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Abstrac t  

We consider in this paper the correctness of the translation of an assembly 
language instruction into a sequence of micro-instructions described at the RT-level. 
We develop a new method which combines the extensibility and flexibility of object 
oriented programming paradigm and the efficiency of a specialized computer algebra 
system. An object oriented programming is naturally well-adapted to express the 
behaviour associated to each category of components found in hardware description 
languages. We see each component of the processor as an object (in Common Lisp 
Object System: CLOS). 

The other important feature in order to get a general (and mainly automatic) 
proof is to be able to execute micro-instructions with symbolic operands. For t ha t  
purpose, we have implemented a symbolic evaiuator which can deal with the oper- 
ations used at the RT level. The final step of the proof is reduced to the equality of 
symbolic expressions. Since the memory addressing introduces expressions which 
need a calculus with operators on bit vectors, we built a specialized, but extensible, 
computer algebra system for proving the equality of such expressions. 

Given the semantics of each level, we succeeded to automatically prove the 
correctness of the translation into micro-instructions of each assembly language 
instruction for a given processor. 

1 I n t r o d u c t i o n  

It is now widely recognized that simulation could not guarantee a 0-default design, 
and that  formal verification methods must be integrated in the design process (see [7] 
for a survey of these methods). The concept of "Design for Verifiability" [19] is gaining 
acceptance in the CAD research community [9], and efficient automatic formal verification 
tools, such as tautology checkers are already used by designers [12]. In this framework, 
many works address the problem of formally verifying processor-like circuits. Such a 
verification is a large problem, so it is usual to consider several levels of description in 
order to reduce the problem to the proof of the coherence between each specification at 
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adjacent levels. The levels usually considered are (from the less to the most abstract 
level) : silicium level, switch level, logic level, register transfer level, micro-programming 
level, assembly level. 

The most significant works were the verification with the Boyer & Moore theorem 
prover of the FM8501 processor [15] and of the VIPER processor with the HOL prover 
[6]. Inspired by the pioneer work of Gordon [14], these works show the clearness of 
using several abstraction levels, and set the foundation of the formal algebra required. 
In [16] and [23], abstraction mechanisms were used to make a more generic verification 
of the processor, independently of the processor size. A functional approach was used 
for proving the assembly instructions of the MTI processor with respect to its micro- 
program set [10] and to verify a pipelined processor [3]. The notion of observable state 
and rewriting techniques were used to verify the microcode of a processor-like circuit 
[18]. 
The verification aspect we consider here is the correctness of the translation of an 

assembly language instruction into a sequence of micro-instructions described at the 
RT-level. The many interesting results already obtained for this level often used some 
methods dedicated to a particular circuit, or in the opposite, are based on general logical 
tools not specially crafted for the proof on such objects. In this paper, we developp a new 
method which combines the extensibility and flexibility of object oriented programming 
paradigm and the efficiency of a specialized computer algebra system . 

In hardware description languages, each component has a well- defined type that chara- 
terizes its physical and temporal behaviour. An object oriented programming is naturally 
well-adapted to express the behaviour associated to each category of objects. We see each 
component of the processor as objects (in Common Lisp Object System CLOS ) : reg- 
ister, wire, bus, pins, memory, stack . . . . .  All these objects carry some information : 
value, type, mode ... For instance a bus can have a type 8 bits, mode write or read , ... 
Each kind of objects has methods to interact, for instance, the communication protocol 
between the main memory and the data bus is based on active value attached to some 
control pins such as VMA (valid memory address). 

The other important  feature in order to get a general proof is to be able to execute 
micro-instructions with symbolic operands, because the use of real values for the data 
means only simulation but not formal proof. For that  purpose we have built a symbolic 
evaluator which can deal with the operations used at the RT level. Finally, the proof 
is reduced to the equality of symbolic expressions. The mode of addressing and the 
decoding of memory address introduce expressions which need a calculus with operators 
on bit vectors. So we built a specialized, but extensible, computer algebra system for 
proving the equality of such expressions. 

Given the semantics of eacil level, we have automatically performed the correctness 
proof of the translation into micro-instructions of each assembly language instruction for 
a given processor. 
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2 Proof methodology 

Our aim is to prove that the translation between assembly instruction level and micro- 
instruction level is coherent with the semantics of each level. 

