated structural hierarchy, we delineate a
strategy for abstracting the behavior of the components of the layout into modules
that have increasing size (number of transistors). The abstraction process consists of
combinational logic extraction, state machine abstraction, and the computation of state
machine products. When the computational complexity of such an abstraction process
exceeds the available resources, we establish a correspondence between the abstracted
description and a second description arrived at by a top-down decomposition process. In
order for this correspondence to be established, the two descriptions are required to have
isomorphic submodule boundaries.

More specifically,

"137

�9 The complexity introduced by data paths is addressed by automating the abstraction
of some of the natural equivalences induced by data paths, and exploiting this in
the context of an extended finite state machine formalism. Such a formulation
corresponds closely to many hardware description languages (HDLs) in common
use. If applicable, algebraic structure can be used to further reduce the complexity.

�9 Modified forms of symbolic simulation[2] are used to verify iterative subsystems
and memories, and

�9 FSM-based verification, language containment and model checking techniques are
used for verification of the control logic and the abstracted models.

Thus, our strategy is to analyze the subsystems involved, partition them into different
categories that can be handled by different techniques, and use a divide-and-conquer
paradigm.

The verification methodology developed here enables independent (and concurren0
development of the top-down and bottom-up design threads if needed. By not requiring
a strictly top-down "one-shot" path to the design, it supports design methodologies that
more closely reflect practise. Additionally, it enables "property analysis" to be done at
any level of the design hierarchy, and preserves the integrity of the analysis done at the
higher levels (by virtue of the coupling of the descriptions arrived at by the top-down and
bottom-up design processes).

We also suggest some evolutionary (rather than revolutionary) changes in the design
methodology that enable the existing state of art in verification to be better exploited in
practise. The techniques advocated are targeted at (1) evolving the bottom-up, middle-out,
and iterative design processes, and (2) synergistically merging bottom-up design and
verification techniques with top-down design and verification techniques.

The rest of this paper is organized as follows. Section 2 summarizes a methodology used
within AT&T for the design of a subclass of digital signal processing (DSP) circuits, and
outlines a verification methodology that dovetails with this design methodology. Section 3
illustrates the use of this approach via an example. Section 4 elaborates on the formalism
used for reducing the complexity of analyzing circuits that have large data paths, and
comments on the computation of a minimized transition system described by an HDL
program. Specifically, we illustrate how it is possible to exploit the distinction between
data and control in implicitly specified state machines (HDLs), and comment on useful
abstractions in the presence of symmetry in systems. Finally, Section 5 summarizes some
of the main points of the paper, and mentions ongoing work.

2 The Design/Verification Methodology

In this section, we first highlight some of the distinguishing features of an existing
methodology that is used for designing and debugging a subclass of custom signal processing
circuits within AT&T. We then discuss a verification strategy for such designs. The

138

�84 Project Specification [

Software
Prototype [

Architecture ~ Mleroeode Definition design

I Test I
sequences
(simulation �9
patterns)

I description [""""-'~l Simulation Simulation I

architecture

Netlist 1.~.._._.._ [Transistor I Comparator I I Netlist I

I Circuit Layout

Circuit
extraction

I
Figure 1: A prototypical design scenario motivating formal verification

verification strategy in turn suggests some alterations to the extant design methodology that
can assist certain verification tasks, while preserving the key strengths of the methodology.

2.1 Current Design/Debugging Paradigm

The design/debugging methodology we will use as a starting point here is used for
developing custom DSP systems and assessing their logical "correctness" within AT&T
(see Figure 1). It is essentially simulation-based, and as follows. A high level (C) program is
used to model and prototype the functionality of the overall system. This model is also used
to generate the test vectors that are used for simulating/debugging more detailed hardware
models, e.g., at the register-transfer level (RTL). Such models are usually expressed in a
C-based hardware description language (HDL). Many of the component chips are custom
designed, and incorporate hand-crafted cells. A low-level structural description (called an
LSL description) is (manually) generated to reflect the cell-level structure of the actual
design. This LSL description is graph-matched to the netlist extracted from layout so as to
establish a 1-1 correspondence; heuristic graph matching techniques are used in this task.
The correspondence between the LSL-model and clock-level accurate HDL descriptions
is approximated by running through a set of simulation vectors on the two descriptions,
and checking for the consistency (equivalence) of the outputs. Additionally, and somewhat
independently, lower-level timing simulations are done at the chip level to reduce the
probability of timing errors in the fabricated chip.

