
Combining Symbolic Evaluation and Object Oriented
Approach for Verifying Processor-like Architectures at

the RT-level

Jacques CHAZARAIN Hdl~ne COLLAVIZZA

{jmch,helen } @mimosa.unice.fr
Laboratoire d'Informatique I3S

Universit6 de Nice Sophia Antipolis
CNRS. URA 1376

250 Av. Albert Einstein
06560 Valbonne, FRANCE

Abstrac t

We consider in this paper the correctness of the translation of an assembly
language instruction into a sequence of micro-instructions described at the RT-level.
We develop a new method which combines the extensibility and flexibility of object
oriented programming paradigm and the efficiency of a specialized computer algebra
system. An object oriented programming is naturally well-adapted to express the
behaviour associated to each category of components found in hardware description
languages. We see each component of the processor as an object (in Common Lisp
Object System: CLOS).

The other important feature in order to get a general (and mainly automatic)
proof is to be able to execute micro-instructions with symbolic operands. For t ha t
purpose, we have implemented a symbolic evaiuator which can deal with the oper-
ations used at the RT level. The final step of the proof is reduced to the equality of
symbolic expressions. Since the memory addressing introduces expressions which
need a calculus with operators on bit vectors, we built a specialized, but extensible,
computer algebra system for proving the equality of such expressions.

Given the semantics of each level, we succeeded to automatically prove the
correctness of the translation into micro-instructions of each assembly language
instruction for a given processor.

1 I n t r o d u c t i o n

It is now widely recognized that simulation could not guarantee a 0-default design,
and that formal verification methods must be integrated in the design process (see [7]
for a survey of these methods). The concept of "Design for Verifiability" [19] is gaining
acceptance in the CAD research community [9], and efficient automatic formal verification
tools, such as tautology checkers are already used by designers [12]. In this framework,
many works address the problem of formally verifying processor-like circuits. Such a
verification is a large problem, so it is usual to consider several levels of description in
order to reduce the problem to the proof of the coherence between each specification at

110

adjacent levels. The levels usually considered are (from the less to the most abstract
level) : silicium level, switch level, logic level, register transfer level, micro-programming
level, assembly level.

The most significant works were the verification with the Boyer & Moore theorem
prover of the FM8501 processor [15] and of the VIPER processor with the HOL prover
[6]. Inspired by the pioneer work of Gordon [14], these works show the clearness of
using several abstraction levels, and set the foundation of the formal algebra required.
In [16] and [23], abstraction mechanisms were used to make a more generic verification
of the processor, independently of the processor size. A functional approach was used
for proving the assembly instructions of the MTI processor with respect to its micro-
program set [10] and to verify a pipelined processor [3]. The notion of observable state
and rewriting techniques were used to verify the microcode of a processor-like circuit
[18].
The verification aspect we consider here is the correctness of the translation of an

assembly language instruction into a sequence of micro-instructions described at the
RT-level. The many interesting results already obtained for this level often used some
methods dedicated to a particular circuit, or in the opposite, are based on general logical
tools not specially crafted for the proof on such objects. In this paper, we developp a new
method which combines the extensibility and flexibility of object oriented programming
paradigm and the efficiency of a specialized computer algebra system .

In hardware description languages, each component has a well- defined type that chara-
terizes its physical and temporal behaviour. An object oriented programming is naturally
well-adapted to express the behaviour associated to each category of objects. We see each
component of the processor as objects (in Common Lisp Object System CLOS) : reg-
ister, wire, bus, pins, memory, stack All these objects carry some information :
value, type, mode ... For instance a bus can have a type 8 bits, mode write or read , ...
Each kind of objects has methods to interact, for instance, the communication protocol
between the main memory and the data bus is based on active value attached to some
control pins such as VMA (valid memory address).

The other important feature in order to get a general proof is to be able to execute
micro-instructions with symbolic operands, because the use of real values for the data
means only simulation but not formal proof. For that purpose we have built a symbolic
evaluator which can deal with the operations used at the RT level. Finally, the proof
is reduced to the equality of symbolic expressions. The mode of addressing and the
decoding of memory address introduce expressions which need a calculus with operators
on bit vectors. So we built a specialized, but extensible, computer algebra system for
proving the equality of such expressions.

