
A u t o m a t i c Vector iza t ion of C o m m u n i c a t i o n s
for Data-Paral le l Programs

C6cile Germain I and Franck Delaplace 2

1 LRI-CNRS Universit$ Paris-Sud
2 Universit~ d'Evry

Abs t rac t . Optimizing communication is a key issue in compiling data-
parallel languages for distributed memory architectures. We examine
here the cyclic distribution, and we derive symbolic expressions for com-
munication sets under the only assumption that the initial parallel loop
is defined by afline expressions of the indices. This technique relys on
unimodular changes of basis. Analysis of the properties of communicati-
ons leads to a tiling of the local memory addresses that provides maximal
message vectorization.

1 I n t r o d u c t i o n

Static analysis of data-parallel programs, for the generation of distributed code,
has been proposed by many authors, for instance [5] [6] [8] [10] [15]. Static analy-
sis aims to improve performance over run-time resolution [3] which includes a lot
of pure overhead in form of guards and tests. Many static compilation schemes
have been considered; they differ in important points such as interleaving com-
putation and communication as in [6], or having identical management of local
an non-locM data such as in [8]. However, they all use three basic sets: Com-
pute(s) is the part of the index set which is local to processor s; Send(s) (resp
Received(s)) is the part of a distributed array that has to be sent (resp received)
by processor s when owner computes rule is applied. The central problem of
static analysis is to define these sets at compile-time, and in an efficient form.

Two major costs have to be considered for the code generation scheme: the
computing cost, and the communication cost. The computing cost is all the over-
head required to compute local indices, and, when a communication occurs, to
compute the parameters of the communication, the destination processors and
the local addresses. As pointed out by [6], naive resolution leads to a symbolic
form involving integer divides for each forwarded data, which may be as inef-
ficient as run-time resolution. The communication cost depends on the volume
and number of communications. For a data-parallel program, the volume, i.e.
the number of data to send to a remote processor, cannot be modified, because
it is fixed by the placement function (e.g. ALIGN and DISTRIBUTE directives). At
the code generation level, optimization is only directed towards the number of
communications, by aggregating all data that are to be sent to the same pro-
cessor. Although this may seem a very specialized problem, the overwhelming
part of startup in message cost makes this optimization a major component of
performance, as shown in [15].

430

To be amenable to static analysis, the references must be affine functions of
the parallel loop indices,a reference being an access or alignement function, and
the loop bounds must be defined by affine inequalities. These assumptions are
the weakest possible. Under these assumptions, deriving efficient closed forms
of the previous sets for the most general block-cyclic distribution is an open
problem. [8] gives a general compiling scheme under the weakest assumptions,
but provides closed forms only when indices are independent: for instance, T~/, i],
but not T[2i +j , i - j] . [5] uses a finite state machine approach, allowing optimal
memory utilization, but restricts references to array sections and uses integer
divides. [10] solves the same problem with a virtualization method. Other special
cases have been solved, for unit strides in [15], for one-dimensional arrays in [6]
and [14].

In this paper, we derive closed forms providing an efficient code generation
scheme, under the weakest assumptions, when the parallel arrays are cyclically
distributed. Next part formally states the problem and discusses the relationship
with the problem of scanning integer polyhedra. Part three analyzes the condi-
tions for message vectorization and proposes an explicit closed form achieving
maximal vectorization; part four details the SPMD code and its optimizations,
and presents some examples.

2 General Compilation Scheme

2.1 P r o b l e m S t a t e m e n t

We consider nested parallel loops, with given alignement and the cyclic distri-
bution, such as described in High Performance Fortran (HPF); we restrict our
analysis to the static subset of HPF where arrays are aligned once, at compile-
time, and all index functions are affine; moreover, the index set must be described
by affine inequations. The generic loop nest is :

forall i in g
X(Bi + b) =](Y(A~i + al), Z(Z2i + a2),...)

end]orall

where B, A1 and A2 are integer matrices, and b, al and a2 are integer vectors.
Some notations must be defined, associated with the cyclic distribution: let

