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Abs t rac t .  Optimizing communication is a key issue in compiling data- 
parallel languages for distributed memory architectures. We examine 
here the cyclic distribution, and we derive symbolic expressions for com- 
munication sets under the only assumption that the initial parallel loop 
is defined by afline expressions of the indices. This technique relys on 
unimodular changes of basis. Analysis of the properties of communicati- 
ons leads to a tiling of the local memory addresses that provides maximal 
message vectorization. 

1 I n t r o d u c t i o n  

Static analysis of data-parallel programs, for the generation of distributed code, 
has been proposed by many authors, for instance [5] [6] [8] [10] [15]. Static analy- 
sis aims to improve performance over run-time resolution [3] which includes a lot 
of pure overhead in form of guards and tests. Many static compilation schemes 
have been considered; they differ in important  points such as interleaving com- 
putation and communication as in [6], or having identical management of local 
an non-locM data such as in [8]. However, they all use three basic sets: Com- 
pute(s) is the part of the index set which is local to processor s; Send(s) (resp 
Received(s)) is the part  of a distributed array that  has to be sent (resp received) 
by processor s when owner computes rule is applied. The central problem of 
static analysis is to define these sets at compile-time, and in an efficient form. 

Two major costs have to be considered for the code generation scheme: the 
computing cost, and the communication cost. The computing cost is all the over- 
head required to compute local indices, and, when a communication occurs, to 
compute the parameters of the communication, the destination processors and 
the local addresses. As pointed out by [6], naive resolution leads to a symbolic 
form involving integer divides for each forwarded data, which may be as inef- 
ficient as run-time resolution. The communication cost depends on the volume 
and number of communications. For a data-parallel program, the volume, i.e. 
the number of data to send to a remote processor, cannot be modified, because 
it is fixed by the placement function (e.g. ALIGN and DISTRIBUTE directives). At 
the code generation level, optimization is only directed towards the number of 
communications, by aggregating all data that  are to be sent to the same pro- 
cessor. Although this may seem a very specialized problem, the overwhelming 
part of startup in message cost makes this optimization a major component of 
performance, as shown in [15]. 
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To be amenable to static analysis, the references must be affine functions of 
the parallel loop indices,a reference being an access or alignement function, and 
the loop bounds must be defined by affine inequalities. These assumptions are 
the weakest possible. Under these assumptions, deriving efficient closed forms 
of the previous sets for the most general block-cyclic distribution is an open 
problem. [8] gives a general compiling scheme under the weakest assumptions, 
but  provides closed forms only when indices are independent: for instance, T~/, i], 
but  not T[2i +j ,  i - j ] .  [5] uses a finite state machine approach, allowing optimal 
memory utilization, but restricts references to array sections and uses integer 
divides. [10] solves the same problem with a virtualization method. Other special 
cases have been solved, for unit strides in [15], for one-dimensional arrays in [6] 
and [14]. 

In this paper, we derive closed forms providing an efficient code generation 
scheme, under the weakest assumptions, when the parallel arrays are cyclically 
distributed. Next part formally states the problem and discusses the relationship 
with the problem of scanning integer polyhedra. Part  three analyzes the condi- 
tions for message vectorization and proposes an explicit closed form achieving 
maximal vectorization; part four details the SPMD code and its optimizations, 
and presents some examples. 

2 General Compilation Scheme 

2.1 P r o b l e m  S t a t e m e n t  

We consider nested parallel loops, with given alignement and the cyclic distri- 
bution, such as described in High Performance Fortran (HPF);  we restrict our 
analysis to the static subset of HPF where arrays are aligned once, at compile- 
time, and all index functions are affine; moreover, the index set must be described 
by affine inequations. The generic loop nest is : 

forall i in g 
X(Bi + b) = ](Y(A~i + al), Z(Z2i + a2),... ) 

end ]orall 

where B, A1 and A2 are integer matrices, and b, al and a2 are integer vectors. 
Some notations must be defined, associated with the cyclic distribution: let 