Since the overall systems and component chips are quite complex, two familiar
problems are manifest in such a simulation-based debugging paradigm. First, it becomes

139

quite cumbersome to generate/obtain a reasonable set of test vectors. Secondly, it is
quite difficult to obtain a reasonable degree of coverage with a set of vectors that can be
simulated in a reasonable time span. Formal verification is therefore obviously appealing
in this context, but not yet practical using existing techniques and tools.

2.1.1 Distinguishing Characteristics of the Design Paradigm

There are some aspects of the design process described above that provide significant
leverage[14]. One of its distinguishing traits, pertinent to the development of a synthesis
tool, is the (human) exploration of an application specific solution space that spans
algorithms, architectures and circuit design/layout. Another feature, pertinent to the
development of a verification methodology, is the use of custom circuit design and layout
at the lower levels. The compactness of the resulting custom crafted layouts often enables
associated improvements in both latency and throughput, and potentially a decrease in
power consumption. A third noteworthy characteristic of this class of signal processing
applications is that their data path component often tends to be significant and iterative.

In formulating a verification methodology, the guideline we follow is that any modifi-
cation required of the underlying design methodology should preserve its key strengths.
It is permissible, however, to incrementally alter other (i.e., "nou-key") aspects in order
to better assist the verification task. In this instance, human intervention/involvement
in low-level design is a key component of this technique. Consequently, completely
automated synthesis and layout are unlikely to be deemed acceptable, since this would
arguably compromise the quality of the resulting designs (given available synthesis and
layout tools).

2.2 A Formal Verification Methodology

We next outline a verification methodology that preserves the main strengths of the design
methodology discussed above. For each step, we comment on the input information
required, and indicate whether this is already available in the existing design process, or
whether modifications are required.

Note that the primary aim of the verification process is (1) to verify that the functionality
of the circuit layout is consistent with the clock accurate RTL-level C(HDL) model and (2)
to verify that the circuit/system description has a specified set of properties. The discussion
below has a "bottom-up" flavor, with the primary focus being on the first mentioned task.

Comparing the netlist extracted from the layout with the specified (low level) LSL
netlisL As a first step, the netlists extracted from the layout and the hierarchical (low-level)
structural description (manually generated) are compared for one-to-one correspondence.

The inputs required for this process are: the circuit layout, the extracted netlist and the
low-level structural description (henceforth referred to as the hierarchical LSL description).

140

Project Specification [

I
Architecture

Definition

t

architecture Ilogic expression

[Transistor Nctlist [Nctlist Compurator
Circuit

t extraction

I Circuit Layout I

Figure 2: Some aspects of the Verification Methodology

These components are available in the current design process, and the netlist comparison
task is done automatically using heuristic graph-isomorphism checkers.

Methodological Modifications. It is possible to avoid the labor-intensive human
generation of low-level structural descriptions that is required in the current design
methodology. This is because the extraction of the gate level equivalents of the layout
(and/or their behavioral description) can largely be automated) Such behavior extraction,
however, benefits from and sometimes might require a demarcation of the structural
hierarchy of the layout. It is noteworthy that this is painless for the designer to provide as
input, since both the layout tool and/or the designer have ready access to this information.
It should also be noted that such information (relating to the structural hierarchy) is often
difficult to reverse-engineer i.e., to extract unassisted from the layout.

Comparing the behavior of the specified structural description with the extracted
neflist behavior. In the next step, the behaviors of the cells in the structural hierarchy
and the circuit layout are compared.

The inputs required for this step are (1) the LSL description for the cell and (2) the
layout fragment corresponding to this LSL description. The first item is available as part
of the specification. While the overall layout is always available, the extra information
required by second item is the demarcation of the cells in the layout that correspond to the
LSL description. Such identification may be done without much overhead by either a tool

1The only exception to this are layouts for hand-crafted circuits that defeat analysis using switch-level models.
Such circuits need lower levels of simulation/analysis in order for their functionality to be extracted.

141

(in case the layout is automatically generated) or by the designer (who is cognizant of the
structural hierarchy).

The behavior of each cell is extracted at the combinational or finite state machine
level[13]. This is formally verified against the behavior corresponding to the LSL
description. The comparison is performed automatically.

Moving up in the hierarchy by behavioral abstraction. Using a technique such as that
described in [13], the state-machine behavior of increasingly larger clusters of transistors
in the structural hierarchy can be abstracted. The behavior of this collection of transistors
can be verified against a corresponding structural (LSL) or behavioral HDL description.

This step yields a partition of the layout into a set of medium grained modules. By a
"medium gained module" we are here alluding to a collection of a few hundred to a few
thousand transistors having meaningful behavior.