Pl,P2, . . . ,Pn be the extents of the PROCESSOR target of the distribution, p be the
vector with coordinates Pi, P the diagonal matr ix with coefficients Pl, and 7 ~ the
processor set, i.e. 7 ~ = I-L [0, P i - 1]. Template element j is laid on processor s such
that si -- Ji mod Pi for all i = 1 . . . n. In the following, the coordinates subscripts
are elided, and scalar operations are extended to vector ones by coordinates.
Hence, array element j defines a set of spatial coordinates s and a set of memory
coordinates t by euclidean division: j = Pt + s, with 0 < s < p. For any s in P ,
Z~ is the set of integer vectors congruent with s modulo p.

Distributed code for the previous loop can be generated at compile-time if
Compute(s), Send(s) and Receive(s) can be described for each processor s in a

431

convex and generic form. Convex form means tha t the set can be parametr ized by
a variable such tha t the parametr izat ion is one-to-one, and the paramete r set is
described by an affine inequality, i.e. is a convex polyhedron in Z n . From a convex
polyhedron, generating a loop nest is theoretically possible. The practical issues
will be discussed in the following part . As the matrices defining the references
(A1, A2 and B) will be used to generate such convex sets, we assume that these
matrices are constant. Generic means tha t the distributed program is in SPMD
style: code is identical on all processors, possibly parametr ized by the processor
address.

2.2 An Integer Equation

All our results comme from Lemma 1 which solves equation M x = a + P k with
x and k as unknowns, where M is an integer mat r ix and a an integer vector.
This lemma is a simple mathemat ica l exercise of unimodular change of basis,
but introduces a lot of notations, that will be used throughout this paper.

I f D i s a d i a g o n a l r x r m a t r i x , l e t [D , O] b e t h e n x n m a t r i x [D ~] .

Smith normal form theorem [13] states that , given an integer n • n matr ix Q with
rank r, there exists a unique r • r diagonal mat r ix D such that di divides di+l, all
di # O, and Q = H[D,O]K with H and K unimodular. Let 7r = det(P) = I-[Pi;
7rP-1M is an integer matrix, hence may be decomposed as H D K . From this,
the equation to solve may be rewritten:

HID, O]Kx = I r P - l a + rk . (1)

Let fl = 7 r H - 1 p - l a (h is integer because H is unimodular). We can now state
our lemma

L e m m a l . Equation M x = a + P k has solutions iff gcd(di,lr) divides fli. I f
x o , ko is a solution, the solutions are, for all ~ in Z n

x = Xo + K-IP')~ ,

k = ko + HD')~ .

Proof. Let y = K x , h = H - l k . From the definitions of y, h and/3, (1) becomes

[/9, 0]y = ~ + 7rh . (2)

If d l , . . . , dr are the diagonal coefficients of D, and d r + i , . . . , dn are defined to
be 0, (2) has solutions iff ~ is a multiple of 5~ = gcd(d~, ~r). In this case, the gcd
algorithm gives a part icular solution (Y0, h0). Let d~ = di/5~ and p~ = 7r/hi, and
D' and P ' the corresponding diagonal matrices; the n - r last components of Y0
are O, the n - r last diagonal coefficients of D ' are 0 and of P ' are 1. 0

We note ex-cond(M, P, ol) the condition for existence of solutions; when
necessary, subscripts and variables will indicate the dependence on the initial
equation of the vectors and matrices involved in Lemma 1.

432

2.3 Loca l Se t s

C o m p u t e Set Generating SPMD code for the compute par t of the loop needs
to define the local i teration set and the local memory locations that are accessed
during each iteration. With Owner Computes Rule, an index i is in Compute(s)
if Bi + b = Pt + s. Lemma 1 applied to equation Bi = Pt -4- (s - b) gives:

P r o p o s i t i o n 2. Lel E = {A E z n [C K -] P ' A < c - Cxo}.
lfex-cond (B, P, s-b), Compute(s) = {zo + K-1P 'A]A G C)
else Compute(s) = 0

Compute(s) is parametr ized by the A in E. As K - I is unimodular, and p t has
no null coefficient, the enumerating scheme is one-to-one. Finally,/2 is a convex
polyhedron.