Pl,P2, . . .  ,Pn be the extents of the PROCESSOR target of the distribution, p be the 
vector with coordinates Pi, P the diagonal matr ix  with coefficients Pl, and 7 ~ the 
processor set, i.e. 7 ~ = I-L [0, P i -  1]. Template element j is laid on processor s such 
that  si -- Ji mod Pi for all i = 1 . . .  n. In the following, the coordinates subscripts 
are elided, and scalar operations are extended to vector ones by coordinates. 
Hence, array element j defines a set of spatial coordinates s and a set of memory 
coordinates t by euclidean division: j = Pt  + s, with 0 < s < p. For any s in P ,  
Z~ is the set of integer vectors congruent with s modulo p. 

Distributed code for the previous loop can be generated at compile-time if 
Compute(s), Send(s) and Receive(s) can be described for each processor s in a 
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convex and generic form. Convex form means tha t  the set can be parametr ized by 
a variable such tha t  the parametr izat ion is one-to-one, and the paramete r  set is 
described by an affine inequality, i.e. is a convex polyhedron in Z n . From a convex 
polyhedron, generating a loop nest is theoretically possible. The practical issues 
will be discussed in the following part .  As the matrices defining the references 
(A1, A2 and B) will be used to generate such convex sets, we assume that  these 
matrices are constant.  Generic means tha t  the distributed program is in SPMD 
style: code is identical on all processors, possibly parametr ized by the processor 
address. 

2.2 An Integer Equation 

All our results comme from Lemma 1 which solves equation M x  = a + P k  with 
x and k as unknowns, where M is an integer mat r ix  and a an integer vector. 
This lemma is a simple mathemat ica l  exercise of unimodular change of basis, 
but  introduces a lot of notations, that  will be used throughout this paper.  

I f D i s a d i a g o n a l r x r m a t r i x ,  l e t [ D , O ] b e t h e n x n m a t r i x  [ D ~ ] .  

Smith normal  form theorem [13] states that ,  given an integer n • n matr ix  Q with 
rank r, there exists a unique r • r diagonal mat r ix  D such that  di divides di+l, all 
di # O, and Q = H[D,O]K with H and K unimodular.  Let 7r = det(P) = I-[Pi; 
7rP-1M is an integer matrix,  hence may be decomposed as H D K .  From this, 
the equation to solve may be rewritten: 

HID, O]Kx = I r P - l a  + rk  . (1) 

Let fl = 7 r H - 1 p - l a  (h is integer because H is unimodular).  We can now state 
our lemma 

L e m m a l .  Equation M x  = a + P k  has solutions iff gcd(di,lr) divides fli. I f  
x o ,  ko is a solution, the solutions are, for all ~ in Z n 

x = Xo + K-IP')~ , 

k = ko + HD')~ . 

Proof. Let y = K x ,  h = H - l k .  From the definitions of y, h and/3,  (1) becomes 

[/9, 0]y = ~ + 7rh . (2) 

If  d l , . . . ,  dr are the diagonal coefficients of D, and d r + i , . . . ,  dn are defined to 
be 0, (2) has solutions iff ~ is a multiple of 5~ = gcd(d~, ~r). In this case, the gcd 
algorithm gives a part icular  solution (Y0, h0). Let d~ = di/5~ and p~ = 7r/hi, and 
D'  and P '  the corresponding diagonal matrices; the n - r last components of Y0 
are O, the n - r last diagonal coefficients of D '  are 0 and of P '  are 1. 0 

We note ex-cond(M, P, ol) the condition for existence of solutions; when 
necessary, subscripts and variables will indicate the dependence on the initial 
equation of the vectors and matrices involved in Lemma 1. 