Matching up the Behavioral and Structural Hierarchy. The preceding step yields
a description consisting of a system of interacting finite state machines (FSMs) that
are medium grained. This description can be compared against a corresponding HDL
model (having no direct structural correspondence, but possessing identical submodule
boundaries) that is generated by a "top-down" design development process. This step thus
provides the meeting ground for the top-down and bottom-up design paths.

More specifically, the layout/netlist segments of the design obtained as a result of the
preceding step can be divide into two classes: (1) segments that have a corresponding
(but independently specified) behavioral description; and (2) those that do not. In the
first case, we consider the "immediate" verification problem as having been solved, since
equivalence has been established between the specified behavior (HDL model) and the
associated layout segment. In the second case, a combination of alternative techniques can
be used for verification (including variants of symbolic simulation, symmetry annotations,
and automatic abstractions), ff the set of available techniques proves inadequate, then we
require the top-down description to be refined further to provide behavioral descriptions
for modules that correspond to the structural hierarchy that has been abstracted. This then
completes the immediate verification task in both cases.

Useful Methodological Modifications.As an aid to the verification process, it is useful
to replace/augment the individual simulation vectors that are used in traditional simulation
by symbolic expressions capturing the property being checked for. Such properties can
then be verified using variants of symbolic simulation techniques.

Higher level verification/Property checking. At this stage, the behavioral description
can be compared with other descriptions at higher levels of abstraction, and/or can be
checked for properties using a variety of techniques. Such techniques include automated
model checking and automata-theoretic approaches, as well as more interactive methods.
A discussion of these tasks can be found elsewhere, and is beyond the scope of this paper.

142

However, we will comment on the techniques used for addressing the complexity that
arises due to the presence of a large state space.

Useful Methodological Modifications. As widely advocated, integrating the top-down
design and verification processes expedites the overall development c~,cle.

2.3 Property Verification

In the early stages of the verification process discussed above, the focus is on checking for
the consistency between an HDL specification and the layout. Once the system behavior is
abstracted (e.g., as a set of interacting state machines, or some alternate form), it is often
useful to check if the system description satisfies some set of properties that are not usually
explicit in the HDL description. Examples of such properties include liveness, safeness,
or fairness properties. Model checking techniques enable/accomplish this by exploring
(searching) the state space of the system description. The property to be checked can be
specified, for example, using a temporal logic formula[4], an automaton[10], or some other
m e a n s .

One of the main problem that arises in this context is that the complexity of naively
exploring [he state space can easily overwhelm the available computational resources. A
common way to combat this problem relies on user-supplied homomorphisms to abstract
the initial description to another description that has a much reduced state space, but such
that a search of this reduced search space is still sufficient. The drawback with this approach
is that it requires the user to provide the homomorphisms: this is an added burden placed
on an "engineer" not necessarily well-versed in formal methods. It is therefore desirable
to automate their discovery to the extent feasible.

Here, we cope with the problem using a variety of techniques:

�9 Some forms of data-path homomorphisms are automatically extracted.

�9 An efficient algorithm for computing the reachable state space, given a partition of
the states induced by the equivalence relations on states/inputs is used to reduce the
complexity of the problem.

�9 User annotations related to the symmetry of data path components are used to reduce
the state space that needs to be searched.

We will briefly comment on some of the techniques used in Section 4. Of course, it is
still possible to overwhelm the available resources, in which case additional user guidance
is needed.

143

DRAM

I 'It~ I

'r
81mtGm lto~t

Figure 3: A FIFO Controller

3 An E x a m p l e : A F I F O Contro l ler

The example we use here to illustrate some of the concepts discussed in this paper is a FIFO
controller (see Figure 3), which in turn is a subsystem of a larger video-codec system. The
FIFO controller (denoted FIFO-C) consists of

�9 an input FIFO of size 4K (1024 * 4) bits,

�9 an output FIFO of size 2K (512 * 4) bits,

�9 an external DRAM (1 MB) that serves as a FIFO buffer,

�9 a finite state controller (denoted FC-FSM) that interfaces to the host, the input and
output FIFOs, and the DRAM.

The task of the FIFO controller is to accept 16-bit data from the input bus, store it into a
local input FIFO (V1), use an off-chip DRAM (with a 4-bit wide I/O bus) as an overflow
FIFO (supplying refresh strobes for the DRAM at the required intervals), transfer data from
the DRAM into the output FIFO (V3), and eventually provide the data to the system host
when requested.

The first point to observe is that both the control logic and the data path taken together
have approximately 7000 bits of memory. Thus, at first blush, the FIFO controller has
a state space on the order of 27000 nodes. However, despite its modest size, the FIFO
controller system description cannot be directly verified (or analyzed) by any verification
tool that we are aware of.