Given the semantics of eacil level, we have automatically performed the correctness
proof of the translation into micro-instructions of each assembly language instruction for
a given processor.

P l a n o f t h e p a p e r
2 Proof methodology
3 A simple micro-processor architecture
4 Object oriented model
5 Symbolic evaluation
6 Semantic specification and proof
7 Conclusion
References

111

2 Proof methodology

Our aim is to prove that the translation between assembly instruction level and micro-
instruction level is coherent with the semantics of each level.

At each level, we define the semantic of an instruction in the most natural manner:
by describing the relation between the processor register and memory states before and
after the execution of an instruction of the considered level. We use an object oriented
representation for the processor and the memory states in order to have a more extensible
approach.

At each time, we compute the new symbolic value of the micro- processor state, using
our symbolic evaluator. This differs from the functional point of view advocated in [1]
where the functional expressions are kept as long as possible in a not- evaluated form.
Since we completely execute symbolically the state modifications, we do not need to
consider the intermediate level of micro-sequences as in [11].
We consider the following description levels:

1. top-level (processor cyc]e):
Specification of the instruction fetch and the interrupt sequence. The top-state in-
cludes the main memory (which contains the code of the instruction to be fetched),
the PC and the instruction register IR

2. assembly-level (assembly language):
Specification of the instruction execution on the assembly- state of visible variables
to the assembly language programmer

3. micro-level (micro-instruction level):
Specification of the transfers involved by a micro-instruction. The micro-state
includes the complete processor architecture; in particular, the memory access pins
are considered

The processor state at a given level consists of the visible registers and of the main
memory. We shall describe it in more detail with an example later. Tile states are more
and more detailed, when the level increases, so there is a natural injection of state-i into
state-i+1 and a natural projection in the opposite.

For each instruction INSTR at assembly level we are given its translation into a micro-
instruction sequence. The main correctness problem is to prove that the following dia-
gram is commutative:

semantic-assembly(INSTR)
assembly-state ~ assembly-state-after

T state-injection 1 state-projection

micro-state ---* micro-state-after
semantic-micro-mstructwn(micro-programm)

112

More explicitly, we must prove that "assembly-state-after" is the same if we execute
symbolically the direct arrow Semantic- assembly(INSTR) or if we use the composition
of arrows :

state-projection o Semantic-micro-instruction(micro- programm) o state-injection

In order to be more specific, we shall explain our method with a simple processor model.

3 A simple micro-processor architecture
We take as example a simple processor, in order to introduce our principles of specifi-

cation and proof. But the complexity of this processor could be increased with all the
qualitative characteristics of an actual processor (see [8]). Its architecture includes:

- a main memory MEMORY

- an internal stack STACK used for subroutine call

- an accumulator ACC

- a program counter PC

- a Condition Code CC, composed of the classical four flags : N, Z, C, O

- the instruction register IR

- an operand register ROP which stores the value of the second instruction word

- a data register RD connected to the ALU input which contains the value of the operand

- a memory buffer called TMEM which holds the value read/written in the memory

The interface between the processor and the main memory uses the bi-directional DATA
pins, the AD pins, the Valid Memory Address signal VMA and tile R / W signal.

B U S

113

This processor includes all the usual instruction'classes, except interrupt instructions.
Only two addressing modes are available: IM (for IMmediate) and ME (for direct MEm-
ory). The instruction format is one or two 8-bit words: the first word is the instruction
code while the second contains the immediate value or the memory address.

Now we are able to introduce our object oriented setting.

4 ob jec t o r ien ted mode l of mic ro-processor

We associate to each category of processor component a class (in the object program-
ming way). We do not enter here into the syntax detail of the CLOS language we use
[22], but we indicate the kind of classes with their main slots. All of the following classes
will be considered as son of the class "processor-component".