432 

2.3 Loca l  Se t s  

C o m p u t e  Set  Generating SPMD code for the compute par t  of the loop needs 
to define the local i teration set and the local memory  locations that  are accessed 
during each iteration. With Owner Computes  Rule, an index i is in Compute(s) 
if Bi + b = Pt  + s. Lemma 1 applied to equation Bi = Pt  -4- (s - b) gives: 

P r o p o s i t i o n  2. Lel E = {A E z n [ C K - ] P ' A  < c -  Cxo}. 
lfex-cond (B, P, s-b), Compute(s) = {zo + K-1P 'A]A G C) 
else Compute(s) = 0 

Compute(s) is parametr ized by the A in E. As K - I  is unimodular,  and p t  has 
no null coefficient, the enumerating scheme is one-to-one. Finally,/2 is a convex 
polyhedron. 

For any index i ~ xo + K-1P 'A ,  the local address for array element Bi + b 
is t =- ko + HD'A,  providing the location to write. 

The following very simple example is often quoted: 
lor~U 5 = O:n) TS, ~) = 0.0 
Suppose T is cyclically distributed onto a (4, 8) PROCESSOrt array. B being the 

reference matrix (2 x 2 matrix because T has a 2-D index space), we have: 

B =  ( 1 1 0 0 ) a n d  7 r P - 1 B = H D K =  (2110) (1:00)  (1001) 

From this, ez-cond(B, P, s-b) is 4 divides s2 - so. In this case, let 9 = (2sl - 2s2)/8 
for short; the compiler has to find a solution of 

(~ , = s~ + sh,  
g+h2 

As 1 - 8 . 0  = 1, the particular solution for m is s2, for hl is 0; y2 = 0 by our algorithm, 
hence  h2 = --g. The compiler can deal with all these symbolic manipulations. 

Inequality 0 < i < n is rewritten: 

(1 00) (;) < 
if T.. is the local piece of array T, the code is 

if ((s2- sl)%4 = =  0) then 
g = IntDiv(sl - s2, 4) 
do 1 = IntDiv(-s2 + 7, 8), IntDiv(n - s2, 8) 

% ( - g + 2 , t , l )  = 0 . 0  
endif 

This example points out tha t  the initial solutions (x0 and ko) are also sym- 
bolic: going back to (2), after simplification, we have to find Y0 and h0 ~uch that  
d~y~ = fl~ +p~.hi, with d~ and p~ relatively prime. As we assumed these coefficients 
to be numericM constants, the gcd algorithm allows to find at compile-time ui 
and vi such that  d~ui = 1 + p~vi. Hence for run-time/~i,  the symbolic form of 
an initial solution is (fl~ui, ~vi ) ,  with /~ = / 3 ~ i .  This must  be considered, be- 
cause/?i are run-time quantities, coming from the processor number  and possible 
variables in the references. 
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S e n d  a n d  R e c e i v e  Sets  A sending set or a receiving set is related to source 
and destination references, for instance A1 + a l  and B + b  in our generic example. 
As sending and receiving sets are symmetrically defined, identical methods can 
be used to compute both of them, and we present only the method for the 
sending set. For clarity, subscripts are elided in A1 and al.  Formally, we define 
the sending set on processor s as 

Send(s)  = {(s', j ) ,  s' E :P, j E Z n 13i E C3t' E Z n : S i  + b = Pt '  + s'; j = Ai  + a} 

s t is the remote processor address (processor number) and t t is the remote mem- 
ory address in processor s t. Let j = P t  + s; t is the memory address in processor 
s. In order to minimize the number of actual communications, this set should 
be enumerated first along the s t coordinates, and next the t ones. This is the 
so-called called message veetorization [15]. 

Hence we have to solve in s t, t t, t, i the system with parameter s: 

A i + a =  P t + s  
B i  + b = Ptt  + s t 

Valid solution must verify 
C i < c  
s ~ E P  

We defer the solution to the next section, and we first discuss the relationship 
of code generation with an extensively studied topic, scanning polyhedra [2] [9] 
[11] [12]. Clearly, the code generation problem may be restated as a polyhedron 
scanning problem. For instance, Compute(s) may be rewritten as the polyhedron 
in Zn • Z": 

{( t ,  i ) [B i  = P t  + s; C i  < e} . 