3.1 Desired I/O behavior of the FIFO Controller

The basic property to be proved about the FIFO controller behavior is that data read into
the input FIFO willeventually be output at the output FIFO when requested by the system
(i.e., after an appropriate sequence of system commands).

Additionally, several secondary properties specific to the architecture can be Verified.
Such properties include, for example,

144

�9 "the DRAM is refreshed at the required intervals";

�9 "the read, write and refresh modes alternate as prescribed by the DRAM interface";

�9 etc.

There are some caveats. The input/ontput data rate is assumed to be such that the input
FIFO/DRAM/Output FIFO combination do not overflow. The actual sizes of the FIFOs are
based on some application specific information which ensures, with high probability, that
such overflow will not occur. However, an additional safety catch has been engineered in.
When the DRAM is half full, an interrupt signal is sent to the external host that results in
either the input data rate being reduced or the output FIFO being drained. If this interrupt
is ignored, the FIFOs can overflow, but this is not construed to be an error.

3.2 Identifying Subsystems

The first step in the verification strategy involves identifying the various components
of the system and partitioning them into categories that will be addressed using distinct
techniques.

The major subsystems of the FIFO controller system are the 2 internal FIFOs (having
significant data path components), and the controlling finite state machine. Since the input
and output FIFOs are somewhat similar, we will here consider only the input FIFO and the
FSM controller.

The FSM controller FC-FSM is basically a random collection of logic with no
particular structure. The behavior of this logic collection is extracted hierarchically,
first at the cell level, and then at the module boundary level. This is verified
against the corresponding behavior expressed in an I-IDL, and translated into an FSM
representation.

The input FIFO description has data paths that can be abstracted out for the purposes
of reasoning at the level of the overall controller. The abstracted machine description
can also be used for analysis using higher level tools, e.g., model checking and
language containment.

3.3 Verification of the Controller FSM

The steps described in Section 2.2 are used in the verification of the FSM controller
FC-FSM:

�9 A bottom-up abstraction of the behavior of the layout is performed, conforming to
the hierarchical specification.

�9 The equivalence of cell behaviors is established using FSM equivalence techniques.

145

F r o m

VLE
16

/

l dramout[O..3]

vlfull reg
vlempty_reg

vlefrptr
vlef_wptr

vie_fifo[j]--actual f i f o DRAM_writemode
I 2 write

bufferdataout reg 12 read

i
~ l ' e s e t

Figure 4: Input FIFO: Block diagram

While many of the cells abstracted did not pose any problems, some points are worth
noting.

A few of the cells have a behavior that is sensitive to the relative transistor sizes.
This was discovered only as a consequence of the verification task having failed in
an instance when an input having default transistor sizes was used.

A set of cells that are designed to function as edge detectors have a behavior, which,
when viewed in isolation, causes the output pulse to be unobservable when the output
is sampled only after the rising clock edge. The expected behavior is indeed observed
when the output is observed on the falling clock edge. However, when this cell is
used as part of a larger circuit, the singularity does not cause any problems.

The BDD was successfully constructed for the initial stage of the abstraction of
the overall controller, but there was inadequate memory available for the computation
to complete. Certain optimizations in the BDD package are expected to enable this
computation to proceed to completion. The FSM-based verification of the controller then
follows this stage.

3.4 Input FIFO: Modeling and Verification

The input FIFO has a structure that is shown in Figure 4. In essence, it consists of

�9 a 16-bit wide inputbus;

�9 a 4-bit wide output bus;

�9 status registers indicating whether the FIFO is f u l l or em p ty ;

�9 Internal read and write pointers. Each 16-bit value input is read into 4 words of the
FIFO, each 4-bits wide.

146

The block diagram for the input FIFO is shown in Figure 4. The initial I-IDL-modcl
of this description yields the following variables as being "control" variables: the rcad
and write command lines, the full/empty status registers, the write control for the DRAM,
and the clock. This identification of control variables used in the construction discussed in
Section 4.

3.4.1 FIFO Properties

The properties verified of the FIFO are of the form:

Initialization. If the reset signal is raised, then the full, empty, data out, lines are set
appropriately;

Data Delivery. If the data is input (written into the FIFO), then it is output (in the same
order);

Fullness, Emptiness. That the fullness and emptiness of the FIFO are properly indicated
(as a function of the size of the FIFO and the number of data items held).