4.1 The class description
We give the main classes with their slots, generally used to represent processor compo-

nents:
Class register have slots : name , type , value
Class wire have slots: name, value , connected-to
Class memory have slots : memory-content , DATA , AD ,

control pins such: VMA , R / W
Class bus have slots: name , type , connected-register
Class stack have slots: t y p e , t o p , stack[l], stack[2], stack[3]
Class CC-register have slots: N, Z, C, O
The slot type of a component means for instance if it is 8-bits or even a symbolic value

if we do not need it in the proof.
Some methods are associated with these classes, to take care of the semantic of the

component. For the memory, there is a method "memory-content" which takes an address
argument and gives the corresponding content. The stack has "push" and "pop" methods
which return the new stack and "top" method which returns the top stack value.

The global s tate of our simple processor is also represented at each level by a class :
Class processor-top-state have slots : MEMORY , PC , IR,
Class processor-assembly-state have slots : MEMORY, PC, CC, ACC, STACK
Class processor-micro-state have slots : MEMORY , PC, CC, ACC, STACK, ROP,

BUS, TMEN,
In all these classes, MEMORY is also an object of class memory with slots: memory-

content, DATA, AD, VMA, R / W
For any processor, a part of the slots of class memory are u ~ d to enable the mem-

ory/processor information exchanges. In our simple processor, tile communication pro-
tocol between the CPU and the memory is governed by the pins VMA and R / W , and it
is some specific sequence of values of this pins that activates the memory in read or write
mode. The object oriented approach with the daemons, or active value, mechanism gives
a nice way to model such protocol. In short, a slot is an active value if a change of value
in the slot induces the execution of an action, here reading or writing in the memory.
This point will be detailed in 6.3.1.

4.2 Operational Semantic of transfer description
The description of the processor at each abstraction level will be made using a formal

model, with a syntax close to processor books description. For example, we indicate tha t

114

the effect of an instruction ADD is to change the content of accumulator register ACC
into the value of "ACC +Sbits RD" by the usual notat ion :

ACC ~ ACC +8bi t s RD

where RD is the da ta register and +8bi t s denotes the add operation on 8-bit vectors.
The general syntax is X --~ E X P where X is a register or wire name and E X P is a

symbolic expression. A symbolic expression is a term in the formal sense. A term can
be considered as a tree whose nodes are labelled with operation or function names and
the leaves with variable or constant names.

The semantic meaning of X --* E X P is to change the value slot of X into the result
of the s y m b o l i c e~a lua t ion of E X P . So we have an easy translation of processor specifi-
cation into CLOS actions driven by the class of the objects. In fact, this is exactly the
operat ional semantic approach [21] where for each instruction we indicate the change in
the s ta te by a rule as

s t a t e I-e~.leymboaic E X P : v

s t a t e l- X --* E X P : s t a t e [X - - v]

where s t a t e [X , - v] means subst i tut ion of value v in the slot X of the state. The state
is an environment tha t gives the links between names and values, and this rule written in
the natural semantic style [17] means that we replace the value of X by the the symbolic
value of E X P .

In general, an instruction induces value changes in several registers or wires, so we need
to describe the sequencing of the actions. Implicitly, transfers are made in parallel, the
sequencing must be explicitly expressed with ";"

For example, when we give the semantic of the micro-instruction of a first cycle of
reading by:

BUS - - PC
VMA ~ 1
R/W 4- .1 ;
AD --* BUS
PC - - inc(PC)

tha t means the parallel actions on BUS, VMA, R / W and after the parallel actions on
AD and PC (this sequencing corresponds to the two phases of the cycle. We will use in
the transfer descriptions all the usual bit-vector operators, denoted with the CASCADE
syntax [2]:

- concatenation : VI@ V2 ,

- t runcate to the component from m to n : Vim:n]

- conversion from bit vector to integer : $.

In the functional semantic description a.s deveiopped in [20, 11], the advantage is to
factor as much as possible common actions. But if the factorization is a gain in some cases
(processors with regular sequences of micro-instructions) it introduces a set of names and
functional expressions which are not easy to automatical ly generate. Furthermore, the
simplification process is separed from the symbolic evaluation of the functional model,
and so the symbolic expressions are more difficult to simplify. In this object oriented
method, the evaluation is distr ibuted among the objects, and we do not have to introduce
new function names for each kind of component. This is also an impor tant point for the
extensibil i ty of the description of a processor architecture. In a future work we expect to
be able to automat ical ly generate the model from an abstract syntax description given
by the designer (assembly level), and from a VItDL description (RT-level).

