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Abs t rac t .  This paper describes a mapping toolbox, whose aim is to 
optimize the execution time of parallel programs described as task graphs 
on distributed memory parallel systems. The toolbox includes several 
classical mapping algorithms. It was assessed by computing the mapping 
of randomly generated task graphs and by mapping and executing on a 
parallel system synthetic programs representing some classical numerical 
algorithms. A large number of experiments were used to validate the cost 
functions used in the toolbox and to compare the algorithms. 
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1 I n t r o d u c t i o n  

Efficient use of distributed-memory parallel systems requires the use of specific 
tools, whose mapping is one of the most important  one. The goal of the mapping 
tools is to minimize the execution time of parallel programs on distributed- 
memory machines by controlling the use of computation and communication 
resources. This article describes a toolbox aiming at providing an assignment of 
the tasks of a parallel program to the available processors to obtain the shortest 
possible execution time for the entire program. Therefore, mapping algorithms 
aim at maximizing the (useful) occupation of processors without increasing too 
much communication costs. 

The tasks execution times and inter-tasks communication costs of some reg- 
ular programs can be entirely determined at compile time. In this case, it is 
possible to perform static task allocation in advance. This is known as the map- 
ping operation whose complexity is exponential in the general case. Thus, it is 
difficult to obtain an optimal mapping and numerous heuristic solutions have 
been proposed, representing different tradeoffs between computation cost and 
quality of mapping [9]. 

This paper presents a mapping toolbox, implementing several "classical" map- 
ping algorithms. This toolbox was used to assess different cost functions by 
computing the relation between the value of these functions, optimized by the 

* This work was partially sponsored by the EU's Copernicus programme under 
contract number CIPA-C193-0251 
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mapping algorithms, and the actual execution times of parallel programs. The 
implemented mapping algorithms were also evaluated, by comparing the ex- 
ecution times of a set of representative parallel programs, mapped using the 
algorithms of the toolbox. 

This work is part of the APACHE research project whose aim is the design 
and development of a general programming environment to balance automat- 
ically the load of parallel applications, resulting in reduced development time 
and increased portability of parallel applications [10]. 

2 T h e  m a p p i n g  p r o b l e m  

2.1 Models  of  machines  and programs 

A distributed-memory parallel computer is composed of a set of nodes connected 
via an interconnection network. Each node includes some computation facilities 
and a local memory. A communication between two processors is much more 
time consuming than a local memory access. The MIMD model intends to map 
different executable codes, called tasks, onto processors. Designing a program 
such that only one task will be allocated on one processor of the target machine 
would lead to an architecture-dependent and non-scalable code. On the contrary, 
a too large number of tasks is difficult to manage efficiently. The granularity (size 
of tasks) is one important parameter for the efficiency of a parallel program. 

Most parallel programs can be described using a graph formalism. In most 
representations, each vertex represents a task and each edge a communication 
link. We consider that a task can be allocated to a single processor. Any pro- 
cessor can make some communications and computations. We add to this basic 
model the computation costs of the tasks (execution time) and the amount of 
information communicated on the links. Often, the user cannot determine the 
exact values of the program parameters but can only approximate them. The 
model used in this paper is based, as a large number of related works [9], on tasks 
graphs without precedence. It is closely related to the programming model used 
by the transputer based parallel system that was used for experiments, where 
undirected task graphs are often explicitly described in a separate configuration 
file. 

In the following, we will denote: T, the set of tasks and n their number, P, 
the set of processors and m their number, ex(t),  the computation time of task 
t, comm(t ,  t~), the total communication time between t and t ~. 

2.2 Descr ipt ion  of  the Problem 

The parallelization process requires first to distribute data among the different 
processors. The objective considered here is to minimize the execution time of 
the whole program. Formally, a mapping is an application (called alloc) from 
T to P which associates to each task t an unique processor q = alloc(t). The 
number of all possible solutions is n m. 