There are a few peculiarities of the input FIFO that are complicating factors. The input
data is 16 bits wide, while the output data is 4 bits wide. This can be handled in several
ways. One alternative is to view the 16-bit input data as being made up of four 4-bit pieces,
and then view a single write into the FIFO as a series of 4 writes. (Other alternatives are
different variants of this scheme.)

3.4.2 FIFO Verification

We will here restrict our comments to the FIFO behavior without the 4 way interleaving
mentioned above. The initial HDL specification of the FIFO is analyzed to yield the
control variables. The resulting specification has a form that can be cast as an automaton
analyzable by Cospan[10]. Appropriate abstractions were then used to perform the needed
property verifications.

Examples of FIFO Abstractions A FIFO consisting of N words each of width W bits
would yield a state space of size 2 N*W. The proof of correctness of a FIFO benefits
from abstraction. Some the (somewhat standard) abstractions of a queue that were used in
different contexts of the FIFO-C verification are listed below[10].

�9 To verify data-delivery in a data-independent system, we verify first the validity of
collapsing the data items to 2 tokens (one modeling the item to be delivered, the
second modeling all others), and establish this as a homomorphism. This model can
then be reduced to yield a model having a much smaller number of states.

147

�9 At the level of the overall system, when the functionality of a FIFO, say Q, is only
peripheral to the property which is to be verified, we replace the model Q with a
1-state model Q' which non-deterministically outputs from its single state all the
output tokens of Q. Let L(Q) denotes the language accepted by the automaton Q. As
L(Q) < L(Q'), any (regular) property we can verify using Q' therefore holds with
Q as well; however, Q' is too small to hold the information necessary to verify, for
example, data-delivery.

In the next section, we indicate how we can automatically extract some of the data path
abstractions based on the structure of an HDL description.

4 Dealing with data paths

4.1 HDLs and Extended Finite State Machines

Systems are described (in the context of this paper) either by using an HDL, or are
represented internally, e.g., using transition relations. An I-IDL program is expressed
compactly in a notation that uses (typed) variables, and operations (e.g., +, *) on
the variables. When such a description is converted into an "explicit" state machine
representation, for example by enumerating all of the possible values for the variables, the
size of the resulting representation (i.e., the state space) can increase significantly; indeed,
it may even become infinite (depending upon the variable types allowed by the HDL). This
is widely referred to as the "state explosion problem". Thus, while the reachable space
may itself be small, there may still be severe limitations in the analysis that is feasible.

A common reason for the "non-essential" growth of the state space is the presence of
a significant data path component in a circuit. The data path component of some circuits
can be significant. However, in many cases, the actual data values in the "data path" of a
hardware system are of no consequence to the property being analyzed. Thus, it is often
possible to abstract the large set of values 2 n in an n-bit data path to a small set (perhaps
even one) for the purposes of analysis. (Note that this is not directly feasible for arithmetic
circuits.)

More generally, while the actual state space may be large, many states may be equivalent
to each other (where the actual definition of equivalence is context dependent). In principle,
the complexity of the analysis should at least be bounded by the number N of reachable
equivalence classes. (The problem in general is PSPACE-hard for finite domains and
undecidable for infinite domains.) Often N tends to be much smaller than either the total
number of reachable states or the total number of equivalence classes.

There are several ways to combat the increase in the state space caused by the presence
of data paths. These include:

�9 Writing the HDL model so as to explicitly separate the data path computations and the
underlying control logic, and then dealing with the two components independently.

148

This option can exploit model checking techniques, for example. The drawback with
this approach is that the rewriting of the HDL model is typically manual.

Using user specified abstractions (homomorphisms) in the context of a lan-
guage/automata theoretic framework[10].

Using an extended finite state machine formalism (suited for HDLs) for analyzing
the reachable space, and exploiting data path equivalences to reduce the size of the
space to be explored.

We will briefly elaborate on the third option below.

4.2 Reducing State Transition Systems

A state transition system M is defined by a tuple < S, R, I, T, O, Out > consisting of
a set of states S, an equivalence relation R on S (that serves to induce a partition P on
S), a finite set of input actions I, and a set T of transition relations No C_ S x S for
each action a E I. This definition allows the system to be nondeterministic. In the case
of a deterministic system, the next state for a specific input is uniquely defined, and the
transition relation can be defined by a map T : S x I ~ S. The other components of M
optionally include an output domain 0 and output function Out that can be specified either
as a deterministic map Out : S x I ~ 0 or as a nondeterministicrelation Out a C_ S x 0
for each input a E I. Often, the relation Out can be treated in a manner similar to the
relation T (it may even be merged with T for certain computations).