115

5 Symbolic evaluation

The actions associated to the operational semantic of instructions are computed by
symbolic evaluations [5]. Of course, the value of a symbolic expression is not the result
of the standard Lisp evaluator, but it is the result of a specialized symbolic evaluator built
on the model of evaluator used in computer algebra systems (say Maple, Mathematica).
That means essentially that :

a variable which denotes a symbolic expression evaluates to this expression or to
itself if it is unbound

for composed expression (op ezpl e zpN) the method of evaluation is attached
with the head operator op. For example there is a special method for the if or
for the + operators. For each operator we can also declare general property as :
commutativity, or associativity, or neutral element,or distributivity,or... If there is
no special method for the operator op, we recursively evaluate the sub-expressions
ezpl ezplr and return finally the symbolic value (op ezp l e-'~p"~), where
overline means values.

The symbolic evaluator takes care of the addressing modes in the operands of instructions
at the assembly-level. AI] the addressing computation is done by a specialized operator
Operand-Value which takes at least two arguments: an addressing mode and an operand.
The symbolic evaluation methods attached with Operand-Value is the immediate trans-
lation of the addressing rules of the assembly language. Let consider the simple example
of a LOAD instruction with two modes, immediate or direct, and one operand. We do
not care with the concrete syntax of the assembly langage, we use an abstract syntax
representation : "mnemonic mode operand" where mode is optional. The semantic of

LOAD mode operand

is given in every case by

ACC --- Operand-Value (mode,operand)

It is the symbolic evaluator that will give the value of Operand- Value (mode,operand):

- if mode = immediate : it evaluates to operand

- if mode = direct : it evaluates to the memory content at the address associated
with operand: (memory-content ($ operand))

The type of the bit vector (8 bi ts , 16bits) is found in the slot type of the operand.
But as advocated by J Joyce [16], we can often do the whole proof without knowing such
kind of information. In our approach, it is possible to put a symbolic value in this slot
as long as we do not need a special value.

Now we have the tools to give - a portion - of the semantic description at each level of
our simple processor .

6 Specification and proof of our simple processor

For each level we give the semantic of the most typical instructions. It is written for
a humane reader, the connection between the real specification is only a question of
parsing.

116

6 . 1 T o p - l e v e l

At this level, we describe the processor cycle. These instructions are not available to
the assembly programmer but are important for the understanding of the architecture of
the machine.

We recall that the top-state is defined with the slots : PC, IR, MEMORY.
The semantic of "execute-inst" is given at assembly-level for each instruction: fetch-inst

is defined by:

fetch-inst: IR - - memory-content($ (PC)) ;
PC --~ inc(PC)

we have denoted "inc" the unit increment operator on bit vectors.
The fetch sequence is realized at level 3 by the following micro- instruction sequence:

fetch-inst : (* read at the address PC; load of IR *)
mi-ad-pc; mi-read; mi-load-ir

6 . 2 A s s e m b l y - L e v e l

We recall the slots state of the agsembly-level : MEMORY, PC, CC, ACC, STACK
The addressing modes are IM (for immediate) , ME (for direct memory mode).
The addressing-methods used to compute the operand value are :

i m m e d i a t e Operand-Value (IM , operand) = operand

d i r ec t Operand-Value (ME , operand) = (memory- content ($ operand))

6.2.1 Semantic o f ASSEMBLY-leve l

We only give a three typical instructions

ADD mode operand (* addition *)
ACC - - ACC +80perand-Value (mode , operand)
CC - - cc-fct (+8 , ACC , Operand-Value (mode , operand))
PC - - inc(PC)

where the operator "cc-fct" gives tile new formal flags; their values depend on the
operands and on the operation.