For any index i ~ xo + K-1P 'A , the local address for array element Bi + b
is t =- ko + HD'A, providing the location to write.

The following very simple example is often quoted:
lor~U 5 = O:n) TS, ~) = 0.0
Suppose T is cyclically distributed onto a (4, 8) PROCESSOrt array. B being the

reference matrix (2 x 2 matrix because T has a 2-D index space), we have:

B = (1 1 0 0) a n d 7 r P - 1 B = H D K = (2110) (1:00) (1001)

From this, ez-cond(B, P, s-b) is 4 divides s2 - so. In this case, let 9 = (2sl - 2s2)/8
for short; the compiler has to find a solution of

(~ , = s~ + sh,
g+h2

As 1 - 8 . 0 = 1, the particular solution for m is s2, for hl is 0; y2 = 0 by our algorithm,
hence h2 = --g. The compiler can deal with all these symbolic manipulations.

Inequality 0 < i < n is rewritten:

(1 00) (;) <
if T.. is the local piece of array T, the code is

if ((s2- sl)%4 = = 0) then
g = IntDiv(sl - s2, 4)
do 1 = IntDiv(-s2 + 7, 8), IntDiv(n - s2, 8)

% (- g + 2 , t , l) = 0 . 0
endif

This example points out tha t the initial solutions (x0 and ko) are also sym-
bolic: going back to (2), after simplification, we have to find Y0 and h0 ~uch that
d~y~ = fl~ +p~.hi, with d~ and p~ relatively prime. As we assumed these coefficients
to be numericM constants, the gcd algorithm allows to find at compile-time ui
and vi such that d~ui = 1 + p~vi. Hence for run-time/~i, the symbolic form of
an initial solution is (fl~ui, ~vi) , with /~ = / 3 ~ i . This must be considered, be-
cause/?i are run-time quantities, coming from the processor number and possible
variables in the references.

433

S e n d a n d R e c e i v e Sets A sending set or a receiving set is related to source
and destination references, for instance A1 + a l and B + b in our generic example.
As sending and receiving sets are symmetrically defined, identical methods can
be used to compute both of them, and we present only the method for the
sending set. For clarity, subscripts are elided in A1 and al. Formally, we define
the sending set on processor s as

Send(s) = {(s', j) , s' E :P, j E Z n 13i E C3t' E Z n : S i + b = Pt ' + s'; j = Ai + a}

s t is the remote processor address (processor number) and t t is the remote mem-
ory address in processor s t. Let j = P t + s; t is the memory address in processor
s. In order to minimize the number of actual communications, this set should
be enumerated first along the s t coordinates, and next the t ones. This is the
so-called called message veetorization [15].

Hence we have to solve in s t, t t, t, i the system with parameter s:

A i + a = P t + s
B i + b = Ptt + s t

Valid solution must verify
C i < c
s ~ E P

We defer the solution to the next section, and we first discuss the relationship
of code generation with an extensively studied topic, scanning polyhedra [2] [9]
[11] [12]. Clearly, the code generation problem may be restated as a polyhedron
scanning problem. For instance, Compute(s) may be rewritten as the polyhedron
in Zn • Z":

{(t , i) [B i = P t + s; C i < e} .

In these sets, some variables completely determine other ones (e.g. i defines t in
Compute(s)). As the final code uses only some variables (t for Compute(s)), we
need to enumerate the projection of a convex polyhedron, which is not always
convex. Many libraries are available for this kind of loop generation (Omega Cal-
culator [12], LIC [11]). However, if these tools scan very efficently the polyhedra
created by a block distribution, they generate very poor code or are oveflowed
in the cyclic case. For instance, Compute(s) of the previous example is defined
by

{ (t l , t ~ , i) [i = 4t l + s l ; i = 8t2 + s2;0 < i < n} ,

and the best-effort loops generated by the Omega Calculator are:

do t l = IntDiv(-sl + 3, 4): IntDiv(-sl + n, 4)
if ((sl + 4* t l - s2) % 8 =---- 0) then

t2 -- IntDiv(sl + 4"tl - s2 + 7, 8)
endif

The test is executed at each loop iteration, while our solution has only one test.
The problem is worst for communication, because of the higher dimensionality
of the polyhedron. Hence the compiler has to provide some a priori tiling of the
processors and memory spaces.