The set of states in this definition may be potentially infinite, although in the case of
hardware systems the set is large but not infinite. The equivalence relation R on S is
intended to capture the set the equivalences relevant to a specific application context. For
example, if a set of system states {sl, ..., s,,} differ only in the value of data associated
with a data path component (e.g., values on a bus), and we do not care about the actual
values, then this set of states may be coalesced by R.

We are interested in the reduced or "minimized" system whose states are given by the
quotient S / R . Further, while S may be potentially infinite, we require S / R to be finite. If R
preserves the transition relation for M, the quotient algebra M / R is well defined. Given an
initial partition of S, we can iteratively converge to S / R by the algorithm discussed below.
The primary advantage in doing this lies in the fact that the representation complexity is
significantly reduced, since M need not be constructed in its entirety.

Pictorially, a transition system can be though of as a labeled graph. The nodes of this
graph correspond to the states S of the system. There is an arc from state sl to sj labelled
with input a E I if, the state si can transition to sj on input a.

Correlating implicit and explicit representations

State Space interpretations. The state space of an HDL program can be viewed as being
defined by a vector of variables taken from a domain D = D1 x D2 x ... x Dn. The actual

149

interpretation of the domains typically depends upon the HDL (and the program) being
considered. We give 2 examples.

In the case of HDL such as VHDL[11], the implicit state space is defined by the
location (program counter, or labelled statement), the values of variables that denote
internal registers, buses, etc., and the inputs of this process (equivalently, the outputs
of the processes that communicate with this process).

�9 In case of a language such as S/R[10], where the state space is explicit, the state
may be interpreted as < symbolic state, variable values >, where the variable
values can refer to both internal states as well as inputs (output selections of other
processes). In this case, we will denote the state space by SS • D for convenience.

The data type domains Di may have further algebraic structure that can at times be
exploited. For example, integers modulo 8 can be represented using the set of values 0..7.
Further, if 0 is an initial value, and only increments of 4 are allowed, then the reachable
values in this domain can be represented by {0,4}.

Computing the state transition relation When the state machine specification is not
explicit, the state transition relation can be derived from the program specification. In
general, a state transition si ~ sj is triggered by some predicate Pij on the internal state
being true. Such a predicate can be separated into (1) a triggering event on the input(s),
such as a clock tick (e.g., for synchronous clocked systems), or signal transitions (e.g., for
asynchronous systems) and (2) an associated predicate on the variable values.

In VHDL for instance, the conjunction of predicates along a path from one wa•
statement to another, comprises the predicate corresponding to a state transition. (Such
a correspondence is also useful in a tool for correlating error traces arising out of an
execution of the explicit state model with the programmatic representation that only has
implicit states.)

Iteratively computing M/R.

Given an equivalence relation R, it is easy to compute the reduced transition system M / R
whose states are the partitions induced by R. The initial partition of S is derived from the
HDL description. If B, C are blocks of states, then (in the reduced transition system) there
is a transition from B to C labelled by an input action a E I iff each state in block B has
an a-arc to some state in block C. If this condition is satisfied, then this arc labelled a from
B to C is said to be stable, otherwise it is said to be unstable. If an arc is unstable, then the
block B can be split into two blocks B' and B" such that B' contains all of the states that
have a-transitions leading to a state in C, while the states in B" have a-transitions that
do not lead to C. This procedure can be iterated until no further splitting of the blocks is
necessary i.e., until no new blocks are being formed and all arcs are stable.

150

The sets of states can be compactly represented by using BDDs for their characteristic
functions. The manipulations needed for the minimization task are: representation of the
intersection of two blocks; the inverse of a block B; set difference, and test for emptiness.

An algorithm for computing the reachable part of a minimized system was proposed
in [12]. The algorithm arrives at this reachable minimal graph in O (N M) operations,
where N is the number of nodes (state partitions), and M is the number of edges in the
graph. However, in the absence of any other information, the algorithm may not know
that it has found the final graph, and may continue working. In general, therefore, it is
necessary to verify that a given graph is the desired one. In certain special cases, it is
possible to efficiently answer this question. This method can be applied to extended finite
state machines with separable affine transformations, i.e., machines with variables that are
modified via separate affine transformations.

An affinetransformation f from D n to D n isoftheform.~/i = fi(a:) =)-~ a i j x j q-bi.
The transformation is separable if there is at most one variable on the RHS of each
equation. It is strongly separable if the i - t h variable maps to the i - t h variable i.e.,
Yi "- ~ a i z i q- bi, otherwise it is weakly separable. In the case where the coefficients
are integers, the termination problems can be solved in linear time. In the case of arbitrary
real coefficients, the termination problem of verifying the result graph can be reduced to
a Linear Programming problem with two variables per inequality, which admits a strong
polynomial solution. These results can be applied in the context of the hardware/system
verification tasks of interest here.