STO mode operand (* store instruction *)
Operand-Value (mode , operand) - . ACC
PC --* inc(PC)

JSR operand (* subroutine call *)
STACK - - push('0000 @ CC)
PC - - inc(PC);
STACK - - push(PC);
PC - - oper

117

6.2.2

ADD IM :

mi-ad-pc; mi-read;

ADD ME :

T r a n s l a t i o n f r o m a s s e m b l y ins truc t ions to mic ro - i n s t r u c t i o n s :

(* read at the address PC; loading of ROP *)
(* ALU computation*)
mi-load-rop ; mi-load-rd-im ; mi- add

(* read at the address PC; loading of ROP *)
(* read of memory operand; loading of RD*)
(* ALU computation*)

mi-ad-pc; mi-read; mi-load-rop ; mi-ad-rop; mi-read; mi-ioad-rd : mi-add

STO :

mi-ad-pc; mi-read;

(* read at the address PC; loading of ROP *)
(* write of ACC at the address ROP*)
mi-load-rop ; mi-load-acc-tmem; mi-ad-rop-ec; mi-ec

6 . 3 M i c r o - L e v e l

The semantic description at the RT-level details the memory behaviour and the transfers
on the data path.

The global system is decomposed in two parts: the processor and the main memory. The
memory communication pins are visible and we model the memory/processor exchanges.
Since this processor has synchronous memory accesses, we consider that the memory is
seen as a slave by the processor.

The micro-state slots are :

PC, CC, ACC, PILE, IR, BUS, ROP, RD, TMEM, MEMORY

The MEMORY has slots

MEMORY-CONTENT, VMA, R/W, DATA,AD

The memory hehaviour is defined by the modifications on its output pins DATA and on
its internal state, that are involved by the stimuli sent by the processor on its input pins
VMA, R/W, DATA. At this level, we do not consider the internal memory addressing
circuit that is supposed to be correct (this may be proven at the logic level).

For this processor, the memory accesses take two processor cycles: one to set the address
(VMA takes the value '1') the other to transfer the data f rom/to the memory. For a write
access, the DATA pins must stay stable during the two cycles. This temporal behaviour
implies that a read or write access is enabled according to the previous value of the
memory input pins. Since these values are memorized in the memory addressing circuit
that is not considered at this level, we introduce a new class of component, which keeps
memory of their values at the preceding clock (the time scale is the processor clock). We
call this class "processor- component-remember" and the new slot is called "past-value' ,
the components VMA, R / W and DATA are objects of this class. In our case the read
acces is commanded by the following condition

VMA = '0' and past-value(VMA) = '1 ' and R / W = '1 ' and p&st-value(R/W) = '1 '

which triggers the action

DATA ---, memory-content ($(past-value(AD)))

and the write acces is commanded by

118

VMA = '0' and past-value(VMA) = '1' and R / W = '0' and past-value(R/W,1) = '0'
and DATA = past-value(DATA)

which triggers the action

memory-content ($(past-value(AD))) --. DATA

This is implemented in CLOS using an after method.
We give below the semantic of micro-instructions that implement ADD ME instructions:

mi-ad-pc :

mi-read :

BUS --. PC;
VMA --. '1'
R / W - - ' 1 '

AD - . BUS;
PC ~ inc(PC)

VMA - - '0'
R / W - - . '1 ;

TMEM - - DATA

(* first read cycle at the address PC *)

(* second read cycle the read value is *)
(* available on DATA; TMEM is loaded*)

mi-load-ir : (* loading of IR *)
BUS - - TMEM;
IR - - BUS

mi-ioad-rop : (* loading of ROP *)
BUS -- TMEM;
ROP -- BUS

mi-ad-rop : (* first read cycle at the address ROP *)
BUS - - ROP;
VMA --- '1'
a / w - - ' 1 '

AD --- BUS

mi-load-rd : (* loading of RD for mode ME *)
BUS - - TMEM;
RD ~ BUS

mi-load-rd-im : (* loading of RD for mode IM *)
BUS - - ROP;
RD - - BUS

mi-add : (* ALU computation for ADD *)
ACC -. ACC +8 RD
CC -- fct-cc(+8,ACC,RD)

1 1 9

6 . 4 C o r r e c t n e s s p r o o f

After loading the semantics and the translat ion we are ready to prove the commutat iv i ty
of the diagram for each instruct ion with symbolic operands

I t is impor tant to notice that we use symbolic arguments, otherwise it will not be a
proof but s imply a simulation on a part icular value. Let us explain more this point :
what is the connection between proof and symbolic evaluation? This connection is based
on the well known logical rule of universal quantifier introduction, which can be written
in the natural deduction style [13]:

H ~- p(z - - a)
H ~- Yxp (x)

where p is a formula, " x" is a free variable of p, "H" is a set of hypothesis formulas
and "a" will play the role of a symbolic value.