381 

Mapping tools are part of programming environments. Ideally, the user of 
a parallel machine would use a parallel compiler which would distribute data 
among the processors and organize automatically (implicitly) the communica- 
tions induced by local computations. Practically, parallelization directives can 
be included in the source code and used to generate a task graph by deter- 
mining computation and communication costs and analyzing data dependences. 
This phase is usually followed by a clustering operation, parameterized by the 
granularity of the target machine. Then, mapping is performed. 

2.3 Qua l i ty  of  t h e  solut ion 

Most solutions of the mapping problem are based on the optimization of cost 
functions, denoted z. There exist in the literature many choices for z. Norman 
and Thanish propose a classification of the parameters which influence the cost of 
a mapping [9]. Two opposite criteria have to be taken into account: minimization 
of inter-processors communications and load-balancing of computations between 
processors. We chose to minimize the most loaded processor, which is a trade-off 
between these two criteria: 

z = rpnea~( ~_, ez(t) + ~ comm(t,t')) 
tl~t~or t,l~ttoc(t,)#p 

This basic function does not consider that communications can be overlapped 
by computations, but it can be adapted by considering the maximum between 
computation and communication times in place of the second sum. The above 
cost function does not take into account the length of the exchanged messages 
nor the topology. Two refinements were introduced to take into account distances 
between processors. 

1. measures on the parallel target system can give the costs to transfer bytes 
between two processors depending on the number of bytes communicated. 

2. communications can be expressed as a linear function of the distance between 
two processors. 

3 Description of the Mapping Toolbox (ALTO) 

Many solutions can be found in the literature for solving the mapping problem 
[4]. Exact algorithms give the optimal solutions but in practical cases they can 
not be used because of the combinatorial explosion of the number of solutions. 
The goal of heuristic algorithms is to give good solutions in relatively reasonable 
time. Two sub-classes of heuristic algorithms were explored: greedy algorithms 
which construct partially the solution and iterative algorithms whose principle 
is to improve an existing solution. Obviously, the cost of the mapping algorithm 
itself must be related to the use of the solution. The more used a given mapping, 
the greater the time that ought to be invested computing it. 
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3.1 Basic h y p o t h e s e s  

The mapping toolbox "ALTO" (for ALlocation TOol box) was originally devel- 
oped to map parallel programs written in a parallel dialect of C, where tasks 
are source code files, on a transputer based (Supernode architecture) Meganode 
[7], including 128 T-800 transputers. In parallel C programs, a description of 
the different tasks and a configuration description must be supplied by the user. 
The configuration file describes the task interconnection graph, the processor 
network and the mapping of the different tasks on the processors. To use ALTO, 
the configuration file must be extended to include cost values (computing and 
communication costs). In addition, we assume that all processors have the same 
processing capabilities, that processors may have different memory sizes, and 
that communication costs between tasks allocated on the same processor are 
negligible. 

3.2 Greedy  a lgor i thms  

In a greedy algorithm, the mapping is done without backtracking (a choice al- 
ready done can never be reconsidered). The allocation of the i th task is based on 
a criterion depending on the mapping of the ( i  - 1) th first tasks. Two kinds of 
greedy algorithms can be envisaged: either they are based on empirical methods 
or they come from the relaxation of classical graph theory algorithms which are 
optimal for some restricted cases. They are easy to implement and have a poly- 
nomial complexity. L i s t  a l g o r i t h m s  are the most used greedy algorithms. Tasks 
are first sorted on a given criterion and then are mapped in this order on the 
processors. In ALTO, the following greedy algorithms were implemented: 

Modulo:  the modulo algorithm consists in allocating the i th task onto the 
i th m o d u l o  m processor. Theoretically, this Mgorithm has the same behavior 
as a random mapping algorithm with a great number of tasks. It was mainly 
implemented to serve as a reference. The only modification made to the basic 
algorithm was to skip processors that have not enough memory for a task. 

Largest  Process ing T ime  Firs t  (LPTF) :  LPTF is a heuristic whose crite- 
rion is restricted to load balancing. Tasks are first sorted by decreasing 
computation cost order, then allocated on the less loaded processor having 
enough memory. 