In these sets, some variables completely determine other ones (e.g. i defines t in 
Compute(s)). As  the final code uses only some variables (t for Compute(s)), we 
need to enumerate the projection of a convex polyhedron, which is not always 
convex. Many libraries are available for this kind of loop generation (Omega Cal- 
culator [12], LIC [11]). However, if these tools scan very efficently the polyhedra 
created by a block distribution, they generate very poor code or are oveflowed 
in the cyclic case. For instance, Compute(s) of the previous example is defined 
by 

{ ( t l , t ~ , i ) [ i  = 4t l  + s l ; i  = 8t2 + s2;0 < i < n}  , 

and the best-effort loops generated by the Omega Calculator are: 

do t l  = IntDiv(-sl + 3, 4): IntDiv(-sl + n, 4) 
if ((sl + 4* t l -  s2) % 8 =---- 0) then 

t2 -- IntDiv(sl + 4"tl  - s2 + 7, 8) 
endif 

The test is executed at each loop iteration, while our solution has only one test. 
The problem is worst for communication, because of the higher dimensionality 
of the polyhedron. Hence the compiler has to provide some a priori tiling of the 
processors and memory spaces. 
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3 Vec tor i za t ion  

As vectorization is a major  source for communication performance [15], analyzing 
t h e  conditions where vectorization may occur is the first task. Let the lhs side 
of the parallel affectation be T[i], i.e. matr ix  B of the previous part  equals I d  
and b = 0. The general problem comes down to this case when B is unimodular;  
extending our framework to the general case case is straightforward, but  leads 
to clumsy formulas. In this case: 

S e n d ( s )  = { ( s ' , j ) , s '  E "P , j  E Z~13i E C , 3 t '  e Z n : i = P t  I + s ' , j  = A i  + a} . 

3.1 T i l i ng  t h e  I n d e x  Se t  

A set of array elements on a processor is candidate to be aggregated in a unique 
message if all elements have the same destination processor. Such a set will be 
called vectorizable  in the following. 

Two data  il  and i2 have vectorizable images if they are on the same processor, 
that  is i l  = Pt~ + s I and i2 = Pt~  + s ~, and if their images are on the same 
processor, that  is A i l =  Ai~  mod p. Next definition formalizes this idea: 

D e f i n i t i o n 3 .  A subset T of Z '~ is a r e m a n e n c e  se t  for A if 

Vtl, t2 E T ,  A P ( t l  - t2) = 0 mod p . 

foraU (i = O : 7) A(i) = A(4*i) 

1 

0 

a) global diagram of communications 

| | | 

b) decomposition of communications 
along free sets 

Fig. 1. A remanent but not free communication 

Hence data  candidate to be aggregated must be defined f rom a remanent  
set. This is not a sufficient condition, as exmplified in fig. 1: A and P being 
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1-dimensional, the remanence property is always true; however, only local ad- 
dresses congruent modulo 4 can be aggregated inside the same message. This 
comes from the fact that  different data inside the same processor are required 
by different processors for the same memory slice. Next definition formalizes this 
idea: 

Def in i t i on  4. A subset S of P is a free set for A if 

Vsl ~ s2 e S , A ( s l  - s2) ~ O mod p . 

Proposition 5 elucidates the relationship between remanence sets, free sets 
and vectorization. 

Proposition 5. I f  7" is a remanent set and S is a free set, the image by A of 
7" • 8 is a vectorizable set on each processor. 

Proof. Let j l  and J2 be on processor s, and fulfill the conditions of the previous 
proposition: Jl = A(Pt~ + s~) and j2 = m(Pt~ + s~), with t~ and t~ belonging to 
a remanence set and s~ and s~ to a free set. From the fact that  Jl and J2 are on 
the same processor, A[P(t~ - t~) + s~ - s~] = 0 rood p. As t~ and t~ belong to 
the same remanence set, A(s~ - s~) = 0 mod p; thus s~ = s~, because they are 
in the same free set. [] 

From this proposition, tiling the array elements following maximal remanence 
and free sets creates maximal vectorization. Proposition 6 gives closed form of 
these sets. Let Smith normal form of the integer matrix 7 rp -1 Ap  be H1D1K1, 
P~ be defined as P~p,  and//1 be the vector of the diagonal coefficients of P~. 