At each level, we define the semantic of an instruction in the most natural manner: 
by describing the relation between the processor register and memory states before and 
after the execution of an instruction of the considered level. We use an object oriented 
representation for the processor and the memory states in order to have a more extensible 
approach. 

At each time, we compute the new symbolic value of the micro- processor state, using 
our symbolic evaluator. This differs from the functional point of view advocated in [1] 
where the functional expressions are kept as long as possible in a not- evaluated form. 
Since we completely execute symbolically the state modifications, we do not need to 
consider the intermediate level of micro-sequences as in [11]. 
We consider the following description levels: 

1. top-level (processor cyc]e): 
Specification of the instruction fetch and the interrupt sequence. The top-state in- 
cludes the main memory (which contains the code of the instruction to be fetched), 
the PC and the instruction register IR 

2. assembly-level (assembly language): 
Specification of the instruction execution on the assembly- state of visible variables 
to the assembly language programmer 

3. micro-level (micro-instruction level): 
Specification of the transfers involved by a micro-instruction. The micro-state 
includes the complete processor architecture; in particular, the memory access pins 
are considered 

The processor state at a given level consists of the visible registers and of the main 
memory. We shall describe it in more detail with an example later. Tile states are more 
and more detailed, when the level increases, so there is a natural injection of state-i into 
state-i+1 and a natural projection in the opposite. 

For each instruction INSTR at assembly level we are given its translation into a micro- 
instruction sequence. The main correctness problem is to prove that the following dia- 
gram is commutative: 

semantic-assembly(INSTR) 
assembly-state ~ assembly-state-after 

T state-injection 1 state-projection 

micro-state ---* micro-state-after 
semantic-micro-mstructwn(micro-programm) 
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More explicitly, we must prove that "assembly-state-after" is the same if we execute 
symbolically the direct arrow Semantic- assembly(INSTR) or if we use the composition 
of arrows : 

state-projection o Semantic-micro-instruction(micro- programm) o state-injection 

In order to be more specific, we shall explain our method with a simple processor model. 

3 A simple micro-processor architecture 
We take as example a simple processor, in order to introduce our principles of specifi- 

cation and proof. But the complexity of this processor could be increased with all the 
qualitative characteristics of an actual processor (see [8]). Its architecture includes: 

- a main memory MEMORY 

- an internal stack STACK used for subroutine call 

- an accumulator ACC 

- a program counter PC 

- a Condition Code CC, composed of the classical four flags : N, Z, C, O 

- the instruction register IR 

- an operand register ROP which stores the value of the second instruction word 

- a data register RD connected to the ALU input which contains the value of the operand 

- a memory buffer called TMEM which holds the value read/written in the memory 

The interface between the processor and the main memory uses the bi-directional DATA 
pins, the AD pins, the Valid Memory Address signal VMA and tile R / W  signal. 

B U S  
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This processor includes all the usual instruction'classes,  except interrupt instructions. 
Only two addressing modes are available: IM (for IMmediate)  and ME (for direct MEm- 
ory). The  instruction format  is one or two 8-bit words: the first word is the instruction 
code while the second contains the immediate  value or the memory address. 

Now we are able to introduce our object oriented setting. 

4 ob jec t  o r ien ted  mode l  of  mic ro-processor  

We associate to each category of processor component a class (in the object  program- 
ming way). We do not enter here into the syntax detail of the CLOS language we use 
[22], but  we indicate the kind of classes with their main slots. All of the following classes 
will be considered as son of the class "processor-component". 

4.1 The class description 
We give the main classes with their slots, generally used to represent processor compo- 

nents: 
Class register have slots : name , type , value 
Class wire have slots: name, value , connected-to 
Class memory have slots : memory-content , DATA , AD , 

control pins such: VMA , R / W  
Class bus have slots: name , type , connected-register 
Class stack have slots: t y p e ,  t o p ,  stack[l],  stack[2], stack[3] 
Class CC-register have slots: N, Z, C, O 
The slot type of a component means for instance if it is 8-bits or even a symbolic value 

if we do not need it in the proof. 
Some methods are associated with these classes, to take care of the semantic of the 

component.  For the memory, there is a method "memory-content" which takes an address 
argument  and gives the corresponding content. The stack has "push" and "pop" methods 
which return the new stack and "top" method which returns the top stack value. 