In our case, for each slots sj of the processor state, we have to prove equationnai formulas
of the form

//~- Vxl-..=k (E i (= l , ' ' .,xk) = E~(xl,- . . , =k))
where Ej and Ej are the expressions of sj resulting from the direct arrow or the compo-

sition of arrows, and H represents the properties of all the operators we use: ari thmetical ,
bit vector... So it reduces to the proof of a simple equality

~ (Ei(al , . . . ,ak) = E~(. l , . . . ,ak))
where the ai are new - or symbolic - variables.
Such a proof is based on the main property of the symbolic evaluator : the conservation

of the semantic value between an expression and its symbolic value, taking account of the
ari thmetical hypothesis H on the ope ra to r s . For instance, let us take a trivial example,
the expression (+ 5 a., 10 a l) has symbolic value (+ 15 al a2) but these two expressions
keep the same semantic value, given the a~sociativity, commutat ivi ty and ari thmetical
properties of + .

When the proof gives a check (and it was tile case for us before we found all the right
translations) the reason can he in any of the four arrows of the diagram. But generally,
we suppose that the semantic arrows are correct and we want to know if the translat ion
into micro-instructions is correct. In that case, it will be interesting to add some tools
which help to discover the origin of the error.

For instance, consider the proof of the diagram for the translation : ADD ME address
(here adress is a symbolic variable) into its sequence of micro-instructions "mi-ad-pc ; mi-
read ; mi- load-Jr ; mi-ad-rop ; mi-read ; mi-load-rd ; mi-add". Our system will execute
the semantics associated with each micro-instruction and compare the s ta te obtained with
the s ta te resulting from the assembly semantics of ADD ME address. This execution, will
automat ical ly enable the dialiog between memory and CPU, so DATA takes the value
read in the memory. In our implementation in Common Lisp this takes 0 .8 s on a SUN
IPC, and it is the same magnitude for the others instructions.

In order to use the incrementality of our object oriented approach, we have considered
a more realistic processor that have all the mains characteristics of a real processor [8].
We associate to this more complex architecture, a class named: realistic-processor which
inherits of all what has already been done in the simple-processor class, so we need only
to indicate the new slots and the new methods and the supplementary classes. The
adressing is more complicated and for the equality proofs, our symbolic evaluator uses
often the following kind of commutat ion formula between $ and @:

$ (VI@V2) - 2** (length V2) * $ V2 + $ V1.

120

7 Conclusion

We have shown how an object oriented approach can be used in the semantic descrip-
tion of micro-processor architectures at several levels : assembly programming, micro-
sequence and micro-instruction. This Object model of micro-processor give also a (dy-
namic) type checking . Furthermore, the use of active values to model memory control
signals shown the adequacy of CLOS to automatically implement the memory / processor
communication protocol.

The proof of the translation of assembly instruction into micro- instructions is based
on a specialized computer algebra system in order to deal with symbolic operands. The
magnitude of proof time seems very satisfactory. In some complicated cases, our auto-
matic proof could be enable to conclude, so we plan to add an interactive proof system
to deal with these special remaining cases.

There remains a lot of work to do : firstly our implementation is a prototype, we
have to add a nice user interface with menus, mouse, dialog ,...,. More complicated
will be to add an automatic generation of the semantic description taking input, from a
well adapted specification tool (interactive tool for the specification of assembly-level in
abstract syntax, hardware description language for the micro- level).

References

[1] D. BORRIONE, P. CAMURATI, P. PRINETTO, J.L PAILLET: "A functional
approach to formal hardware verification: The MTI experience", Proc. IEEE Inter-
national Conference on Computer Design ICCD'88, New York, Oct. 88.

[2] D. BORRIONE, C. LE FAOU: "Overwview of the CASCADE Multi-level Hardware
Description Language and its Mixed-Mode Simulation Mechanism", Proc. IFIP WG
10.2 Int. Conf. CHDL 85, Tokyo, Japan, Aug 85

[3] M BICKFORD, M.SRIVAS: "Verification of a Pipelined Microprocessor using
CLIO", Proc Work. on "Hardware Specification, Verification and Synthesis: Math-
ematical Aspects", Ithaca, Jui 89, LNCS 408.