434

3 Vec tor i za t ion

As vectorization is a major source for communication performance [15], analyzing
t h e conditions where vectorization may occur is the first task. Let the lhs side
of the parallel affectation be T[i], i.e. matr ix B of the previous part equals I d
and b = 0. The general problem comes down to this case when B is unimodular;
extending our framework to the general case case is straightforward, but leads
to clumsy formulas. In this case:

S e n d (s) = { (s ' , j) , s ' E "P , j E Z~13i E C , 3 t ' e Z n : i = P t I + s ' , j = A i + a} .

3.1 T i l i ng t h e I n d e x Se t

A set of array elements on a processor is candidate to be aggregated in a unique
message if all elements have the same destination processor. Such a set will be
called vectorizable in the following.

Two data il and i2 have vectorizable images if they are on the same processor,
that is i l = Pt~ + s I and i2 = Pt~ + s ~, and if their images are on the same
processor, that is A i l = Ai~ mod p. Next definition formalizes this idea:

D e f i n i t i o n 3 . A subset T of Z '~ is a r e m a n e n c e se t for A if

Vtl, t2 E T , A P (t l - t2) = 0 mod p .

foraU (i = O : 7) A(i) = A(4*i)

1

0

a) global diagram of communications

| | |

b) decomposition of communications
along free sets

Fig. 1. A remanent but not free communication

Hence data candidate to be aggregated must be defined f rom a remanent
set. This is not a sufficient condition, as exmplified in fig. 1: A and P being

435

1-dimensional, the remanence property is always true; however, only local ad-
dresses congruent modulo 4 can be aggregated inside the same message. This
comes from the fact that different data inside the same processor are required
by different processors for the same memory slice. Next definition formalizes this
idea:

Def in i t i on 4. A subset S of P is a free set for A if

Vsl ~ s2 e S , A (s l - s2) ~ O mod p .

Proposition 5 elucidates the relationship between remanence sets, free sets
and vectorization.

Proposition 5. I f 7" is a remanent set and S is a free set, the image by A of
7" • 8 is a vectorizable set on each processor.

Proof. Let j l and J2 be on processor s, and fulfill the conditions of the previous
proposition: Jl = A(Pt~ + s~) and j2 = m(Pt~ + s~), with t~ and t~ belonging to
a remanence set and s~ and s~ to a free set. From the fact that Jl and J2 are on
the same processor, A[P(t~ - t~) + s~ - s~] = 0 rood p. As t~ and t~ belong to
the same remanence set, A(s~ - s~) = 0 mod p; thus s~ = s~, because they are
in the same free set. []

From this proposition, tiling the array elements following maximal remanence
and free sets creates maximal vectorization. Proposition 6 gives closed form of
these sets. Let Smith normal form of the integer matrix 7 rp -1 Ap be H1D1K1,
P~ be defined as P~p, and//1 be the vector of the diagonal coefficients of P~.

P r o p o s i t i o n 6 . Let T (u) = {u + g ~ l P ~ v , v E Z~}. The set of T.(u), for 0 <
Kl u < ptl, is a partition of Z n is maximal remanent sets. Moreover, for all t in
$ (u) ,

A P t = A P u + PHtD~v �9

Proof. Let t be an integer vector; t belongs to the set T (u) such that K l u is the
remainder in the integer divison of K i t by p~. As K1 is unimodular, and KlU is
uniquely determined, u exists and is uniquely defined, proving the partition of
Z n by the 7"(u). To prove that each 7.(u) is maximal, let t l and t2 be in 7"(ul)
and T(u2); if t l and t2 form a remanent set, the following equality is true:

A P (u l - u2 + g ~ l P~(vl - v2)) = 0 m o d p .

From lemma 1, this implys

- u2 + K ? l P (vl - = K ? I PIA ,

that is ul = us + K?IP~I~. From unicity of euclidean division, Klux = Klu~,
and from unimodularity ut = us.