The global s tate of our simple processor is also represented at  each level by a class : 
Class processor-top-state have slots : MEMORY , PC , IR, 
Class processor-assembly-state have slots : MEMORY, PC, CC, ACC, STACK 
Class processor-micro-state have slots : MEMORY , PC, CC, ACC, STACK, ROP, 

BUS, TMEN, 
In all these classes, MEMORY is also an object of class memory with slots: memory-  

content, DATA, AD, VMA, R / W  
For any processor, a part  of the slots of class memory are u ~ d  to enable the mem- 

ory/processor  information exchanges. In our simple processor, tile communication pro- 
tocol between the CPU and the memory is governed by the pins VMA and R / W ,  and it 
is some specific sequence of values of this pins that  activates the memory in read or write 
mode. The object  oriented approach with the daemons, or active value, mechanism gives 
a nice way to model such protocol. In short, a slot is an active value if a change of value 
in the slot induces the execution of an action, here reading or writing in the memory. 
This point  will be detailed in 6.3.1. 

4.2 Operational Semantic of transfer description 
The description of the processor at each abstraction level will be made using a formal 

model, with a syntax close to processor books description. For example, we indicate tha t  
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the effect of an instruction ADD is to change the content of accumulator  register ACC 
into the value of "ACC +Sbits  RD" by the usual notat ion : 

ACC ~ ACC +8bi t s  RD 

where RD is the da ta  register and +8bi t s  denotes the add operation on 8-bit vectors. 
The general syntax is X --~ E X P  where X is a register or wire name and E X P  is a 

symbolic expression. A symbolic expression is a term in the formal sense. A term can 
be considered as a tree whose nodes are labelled with operation or function names and 
the leaves with variable or constant names. 

The  semantic meaning of X --* E X P  is to change the value slot of  X into the result 
of the s y m b o l i c  e~a lua t ion  of E X P .  So we have an easy translation of processor specifi- 
cation into CLOS actions driven by the class of the objects. In fact, this is exactly the 
operat ional  semantic approach [21] where for  each instruction we indicate the change in 
the s ta te  by a rule as 

s t a t e  I-e~.leymboaic E X P  : v 

s t a t e  l- X --* E X P  : s t a t e [ X  - -  v] 

where s t a t e [ X  , -  v] means subst i tut ion of value v in the slot X of the state. The state 
is an environment tha t  gives the links between names and values, and this rule written in 
the natural  semantic style [17] means that  we replace the value of X by the the symbolic 
value of E X P .  

In general, an instruction induces value changes in several registers or wires, so we need 
to describe the sequencing of the actions. Implicitly, transfers are made in parallel, the 
sequencing must  be explicitly expressed with ";" 

For example,  when we give the semantic of the micro-instruction of a first cycle of 
reading by: 

BUS - -  PC 
VMA ~ 1 
R/W 4- .1  ; 
AD --* BUS 
PC - -  inc(PC) 

tha t  means the parallel actions on BUS, VMA, R / W  and after the parallel actions on 
AD and PC (this sequencing corresponds to the two phases of the cycle. We will use in 
the transfer descriptions all the usual bit-vector operators,  denoted with the CASCADE 
syntax [2]: 

- concatenation : VI@ V2 , 

- t runcate to the component from m to n : Vim:n] 

- conversion from bit  vector to integer : $ . 

In the functional semantic description a.s deveiopped in [20, 11], the advantage is to 
factor as much as possible common actions. But if the factorization is a gain in some cases 
(processors with regular sequences of micro-instructions) it introduces a set of names and 
functional expressions which are not easy to automatical ly generate. Furthermore, the 
simplification process is separed from the symbolic evaluation of the functional model, 
and so the symbolic expressions are more difficult to simplify. In this object oriented 
method,  the evaluation is distr ibuted among the objects, and we do not have to introduce 
new function names for each kind of component. This is also an impor tant  point for the 
extensibil i ty of the description of a processor architecture. In a future work we expect to 
be able to automat ical ly  generate the model from an abstract  syntax description given 
by the designer (assembly level), and from a VItDL description (RT-level). 
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5 Symbolic evaluation 