P r o p o s i t i o n 6 .  Let T (u )  = {u + g ~ l P ~ v , v  E Z~}. The set of T.(u), for 0 < 
Kl  u < ptl, is a partition of Z n is maximal remanent sets. Moreover, for all t in 
$ ( u ) ,  

A P t  = A P u  + PHtD~v  �9 

Proof. Let t be an integer vector; t belongs to the set T ( u )  such that  K l u  is the 
remainder in the integer divison of K i t  by p~. As K1 is unimodular, and KlU is 
uniquely determined, u exists and is uniquely defined, proving the partition of 
Z n by the 7"(u). To prove that  each 7.(u) is maximal, let t l  and t2 be in 7"(ul) 
and T(u2); if t l  and t2 form a remanent set, the following equality is true: 

A P ( u l  - u2 + g ~ l  P~(vl - v2)) = 0 m o d p  . 

From lemma 1, this implys 

- u2 + K ? l  P (vl - = K ? I  PIA , 

that  is ul = us + K?IP~I~. From unicity of euclidean division, Klux = Klu~, 
and from unimodularity ut = us. 

If t is in 7.(u), t - u = K~Ip~v .  From lemma 1, this implys A P ( t  - u) = 
PH1D~v. This proves the last part of the proposition, t] 
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A maximal free set is defined by 

~ ( ~ )  = {s �9 P I P ' A  <_ K s  < P ' (A  + 1)} . 

However, enumerating all remanence sets and all free sets on each sending pro- 
cessor would create useless iterations. In the example of section 3.3, there are 
six free sets, but  only four need to be enumerated on processor 0. Next section 
precises our enumeration scheme. 

3.2 S P M D  C o d e  

The basic idea of our scheme is to enumerate maximal remanence sets, then free 
sets, to create vectorizable communications. Closed forms are possible because 
enumeration of the free sets depends on an external index which denotes the 
remanence set. 

The sending set may be expressed as 

S e n d ( s )  = {(s', P t  + s), s' e "P, t e Z"I 

3t' E Zn : P t '  + s' E C ; A ( P t '  + s')  + a = P t  + s} . 

Let g be in T(u);  we have to solve in s ~ and $: 

A ( P ( u  + K ~ I P ~ v )  + s')  + a = P t  + s . 

By proposition 6, this equation becomes 

A ( P u  + s') = P( t  - H1D~v)  + s - a . (3) 

Consider (3) as an instance of A x  + a =__ s rood p; solutions exist if ex-cond(A, 
s-a). Note that  ex-cond depends only on s and a. If this condition is satisfied, 
let xo = x o ( A , P , s  - a) and ko = k o ( A , P , s  - a). The solutions of (3) are 
s I = xo - P u  + K - 1 p ~ A  and t = ko + H I D ~ v  + HD~A with A in Z n. A correct 
SPMD code will be achieved ff all constraints on solutions can be expressed in 
convex form for the parameters (u, A, v). From the definition of Send(s) ,  and of 
T(u) ,  there are three constraints, which define three index sets: 

(a)  KlU is a remainder in division by p~. Let H = {u E Zn[0 g UlU </41}. 
(b)  s ~ E P .  Let s = {A E z n l -  Xo + P u  < K - 1 P ~ A  < - x 0  + P(1 + u)}. 
(c) Pt '  + s' �9 C. Let Vx = {v �9 Z n I C P K ~ u  < c -  C(xo  + K - 1 P ' ~ ) } .  