Largest  Global  Cost  First (LGCF) :  this greedy algorithm aims at balanc- 
ing the global load. Tasks are first sorted according to this order, then al- 
located on the less globally loaded (communication and computation costs 
taken into account) processor having enough memory. 

St ruc-quant i :  this algorithm uses first a mixed criterion, i.e. qualitative (the 
number of links of each task) and quantitative (communication and com- 
putation costs), to sort tasks. Then, tasks are allocated on the less globally 
loaded (communication and computation costs taken into account) processor 
having enough memory. 
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3.3 Iterative algorithms 

All iterative algorithms try to improve an initial solution usually obtained by a 
greedy algorithm. Most iterative algorithms exchange tasks between processors 
to improve locally a solution. Most of such algorithms use random perturbations 
to leave local minima of the cost function and to obtain better solutions. In 
ALTO two kinds of neighborhood were used: transfering a task from the most 
loaded processor to another one and exchanging a task from the most loaded 
processor with another task communicating with it. 

Simulated a n n e a l i n g .  It is based on an analogy with statistical physics: the 
annealing technique is used to obtain a metal with the most regular structure 
possible. It consists of heating the metal and reducing slowly the heat so that  
it keeps its equilibrium. When the temperature is low enough, the metal is in 
an equilibrium state corresponding to the minimal energy. At high temperature, 
there is a lot of thermic agitation which can locally increase the energy of the 
system. This phenomenon occurs with a given probability decreasing with the 
temperature. It corresponds mathematically to give the possibility of leaving a 
local minimum of the function to optimize. 

In ALTO a mapping is improved by elementary operations involving task ex- 
changes. The percentage of bad exchanges (leading to a worse solution) is high at 
the beginning and decreases during the execution of the algorithm. Theoretical 
studies proved the convergence to the optimal solution of the continuous version 
if some properties are verified such as a very slow decreasing of the heat, that  
it is not practical for real problems. It is very hard to tune: finding the starting 
temperature or the heat decreasing steps have to be done after many experi- 
ments. All the parameters were determined according to the literature [2, 6] and 
a large number of experiments. An estimated value of the average differential 
value of the cost function between moves denoted $! is first computed. Next, 
using a starting percentage of acceptance of bad solutions of 0.8 (denoted v) the 

starting heat is determined (k = $ ]  log (~))" In this implementation the function 

k ~ is used for practical heat descent. A bad solution is accepted if e-k-~- is 
greater than a random number uniformly chosen in (0, 1) (see figure 1). 

T a b u  search .  It is a deterministic meta-heuristic [5]. As for the simulated an- 
nealing, a lot of parameters have to be tuned or defined [1]. The tabu search 
starts from a given solution and improves it by local pair-wise exchanges. Ac- 
cessible solutions using local moves are called neighbors. At a given step, the 
best unexplored neighbor is chosen. This implies that  the last explored moves 
must be recorded in a tabu list. Only the last moves can be recorded in order 
to limit the memory and time costs. Possibilities of cycling are also reduced by 
this recording. The tabu list length is fixed empirically for each implementation 
of a tabu search. Aspiration criteria can be used to override a tabu list (e.g. if 
the proposed move leads to the best ever found value of the cost fonction). If 
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Fig. 1. Typical execution of Simulated annealing 

too much time is spent without significative improvements of the solution, di- 
versification factors can be used in order to move to other areas. Intensification 
factors can be used if some areas seem very promising. Implementation details 
can be found in [1]. 
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Fig. 2. Typical execution of Tabu search 

Figures 1 and 2 examplify the simulated annealing and tabu search methods, 
for the same example of mapping a randomly generated task graph of 100 tasks 
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on 10 processors. They indicate that the former improves the cost function after 
a long latence time and is very unstable at the beginning, while on the contrary, 
the latter is more efficient at the beginning but converges slower. The basic 
iteration of the tabu is greater than simulated annealing since at each step, it 
explores all the neighbor configurations to find the best. 

4 Validation and experiments 

Two kinds of validation were done: first, we generated "artificial" parallel pro- 
grams using a random task graph generator; then, the mapping algorithms of 
ALTO were tested on a set of benchmarks, representative of many classical par- 
allel numerical algorithms. 