[4] P. CAMURATI, P. PRINETTO: "Formal verification of hardware correctness: an
introduction", Proc. 8th IFIP int. Conf CHDL 87, Armsterdam, April 1987 (also in
computer 88)

[5] W.J. CARTER, W.H.JOYNER, D. BRAND: "Symbolic Simulation for Correct Ma-
chine Design", ACM IEEE 16th Design Automation Conference, June 1979, pp
280-286.

[6] A. COHN: "A Proof of Correctness of the Viper Microprocessor", in proc. work-
shop "VLSI Specification, Specification and Synthesis", ed. G Birtwistle and P.A
Subrahmanyam, Kalgary, KWA 1987.

[7] P. CAMURATI, P. PRINETTO: "Formal verification of hardware correctness: an
introduction", Proc. 8th IFIP int. Conf CHDL 87, Armsterdam, April 1987 (also in
computer 88)

[8] J. CHAZARAIN, H. COLLAVIZZA : "An Object Oriented Approach for Specifying
and Proving Processor Like Architectures at the RT-Lever' Research Rapport RR-
92-69 CNRS URA 1376 Sophia Antipolis, 1992.

121

[9] L. CLAESEN, D. BORRIONE, H. EVEKING, G.J. MILNE, J.L. PAILLET, P.
PRINETTO: "CHARME: towards formal design and verification for provably cor-
rect VLSI hardware", in proc. of the advanced work. on Correct Hardware Design
Methodology, Turin,12-14 June 1991.

[10] H.COLLAVIZZA: "Functional Semantics of Microprocessors at the Microprogram
Level and Correspondence with the Machine Instruction LeveF, Proc. EDAC, March
1990.

[11] H.COLLAVIZZA: "Semantique Fonctionnelle des Microprocesseurs: L'environ-
nement de Sp~cication et de preuve "pSPEED" Thesis University of Aix Marseille
I 1991.

[12] D. VERKEST, L.CLAESEN: "Special Benchmark Session on Tautology Checking",
Proc. IFIP WG 10.2/10.5 Work. on "Applied Formal Methods for Correct VLSI De-
sign", Houthalen, Belgium, 13-16 Nov. 1989 (Ed. by L. CLAESEN, North Holland)

[13] G. GENTZEN: "Investigation into Logical Deduction" Thesis 1935, reprinted in
"The collected papers of Gerhard Gentzen" E. Szabo, North Holland, Amsterdam
1969

[14] M. GORDON: "LCF-LSM", TR 41, Computer Laboratory, University if Cambridge,
England, 1983

[15] W.A. HUNT: "FM8501: A Verified Microprocessor", Technical Report 47, Institute
for Computing Science, University of Texas at Austin, Feb 1986.

[16] J. JOYCE: "Generic Specification of Digital Hardware", Proc. Work. on Designing
Correct Circuits, 26-28 Sept 1990, Glasgow (Springer Verlag)

[17] G. KAHN: "Natural Semantics", Proc of Syrup on Theoretical Aspects of Computer
Science, Passau, Germany, LNCS 247,1987.

[18] M. LANGEVIN, E. CERNY: "Verification of processor- like circuits", in proc. of the
advanced work. on Correct Hardware Design Methodology, Turin,12-14 June 1991.

[19] G.J. MILNE: "Design for Verifiability", Proc. Work on "Hardware Specification,
Verification and Synthesis: Mathematical Aspects", Ithaca, Jul 89, LNCS 408.

[20] J.L.PAILLET: "Functional Semantics of Microprocessors at tile Machine Instruction
Level", Proc 9th IFIP WG 10.2 Conf CHDL,Washington, June 89.

[21] G. PLOTKIN : "A structural approach to operational semantics" Report DAIMI
FN-19, Computer Science DPt Aarhus Univ, Danemark, 1981.

[22] G. L. STEELE Jr.: "Common LISP The Language" Second Edition Digital Press ,
1990.

[23] WINDLEY: "The formal Verification of Generic Interpreters", Phd Thesis, Univer-
sity of California, Division of Computer Science, 1990.