All these sets are convex polyhedra. Finally, the SPMD code for the sending 
part  is: 

if ex-cond 
compute xo and ko 
do u in U 

do )~ in s 
do v in Vx 

send (ko + H D ' ~  + H1D~v, " P u  + xo + K - 1 p ' ~ )  

The first parameter of the send it the local address of the data, and the second 
is the destination processor. 
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3.3 E x a m p l e  

The current HPF benchmark set is somehow limited. In fact, in all codes tha t  we 
had, only the block distribution is used. Hence, we have to consider an artificial 
example. 

forall (i= O:n, j= O:m) T(i, j) = T(2j, i § j) 
o n  a 4 x 8 PROCESSOR set. 

The reference matrix being A, we have 

From this, the new index sets are defined by 

u = { ( . 1 , u ~ ) f o  < u l  + 2 ~  _< 1;0 < ~ < o}  , 

s  = { ( ~ 1 ,  ~2)10 _< sA1 - 2~2 - 4~1 + ~1 < 3; 0 < 2A2 - s~2  + ~2 < 7}  , 

]]3t = {("1,  V2)]0 < 87/1 -- 8"2 4" 8)11 --  2~2 4" ~1 ~_~ R; 0 <~ 8V2 4" 2~2 4" X2 < m}  . 

The SPMD code is then : 

i f ( s l % 2 = = 0 )  
xl = s l ; x 2  = s l / 2  ;kl----k2 = 0 ;  
d o u l = 0 : l  

do 12 = IntDiv(1 - x2, 2) : IntDiv(7 - x2, 2) 
do 11 -- IntDiv(7 - xl 4- 4*ul -4- 2"12, 8) : IntDiv(3 - xl 4. 4*ul 4,2"12, S) 

do v2 --- IntDiv(7 - x2 -2"12, 8) : IntDiv(m - x2 -2"12, 8) 
do vl  ---- IntDiv(7 - xl 4, 2"12 - 8"11 Jr 8"v2, 8) : 

IntDiv(n - xl -4- 2"12 - 8"11 Jr 8'v2, 8) 
send ( (12 Jr 4"v2, 11 4" vl),  (xl 4" S*ll - 2"12 - 4*ul, x2 4" 2"12)) 

The loop bounds were obtained by submit t ing separately the H , / :=  and rA sets 
to the Linear Inequality Calculator, with constant propagat ion f rom each set to 
the following; here u2 is found equal to 0. 

3.4 A n a l y s i s  

As shown by the form of the general SPMD code, the destination processor 
does not depend on the innermost loop index v, and all parameters  of the send 
primitive are affine functions of the loop indices. For n = m, there are at most 4 
messages, proving tha t  good vectorization is possible, even in this complicated 
c a s e .  

Loop bounds are in convex form; only the vector te rm (c in Ci < c) depends 
on an external loop index. Each of the three loops H,/2= and 13x is at most  as 
deeply nested as the initial loop; this is a key point: for instance, in the previous 
(contrivied) example, generating the loop bounds was immediate,  but submit t ing 
the global system fails. The particular solutions are computed as in the case of 
Compute(s). 

Run-t ime integer divides appears  only in computat ion of loop bounds; in 
many  cases (see the previous example),  there is no actual integer divide, because 
the divider is always a power of 2. 
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Another important  property that  the code is fully symbolic: all matrices are 
derived from the initial matr ix A, the parallel loop bound matr ix C, and the 
processor matrix P, allowing further optimizations of SPMD code based on loop 
transformations. 

4 O p t i m i z a t i o n s  

The most general ease is, in fact, quite rare. Most practical programs will present 
some pecularities that  may simplify the compilation process and the output  code. 
Our output code regularly improves with the simplicity of the input code. 