4.3 Some useful examples of R (abstractions)

We now list some useful examples of the equivalence relation R. The first example
captures the notion of the separation of control and data in an I-IDL description. The second
example is aimed at exploiting the existence of symmetry in a system.

4.3.1 Equivalences induced by data path abstraction

Consider the case where the variables comprising the state are conceptually partitioned
into a "symbolic state" S S of an underlying finite state machine, and the remaining
components of the state are variable values over a domain D. (The overall state space is
S S • D as discussed earlier.) The initial partition of the state space is induced by the
homomorphism h defined as follows: Vs E S S Vdi, dj E D h(< s, di >) = h(< s, dj >)
This is tantamount to initially merging all states that have the same "symbolic state" value
into one equivalence class, independent of the remaining variable values.

The iterative refinement performed by the stabilization procedure will refine the initial
partitions. At each step in the refinement, if a transition [si] ~ [sj] depends on a predicate
Pii on D, where P~j is not true on all the elements in D, this causes [si] to be split into
parts [si, Pij (D)] and [si,-~Pij (D)] which correspond to a partitioning of the domain D
by Pij. More generally, we require that ~ d E D(Pij(d) A Pik(d)). This notion can be

151

initial
sta~

-full [
d in 0..(2"*16-1) I

~ _ ~ [insed

full
d in 0..(2"'16-1)

~ inaerl

Figure 5: Refined transition structure for a FIFO of capacity 2

generalized to the case where the underlying types are user defined, in which case their
semantics can be captured by either the initial or final algebra defined on the underlying
Herbrand universe. The initial algebra captures the notion of congruence defined by a set
of equations on the terms in the Herbrand universe, while the final algebra captures the
notion of externally observable behavior.

As an example, in the case of a FIFO description, the refinement procedure does not
cause the data values to be expanded. However, the pointer values used for the head and
tail, and the status bit indicating whether the FIFO is full or empty are indeed expanded.
The equivalence classes resulting from a refinement of the a FIFO of size 2 are shown in
Figure 5. Note that the states < ful l . , h ~ 1; > are unreachable. This partitioning exploits
the structure on the domains of h and 1= indicated earlier, viz., they are integers modulo 8,
with initial values of 0, and updated only in increments of 4.

4.4 Equivalences induced by the presence of symmetry

On occasion, a system (or part thereof) may embody some form of symmetry. Examples
include registerfiles, memory and cache structures, regular iterative structures (e.g., systolic
arrays), buses, etc. The presence of symmetry in a system implies that some sets of states
or structural configurations are equivalent for the purpose of analyzing some of the system
properties. Such equivalences can potentially lead to a reduction in the complexity of the
associated analysis. 2

Note that a system is typically associated with both a structure and a behavior. Symmetry
can correspondingly be described at, these two levels. At the structural level, symmetry
may be described by stating that the circuit behavior is invariant under certain permutations
of the components. The state space of the transition system characterizing the behavior
of the circuit is related to the structure. Alternatively, symmetry may be described by
permutations on the state space, which leave the transition relation invariant.

2The notion of exploiting symmetry by explicit specification in an HDL is also independently being explored
by Dill et al. and Clarke et al. in the context of model checking. Unfortunately, at the time of writing this draft we
are unaware of enough details to make a detailed comparison.

152

SIZE = 8; /* initialize FIFO size */

/* initialize head (h), tail (t), and fullness status */

h=0; t=0; full=0;

/* main loop */

case (op) [

insert:

if (Ifull) {

FIFO[h] = d; /*read in data from bus */

h = (h+4) mod SIZE ; /* a datum takes 4 FIFO slots */

if (h==t) full=l; /* update status */
]

delete:

if ((hl=t) [(full)) {

t = t+4 mod SIZE;

full = 0; /* FIFO no longer full */
}

]
.

Figure 6: Skeletal FIFO description (cf. Figure 5).

A permutation tr is a 1-1 onto map S ~ S. (Note that a set of permutations S = {tri }
that is closed under composition forms a group.) Consider now the equivalence relation
R on S defined by < si, sj > 6 R fff g(si) = sj for some permutation tr 6 2?.
If the R is a congruence with respect to the transition relation T, i.e., the permutations
in 27 do not change the transition structure, then the quotient algebra M/R is well
defined. Formally, the requirement that R be a congruence with respect to T states that
(Vs, s' �9 S)(Vo- 6 Z:)((s, s') 6 R ig(~(s), a(s')) 6 R).