The actions associated to the operational semantic of instructions are computed by 
symbolic evaluations [5]. Of course, the value of a symbolic expression is not the result 
of the standard Lisp evaluator, but it is the result of a specialized symbolic evaluator built 
on the model of evaluator used in computer algebra systems (say Maple, Mathematica). 
That  means essentially that : 

a variable which denotes a symbolic expression evaluates to this expression or to 
itself if it is unbound 

for composed expression (op ezpl  . . . . .  e zpN)  the method of evaluation is attached 
with the head operator op. For example there is a special method for the if or 
for the + operators. For each operator we can also declare general property as : 
commutativity, or associativity, or neutral element,or distributivity,or... If there is 
no special method for the operator op, we recursively evaluate the sub-expressions 
ezpl  . . . . .  ezplr and return finally the symbolic value (op ezp l  . . . . .  e-'~p"~), where 
overline means values. 

The symbolic evaluator takes care of the addressing modes in the operands of instructions 
at the assembly-level. AI] the addressing computation is done by a specialized operator 
Operand-Value which takes at least two arguments: an addressing mode and an operand. 
The symbolic evaluation methods attached with Operand-Value is the immediate trans- 
lation of the addressing rules of the assembly language. Let consider the simple example 
of a LOAD instruction with two modes, immediate or direct, and one operand. We do 
not care with the concrete syntax of the assembly langage, we use an abstract syntax 
representation : "mnemonic mode operand" where mode is optional. The semantic of 

LOAD mode operand 

is given in every case by 

ACC --- Operand-Value (mode,operand) 

It is the symbolic evaluator that will give the value of Operand- Value (mode,operand): 

- if mode = immediate : it evaluates to operand 

- if mode = direct : it evaluates to the memory content at the address associated 
with operand: (memory-content ($ operand)) 

The type of the bit vector (8 bi ts ,  16bits .... ) is found in the slot type of the operand. 
But as advocated by J Joyce [16], we can often do the whole proof without knowing such 
kind of information. In our approach, it is possible to put a symbolic value in this slot 
as long as we do not need a special value. 

Now we have the tools to give - a portion - of the semantic description at each level of 
our simple processor . 

6 Specification and proof of our simple processor 

For each level we give the semantic of the most typical instructions. It is written for 
a humane reader, the connection between the real specification is only a question of 
parsing. 
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6 . 1  T o p - l e v e l  

At this level, we describe the processor cycle. These instructions are not available to 
the assembly programmer but are important for the understanding of the architecture of 
the machine. 

We recall that  the top-state is defined with the slots : PC, IR, MEMORY. 
The semantic of "execute-inst" is given at assembly-level for each instruction: fetch-inst 

is defined by: 

fetch-inst: IR - -  memory-content($ (PC)) ; 
PC --~ inc(PC) 

we have denoted "inc" the unit increment operator on bit vectors. 
The fetch sequence is realized at level 3 by the following micro- instruction sequence: 

fetch-inst : (* read at the address PC; load of IR *) 
mi-ad-pc; mi-read; mi-load-ir 

6 . 2  A s s e m b l y - L e v e l  

We recall the slots state of the agsembly-level : MEMORY, PC, CC, ACC, STACK 
The addressing modes are IM (for immediate) , ME (for direct memory mode). 
The addressing-methods used to compute the operand value are : 

i m m e d i a t e  Operand-Value ( IM , operand) = operand 

d i r ec t  Operand-Value ( ME , operand) = (memory- content ($ operand)) 

6.2.1 Semantic  o f  ASSEMBLY-leve l  

We only give a three typical instructions 

ADD mode operand (* addition *) 
ACC - -  ACC +80perand-Value  ( mode ,  operand) 
CC - -  cc-fct (+8 , ACC , Operand-Value ( mode , operand)) 
PC - -  inc(PC) 

where the operator "cc-fct" gives tile new formal flags; their values depend on the 
operands and on the operation. 