If t is in 7.(u), t - u = K~Ip~v . From lemma 1, this implys A P (t - u) =
PH1D~v. This proves the last part of the proposition, t]

436

A maximal free set is defined by

~ (~) = {s �9 P I P ' A <_ K s < P ' (A + 1)} .

However, enumerating all remanence sets and all free sets on each sending pro-
cessor would create useless iterations. In the example of section 3.3, there are
six free sets, but only four need to be enumerated on processor 0. Next section
precises our enumeration scheme.

3.2 S P M D C o d e

The basic idea of our scheme is to enumerate maximal remanence sets, then free
sets, to create vectorizable communications. Closed forms are possible because
enumeration of the free sets depends on an external index which denotes the
remanence set.

The sending set may be expressed as

S e n d (s) = {(s', P t + s), s' e "P, t e Z"I

3t' E Zn : P t ' + s' E C ; A (P t ' + s') + a = P t + s} .

Let g be in T(u); we have to solve in s ~ and $:

A (P (u + K ~ I P ~ v) + s') + a = P t + s .

By proposition 6, this equation becomes

A (P u + s') = P(t - H1D~v) + s - a . (3)

Consider (3) as an instance of A x + a =__ s rood p; solutions exist if ex-cond(A,
s-a). Note that ex-cond depends only on s and a. If this condition is satisfied,
let xo = x o (A , P , s - a) and ko = k o (A , P , s - a). The solutions of (3) are
s I = xo - P u + K - 1 p ~ A and t = ko + H I D ~ v + HD~A with A in Z n. A correct
SPMD code will be achieved ff all constraints on solutions can be expressed in
convex form for the parameters (u, A, v). From the definition of Send(s) , and of
T(u) , there are three constraints, which define three index sets:

(a) KlU is a remainder in division by p~. Let H = {u E Zn[0 g UlU </41}.
(b) s ~ E P . Let s = {A E z n l - Xo + P u < K - 1 P ~ A < - x 0 + P(1 + u)}.
(c) Pt ' + s' �9 C. Let Vx = {v �9 Z n I C P K ~ u < c - C(xo + K - 1 P ' ~) } .

All these sets are convex polyhedra. Finally, the SPMD code for the sending
part is:

if ex-cond
compute xo and ko
do u in U

do)~ in s
do v in Vx

send (ko + H D ' ~ + H1D~v, " P u + xo + K - 1 p ' ~)

The first parameter of the send it the local address of the data, and the second
is the destination processor.

437

3.3 E x a m p l e

The current HPF benchmark set is somehow limited. In fact, in all codes tha t we
had, only the block distribution is used. Hence, we have to consider an artificial
example.

forall (i= O:n, j= O:m) T(i, j) = T(2j, i § j)
o n a 4 x 8 PROCESSOR set.

The reference matrix being A, we have

From this, the new index sets are defined by

u = { (. 1 , u ~) f o < u l + 2 ~ _< 1;0 < ~ < o} ,

s = { (~ 1 , ~2)10 _< sA1 - 2~2 - 4~1 + ~1 < 3; 0 < 2A2 - s~2 + ~2 < 7} ,

]]3t = {("1, V2)]0 < 87/1 -- 8"2 4" 8)11 -- 2~2 4" ~1 ~_~ R; 0 <~ 8V2 4" 2~2 4" X2 < m} .

The SPMD code is then :

i f (s l % 2 = = 0)
xl = s l ; x 2 = s l / 2 ;kl----k2 = 0 ;
d o u l = 0 : l

do 12 = IntDiv(1 - x2, 2) : IntDiv(7 - x2, 2)
do 11 -- IntDiv(7 - xl 4- 4*ul -4- 2"12, 8) : IntDiv(3 - xl 4. 4*ul 4,2"12, S)

do v2 --- IntDiv(7 - x2 -2"12, 8) : IntDiv(m - x2 -2"12, 8)
do vl ---- IntDiv(7 - xl 4, 2"12 - 8"11 Jr 8"v2, 8) :

IntDiv(n - xl -4- 2"12 - 8"11 Jr 8'v2, 8)
send ((12 Jr 4"v2, 11 4" vl), (xl 4" S*ll - 2"12 - 4*ul, x2 4" 2"12))

The loop bounds were obtained by submit t ing separately the H , / := and rA sets
to the Linear Inequality Calculator, with constant propagat ion f rom each set to
the following; here u2 is found equal to 0.