4.1 A r r a y  Sec t ions  

Parallel references using regular spacing are known as array sections. A gener- 
alization is to allow permutations of the indices, such as T(i, j) = T(3*j, 3* 0. 
In this case, and if the PROCESSOR extents ar all powers of 2, the loop bounds 
present no integer divides. To prove this, note that  in our framework, generalized 
array sections create a A matrix with only one non-null coefficient on each row 
(the stride), and a C matr ix with only one non-null coefficient on each row, this 
coefficient being equal to 1. It follows from the form of A that  K and K -1 = Id. 
On the other hand, all the diagonal coefficients of P '  and P~ divide 7r, which is a 
power of 2. From the form of the sets H, L:= and l:~, it follows that  the divisons 
will be only by powers of 2. 

4.2 R e m a n e n t  R e f e r e n c e s  

If all data required by each processor s ~ are sent by the same processor (depend- 
ing on s'), reference A will be called remanent. In this case, there is only one 
maximal remanence set, Z n itself; thus loop u would have to disappear, as shown 
below. 

From the definition of remanence sets, A is remanent iff P - l A P  is an integer 
matrix,  say B. This condition can be easily checked by the compiler. For instance, 
A is remanent when it is diagonal, for all one-dimensional arrays, as matr ix P 
reduces to a scalar, and for any PROCESSOR geometry where all Pi are equal. 

Let Smith normal form of B be H2D2K2. From unicity of Smith normal form, 
~rD2 = D1, thus ~r divides dl; as p~l = ~r/gcd(~r, dl), P~ = Id; finally condition 
(a) results in u = 0, destroying the external loop. With some more manipulation, 
one can define an index set W~such that  the final loop becomes: 

if ex-cond 
do X in s 

do w in Wx 
send (ko + HD')t + Bw, Xo + K-1P')t) 
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4.3 F r e e  R e f e r e n c e s  

If there is only one free set, reference A will be called free. In this case, a pro- 
cessor always sends its data  to the same processor. As the solutions in x of 
equation Ax = P k  are x = K-1P~)~, a sufficient condition for A to be free is 
that  P - 1 K - 1 P ~  is an integer matrix, say Q. This condition can be easily checked 
by the compiler. When A is remanent and free, only one loop remains. This true 
for shifts, and when matr ix A is diagonal with coefficients relatively prime with 
the Pi. One can choose x0 such that  [P- lx0]  = 0, because the only requirement 
on x0 is Ax0 --- s - a rood p, and by the remanence property of A, the solutions 
in x of this type of equation are defined modulo p. u = 0 because A is remanent,  
QA = u because A is free and the choice of x0, ; as de tQ =i s 0 (from its definition), 

= 0. Set )IV reduces to {w E Z n ] C P w  < c -  Cx0}. As A defines a one-to-one 
mapping of S onto S, ex-cond disappears. The final loop is: 

I do w in W 
send (ko + Bw,  xo ) 

On an 8 • 8 PROCESSOR, the  parallel  assignment 

T(i, j )  = T(3*j, 3* 0 
becomes 

do wl = IntDiv(-xl + 7, 8), IntDiv(n - xl, 8) 
do w2 = IntDiv(-x2 q- 7, 8), IntDiv(wl + xl - x2, 8) 

send( (kl + 3"w2, k2 + 3"wl), (xl, x2)) 

This exemplifies the fact that  remanent and free communications can be perfectly 
vectorized. 

5 C o n c l u s i o n  

Although many data-parallel languages do propose both block and cyclic dis- 
tribution, most existing codes only use the block one. The motivation is that  
blocking provides locality. However, the cyclic distribution may be a key for 
sparse computations [1], which are a prominent component of numerical codes. 
The last part  of this paper shows that ,  at least for many frequent cases, the 
cyclic distribution does not require a larger number of communications than the 
block one, although it increases the volume of each communication. 

In this paper, we focused on the basic sets associated with SPMD code for 
communications. Another possible application is escaping from Owner Compute 
Rule, when remote computations are possible. The array elements involved in 
this local computation may be, once again, determined by our initial lemma. 
A different communication model is compiled communications, as proposed in 
[4] and [7]; in this model, the full communication scheme has to be known, to 
allocate network resources at compile-time. With some adaptation, the scheme 
presented here meets these requirements. 
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