STO mode operand (* store instruction *) 
Operand-Value ( mode ,  operand) - .  ACC 
PC --* inc(PC) 

JSR operand (* subroutine call *) 
STACK - -  push('0000 @ CC) 
PC - -  inc(PC); 
STACK - -  push(PC); 
PC - -  oper 
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6.2.2 

ADD IM : 

mi-ad-pc; mi-read; 

ADD ME : 

T r a n s l a t i o n  f r o m  a s s e m b l y  ins truc t ions  to  mic ro -  i n s t r u c t i o n s  : 

(* read at the address PC; loading of ROP *) 
(* ALU computation*) 
mi-load-rop ; mi-load-rd-im ; mi- add 

(* read at the address PC; loading of ROP *) 
(* read of memory operand; loading of RD*) 
(* ALU computation*) 

mi-ad-pc; mi-read; mi-load-rop ; mi-ad-rop; mi-read; mi-ioad-rd : mi-add 

STO : 

mi-ad-pc; mi-read; 

(* read at the address PC; loading of ROP *) 
(* write of ACC at the address ROP*) 
mi-load-rop ; mi-load-acc-tmem; mi-ad-rop-ec; mi-ec 

6 . 3  M i c r o - L e v e l  

The semantic description at the RT-level details the memory behaviour and the transfers 
on the data path. 

The global system is decomposed in two parts: the processor and the main memory. The 
memory communication pins are visible and we model the memory/processor exchanges. 
Since this processor has synchronous memory accesses, we consider that the memory is 
seen as a slave by the processor. 

The micro-state slots are : 

PC, CC, ACC, PILE, IR, BUS, ROP, RD, TMEM, MEMORY 

The MEMORY has slots 

MEMORY-CONTENT, VMA, R/W,  DATA,AD 

The memory hehaviour is defined by the modifications on its output pins DATA and on 
its internal state, that  are involved by the stimuli sent by the processor on its input pins 
VMA, R/W,  DATA. At this level, we do not consider the internal memory addressing 
circuit that  is supposed to be correct (this may be proven at the logic level). 

For this processor, the memory accesses take two processor cycles: one to set the address 
(VMA takes the value '1') the other to transfer the data f rom/to  the memory. For a write 
access, the DATA pins must stay stable during the two cycles. This temporal behaviour 
implies that a read or write access is enabled according to the previous value of the 
memory input pins. Since these values are memorized in the memory addressing circuit 
that  is not considered at this level, we introduce a new class of component, which keeps 
memory of their values at the preceding clock (the time scale is the processor clock). We 
call this class "processor- component-remember" and the new slot is called "past-value' ,  
the components VMA, R / W  and DATA are objects of this class. In our case the read 
acces is commanded by the following condition 

VMA = '0'  and past-value(VMA) = '1 '  and R / W  = '1 '  and p&st-value(R/W) = '1 '  

which triggers the action 

DATA ---, memory-content ($(past-value(AD))) 

and the write acces is commanded by 
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VMA = '0'  and past-value(VMA) = '1' and R / W  = '0' and past-value(R/W,1) = '0' 
and DATA = past-value(DATA) 

which triggers the action 

memory-content ($(past-value(AD))) --. DATA 

This is implemented in CLOS using an after method. 
We give below the semantic of micro-instructions that implement ADD ME instructions: 

mi-ad-pc : 

mi-read : 

BUS --. PC; 
VMA --. '1' 
R / W  - -  ' 1 '  

AD - .  BUS; 
PC ~ inc(PC) 

VMA - -  '0' 
R / W - - .  '1  ; 

TMEM - -  DATA 

(* first read cycle at the address PC *) 

(* second read cycle the read value is *) 
(* available on DATA; TMEM is loaded*) 

mi-load-ir : (* loading of IR *) 
BUS - -  TMEM; 
IR - -  BUS 

mi-ioad-rop : (* loading of ROP *) 
BUS -- TMEM; 
ROP -- BUS 

mi-ad-rop : (* first read cycle at the address ROP *) 
BUS - -  ROP; 
VMA --- '1' 
a / w  - -  ' 1 '  

AD --- BUS 

mi-load-rd : (* loading of RD for mode ME *) 
BUS - -  TMEM; 
RD ~ BUS 

mi-load-rd-im : (* loading of RD for mode IM *) 
BUS - -  ROP; 
RD - -  BUS 

mi-add : (* ALU computation for ADD *) 
ACC -. ACC +8 RD 
CC -- fct-cc(+8,ACC,RD) 
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6 . 4  C o r r e c t n e s s  p r o o f  