For example, let D represents the data domain for the values on a bus. An abstraction
at the level of an HDL specification stating that h : D ~ d, where d is a distinguished
representative of D, is a way of stating that the actual values on the bus are indistinguishable
for the behavior under consideration.

This abstraction at the HDL level is tantamount to stating that the wires in the bus
representing D can be arbitrarily permuted without affecting the behavior being examined.
While this may have been intended, a wiring interconnection error may have indeed rendered
this untenable. It is therefore necessary to verify that the relevant group of permutations
leaves the behavior of the circuit invariant. (Formally, a behavior under investigation can
be expressed in terms of an appropriate set of operations (functions) defined on a universal
algebra[9]. If an equivalence relation R induced by the generators of the permutations is
a congruence with respect to the generators of the algebra, then the quotient M/R is well
defined.) Unfortunately, the BDD representation of the equivalence classes induced by
symmetries as defined above can still be quite large, and the computational complexity of

153

this problem is still quite hard.

Thus, while such abstractions are easy to make at the level of an HDL specification,
they are not always computationaUy easy to verify at the level of the circuit. The way
we currently address this complexity is by combining inductive reasoning based on a
representation of the iterated structure of the circuit. However, this area needs further
research.

5 Conclusions

We have described a divide-and-conquer paradigm to scale up the size of systems that can be
verified. We are experimenting with the viability of this paradigm in the context of a design
methodology that is targeted at the design of custom, high-performance, high-thronghput
digital signal processing circuits and systems. While the focus on this class of circuits
does not restrict the applicability of the concepts, it highlights the challenge of dealing
with bottom-up design methodologies in the context of verification, and the necessity of
coping with the data path problem. Although we have had some initial success in our
experiments, a significant amount of work is needed before the techniques described here
can be considered mature. Further, while functionality is obviously of primary importance,
issues related to the timing of such circuits and systems increasingly become the bottleneck
in the design cycle. Ongoing work is directed at alleviating these bottlenecks.

Acknowledgements. I wish to acknowledge Sriram Narayanan for his ungrudging
enthusiasm in discussions relating to the video-codec models.

References

[1] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In IEEE
Transactions on Computers, volume C-35, pages 677--691, August 1986.

[2] R. E. Bryant. Formal Verification of Memory Circuits by switch-level simulation. In
IEEE Transactions on Computer-Aided Design, 10(1), pages 94-102, January 1991.

[3] R.E. Bryant, D. L. Beatty, and C.H.Seger. Formal Hardware Verification by symbolic
ternary evaluation, In Proc. ACMIIEEE 23rd Design Automation Conference, pages
397-402, June 1991.

[4] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proceedings of the 27th Design Automation
Conference, pages 46--51, June 1990,

[5] L Claesen, F. Proesmans, E. Verlind, and H. De Man. SFG-Tracing: a Methodology
for the Automatic Verification of MOS Transistor Level Implementations from
High Level Behavioral Specifications. In Proceedings of International Workshop on
Formal Methods in VLSI Designs, January 1991.

154

[6] O. Condert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Using
Boolean Functional Vectors. In 1MEC-IFIP International Workshop on Applied
Formal Methods for Correct VLSl Design, pages 111--128, November 1989.

[7] S. Devadas, K. Keutzer, A.S. Krishnakumar. Design verification and reachability
analysis using algebraic manipulations. In Proc. ICCD, pages 250-258, October 1991.

[8] M. Gordon. HOL: A Proof Generating System for Higher Order Logic. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specification, Synthesis and Verification.
Kluwer Academic Publishers, 1988.

[9] G. Gratzer. Universal Algebra. Second Edition, Springer Verlag, 1979.

[10] R. Kurshan. Analysis of Discrete Event Coordination Springer Verlag LNCS, 1990.

[11] VHDL. IEEE Standard 1076. VHDL Language Reference Manual. IEEE Press.

[12] D. Lee and M. Yannakakis. Online Minimization of Transition Systems. Personal
Communication. (Also, preprint, Proc. Syrup. Theory of Computing, 1992.)

[13] T. Kam and P. A. Subrahmanyam. Comparing Layouts with HDL Models: A Formal
Verification Technique. In Proceedings of International Conference on Computer
Design, pages 588--591, October 1992.

[14] S. Rao, M. Hatamian, and B. D. Ackland. A Design Environment for High
Performance VLSI Signal Processing Circuits. In Proc. ICCD, pp. 147-152, October
1990.