3.4 A n a l y s i s

As shown by the form of the general SPMD code, the destination processor
does not depend on the innermost loop index v, and all parameters of the send
primitive are affine functions of the loop indices. For n = m, there are at most 4
messages, proving tha t good vectorization is possible, even in this complicated
c a s e .

Loop bounds are in convex form; only the vector te rm (c in Ci < c) depends
on an external loop index. Each of the three loops H,/2= and 13x is at most as
deeply nested as the initial loop; this is a key point: for instance, in the previous
(contrivied) example, generating the loop bounds was immediate, but submit t ing
the global system fails. The particular solutions are computed as in the case of
Compute(s).

Run-t ime integer divides appears only in computat ion of loop bounds; in
many cases (see the previous example), there is no actual integer divide, because
the divider is always a power of 2.

438

Another important property that the code is fully symbolic: all matrices are
derived from the initial matr ix A, the parallel loop bound matr ix C, and the
processor matrix P, allowing further optimizations of SPMD code based on loop
transformations.

4 O p t i m i z a t i o n s

The most general ease is, in fact, quite rare. Most practical programs will present
some pecularities that may simplify the compilation process and the output code.
Our output code regularly improves with the simplicity of the input code.

4.1 A r r a y Sec t ions

Parallel references using regular spacing are known as array sections. A gener-
alization is to allow permutations of the indices, such as T(i, j) = T(3*j, 3* 0.
In this case, and if the PROCESSOR extents ar all powers of 2, the loop bounds
present no integer divides. To prove this, note that in our framework, generalized
array sections create a A matrix with only one non-null coefficient on each row
(the stride), and a C matr ix with only one non-null coefficient on each row, this
coefficient being equal to 1. It follows from the form of A that K and K -1 = Id.
On the other hand, all the diagonal coefficients of P ' and P~ divide 7r, which is a
power of 2. From the form of the sets H, L:= and l:~, it follows that the divisons
will be only by powers of 2.

4.2 R e m a n e n t R e f e r e n c e s

If all data required by each processor s ~ are sent by the same processor (depend-
ing on s'), reference A will be called remanent. In this case, there is only one
maximal remanence set, Z n itself; thus loop u would have to disappear, as shown
below.

From the definition of remanence sets, A is remanent iff P - l A P is an integer
matrix, say B. This condition can be easily checked by the compiler. For instance,
A is remanent when it is diagonal, for all one-dimensional arrays, as matr ix P
reduces to a scalar, and for any PROCESSOR geometry where all Pi are equal.

Let Smith normal form of B be H2D2K2. From unicity of Smith normal form,
~rD2 = D1, thus ~r divides dl; as p~l = ~r/gcd(~r, dl), P~ = Id; finally condition
(a) results in u = 0, destroying the external loop. With some more manipulation,
one can define an index set W~such that the final loop becomes:

if ex-cond
do X in s

do w in Wx
send (ko + HD')t + Bw, Xo + K-1P')t)

439

4.3 F r e e R e f e r e n c e s

If there is only one free set, reference A will be called free. In this case, a pro-
cessor always sends its data to the same processor. As the solutions in x of
equation Ax = P k are x = K-1P~)~, a sufficient condition for A to be free is
that P - 1 K - 1 P ~ is an integer matrix, say Q. This condition can be easily checked
by the compiler. When A is remanent and free, only one loop remains. This true
for shifts, and when matr ix A is diagonal with coefficients relatively prime with
the Pi. One can choose x0 such that [P- lx0] = 0, because the only requirement
on x0 is Ax0 --- s - a rood p, and by the remanence property of A, the solutions
in x of this type of equation are defined modulo p. u = 0 because A is remanent,
QA = u because A is free and the choice of x0, ; as de tQ =i s 0 (from its definition),