After  loading the semantics and the translat ion we are ready to prove the commutat iv i ty  
of the diagram for each instruct ion with symbolic operands 

I t  is impor tant  to notice that  we use symbolic arguments,  otherwise it will not be a 
proof  but  s imply a simulation on a part icular  value. Let us explain more this point : 
what  is the connection between proof and symbolic evaluation? This connection is based 
on the well known logical rule of universal quantifier introduction, which can be written 
in the natural  deduction style [13]: 

H ~- p(z  - -  a) 
H ~- Yxp (x )  

where p is a formula, " x" is a free variable of p, "H" is a set of hypothesis formulas 
and "a" will play the role of a symbolic value. 

In our case, for each slots sj of the processor state,  we have to prove equationnai formulas 
of the form 

//~- Vxl-..=k ( E i ( = l , ' '  .,xk) = E~(xl,- . . ,  =k)) 
where Ej  and Ej  are the expressions of sj resulting from the direct arrow or the compo- 

sition of arrows, and H represents the properties of all the operators we use: ari thmetical ,  
bit  vector... So it reduces to the proof of a simple equality 

~ (Ei(al , . . . ,ak) = E~(. l , . . . ,ak))  
where the ai are new - or symbolic - variables. 
Such a proof is based on the main property of the symbolic evaluator : the conservation 

of the semantic value between an expression and its symbolic value, taking account of the 
ari thmetical  hypothesis H on the ope ra to r s .  For instance, let us take a trivial example,  
the expression (+  5 a., 10 a l )  has symbolic value (+  15 al  a2) but these two expressions 
keep the same semantic value, given the a~sociativity, commutat ivi ty  and ari thmetical  
properties of + . 

When the proof gives a check (and it was tile case for us before we found all the right 
translations) the reason can he in any of the four arrows of the diagram. But generally, 
we suppose that  the semantic arrows are correct and we want to know if the translat ion 
into micro-instructions is correct. In that  case, it will be interesting to add some tools 
which help to discover the origin of the error. 

For instance, consider the proof of the diagram for the translation : ADD ME address 
(here adress is a symbolic variable) into its sequence of micro-instructions "mi-ad-pc  ; mi- 
read ; mi- load-Jr ; mi-ad-rop ; mi-read ; mi-load-rd ; mi-add".  Our system will execute 
the semantics associated with each micro-instruction and compare the s ta te  obtained with 
the s ta te  resulting from the assembly semantics of ADD ME address. This execution, will 
automat ical ly  enable the dialiog between memory and CPU, so DATA takes the value 
read in the memory. In our implementation in Common Lisp this takes 0 .8  s on a SUN 
IPC, and it is the same magnitude for the others instructions. 

In order to use the incrementality of our object  oriented approach, we have considered 
a more realistic processor that  have all the mains characteristics of a real processor [8]. 
We associate to this more complex architecture, a class named: realistic-processor which 
inherits of all what  has already been done in the simple-processor class, so we need only 
to indicate the new slots and the new methods and the supplementary classes. The 
adressing is more complicated and for the equality proofs, our symbolic evaluator uses 
often the following kind of commutat ion formula between $ and @: 

$ (VI@V2) - 2** (length V2) * $ V2 + $ V1. 
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7 Conclusion 

We have shown how an object oriented approach can be used in the semantic descrip- 
tion of micro-processor architectures at several levels : assembly programming, micro- 
sequence and micro-instruction. This Object model of micro-processor give also a (dy- 
namic) type checking . Furthermore, the use of active values to model memory control 
signals shown the adequacy of CLOS to automatically implement the memory / processor 
communication protocol. 

The proof of the translation of assembly instruction into micro- instructions is based 
on a specialized computer algebra system in order to deal with symbolic operands. The 
magnitude of proof time seems very satisfactory. In some complicated cases, our auto- 
matic proof could be enable to conclude, so we plan to add an interactive proof system 
to deal with these special remaining cases. 

There remains a lot of work to do : firstly our implementation is a prototype, we 
have to add a nice user interface with menus, mouse, dialog ,...,. More complicated 
will be to add an automatic generation of the semantic description taking input, from a 
well adapted specification tool (interactive tool for the specification of assembly-level in 
abstract syntax, hardware description language for the micro- level). 
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