= 0. Set)IV reduces to {w E Z n] C P w < c - Cx0}. As A defines a one-to-one
mapping of S onto S, ex-cond disappears. The final loop is:

I do w in W
send (ko + Bw, xo)

On an 8 • 8 PROCESSOR, the parallel assignment

T(i, j) = T(3*j, 3* 0
becomes

do wl = IntDiv(-xl + 7, 8), IntDiv(n - xl, 8)
do w2 = IntDiv(-x2 q- 7, 8), IntDiv(wl + xl - x2, 8)

send((kl + 3"w2, k2 + 3"wl), (xl, x2))

This exemplifies the fact that remanent and free communications can be perfectly
vectorized.

5 C o n c l u s i o n

Although many data-parallel languages do propose both block and cyclic dis-
tribution, most existing codes only use the block one. The motivation is that
blocking provides locality. However, the cyclic distribution may be a key for
sparse computations [1], which are a prominent component of numerical codes.
The last part of this paper shows that , at least for many frequent cases, the
cyclic distribution does not require a larger number of communications than the
block one, although it increases the volume of each communication.

In this paper, we focused on the basic sets associated with SPMD code for
communications. Another possible application is escaping from Owner Compute
Rule, when remote computations are possible. The array elements involved in
this local computation may be, once again, determined by our initial lemma.
A different communication model is compiled communications, as proposed in
[4] and [7]; in this model, the full communication scheme has to be known, to
allocate network resources at compile-time. With some adaptation, the scheme
presented here meets these requirements.

440

References

1. R. Asenjo and al. Sparse Block and Cyclick data distribution for matrix compu-
tation. In High Performance Computing, Technology and Applications, Elsevier,
95.

2. C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM Syrup.
on Principles and Practice of Parallel Programming, pages 39-50, 91.

3. D. Callahan and K. Kennedy. Compiling programs for distributed memory archi-
tectures. Jal. Supercomputing, (2):151-169, Oct. 88.

4. F. Cappello and al. Balanced distributed memory parallel computers. In 22nd Int.
Conf. on Parallel Processing, pages 1.72-I.76-, August 93.

5. S. Chatterjee and al. Generating local addresses and communication sets for data-
parallel programs. In Syrup on Principles and Practice of Programming Languages
93. ACM, 93.

6. C.Koelbel. Compile-time generation of regular communication patterns. In Super-
computing 91, pages 101-110, 91.

7. A. Feldmann, T.M. Stricker, and T.E. Warfel. Supporting sets of arbitrary con-
nections on iWarp through communication context switches. In ACM, editor, 5th
ACM Syrup. on Algorithms and Architectures, pages 203-212, 93.

8. F.Irigoin and al. A linear algebra framework for static ttPF code distribution. In
4th Int. Work. on Compilers for Parallel Computers, pages 117-132, 93.

9. M. Le Fur. Scanning parameterized polyhedron using Fourier-Motzkin elimination.
Technical report, IRISA, Sept. 94. PI 858.

10. S.K.S. Gupta and al. On compiling array expressions for efficient execution on
distributed-memory machines. In 1993 Int. Conf. on Parallel Processing, pages
11-301-11-305, 93.

11. D.E. Maydan, S.P. Amarasinghe, and M.S. Lam. Data dependence and data-flow
analysis of arrays.]n 5th Work. on Languages and Compilers]or Parallel Comput-
ing, pages 283-292, 92.

12. W. Pugh. The omega test : a fast and practical integer programming algorithm for
dependence analysis. Comm. ACM, (8):102-114, Aug. 92.

13. A. Schrijver. Theory of Linear and lnteger Programming. Wiley, 86.
14. J.M. Stichnoth, D. O'Hallaron and T.R. Gross. Generating Communications for

Array Statements ; Design, Implementation and Evaluation. Jal. Parallele and
Distributed computing, (21) 150-159, Apr. 94.

15. C-W. Tseng. An optimizing Fortran D compiler for MIMD Distributed- memory
machines. PhD thesis, Rice University, 93.