4.1 Task graphs generated randomly  

To tune iterative algorithms and to show the behavior of the different map- 
ping algorithms, many task graphs were randomly generated, with the following 
parameters: number of tasks, maximal computing cost of a task, maximal com- 
munication cost, and maximal degree of a task (number of neighbors). 

Different task graphs were generated uniformly using these parameters. Fig- 
ure 3 presents the average improvement (in %) given by the different algorithms 
versus the behavior of the modulo algorithm. Each value of the table is based 
on 100 random task graphs. The parameters used in the random task graph 
generations are: 100 tasks, each task communicating to a maximum of 4 other 
tasks, 16 processors, a maximal computing cost of 1000 seconds. The cost func- 
tion used takes into account the sum between communication and computation 
costs (all the processors being at the same distance). These tests reflect mostly 
the expectations: 

- The most sophisticated mapping algorithms (simulated annealing and tabu) 
are the most efficient ones. 

- LPTF performs well for parallel programs with low communication costs. 
- The higher the ratio communication/computation, the more interesting are 

the iterative algorithms. 
- The results of LGCF are better than struct_quanti which takes into account 

a qualitative criterion while the quality of results is estimated in terms of 
quantitative criteria (i.e. the cost function). 

The previous results are encouraging but not sufficient since we are not sure 
that random task graphs are representative of "real" parallel programs. 

4.2 Exper iments  wi th  real programs executed  on a real machine 

Extensive tests were run on a 128 nodes transputer-based MegaNode, with the 
VCR software router 3, using the ALPES performance evaluation environment of 

3 VCR: Virtual Channel Router, developed by Southampton University. 
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Fig. 3. Percentage of improvements of mapping algorithms relative to modulo 

the APACHE project [8]. ALPES provides a modeling language called ANDES, 
allowing the generation of synthetic programs from the description of an appli- 
cation. Synthetic programs consume resources, as their actual models, although 
they do not produce any results. Performance measurements were obtained by 
executing these synthetic programs on an actual parallel computer. Parameters 
of the synthetic programs (mainly computation/communication ratios) can be 
easily changed to emulate various parallel target architectures. ALPES includes 
also monitoring tools. 

A benchmark for mapping tools was designed using ANDES: it includes the 
description of classical parallel programs (FFT, matrix-vector multiplication, 
Gaussian elimination, matrix product using the Strassen algorithm, Divide and 
conquer, PDE solver, etc.) [3]. Several problem sizes were used for each problem 
to generate a total of 17 different benchmarks. Each one was run 100 times in 
order to eliminate the effect of execution indeterminism. 

ALTO was coupled with PYRROS which is a complete scheduling platform 
designed at Rutgers by Gerasoulis and Yang [11]. PYRROS takes as inputs 
the precedence graphs generated by ANDES to group the tasks. The output of 
PYRROS, where the orientation of the arcs is not taken into account, is then 
passed to ALTO. 

A d e q u a t i o n  of  the  cost  funct ions .  Several mapping experiments were done 
using various cost functions, in order to determine the best one, whose costs are 
the closest to the execution times of the benchmarks. The four cost functions 
defined in section 2.3 were tested on the Meganode, configured as a torus. 
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Figure 4 presents the cumulated results of the whole set of benchmarks, run 
on 16 processors for the different cost functions. We observe a linear correlation 
between all cost functions and execution time. In theory, it is possible to com- 
municate over several transputer links simultaneously and to overlap communi- 
cations by computations. However, because of the software overhead induced by 
VCR, this is not the case in practice and the first cost function is not applicable. 
In addition, since VCR uses packetisation and pipelining mechanisms, the first 
refinement is not usable. The best cost function is therefore the sum of compu- 
tat ion and communication costs (second cost function above), coupled with the 
second refinement (torus topology, using VCR routing tables). 
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In this figure, Re] represents the experimental execution time. The best cost 
function is Tor: torus topology with VCR routing tables. 

E x p e r i m e n t a l  r e su l t s .  A very large number of experiments were done using 
synthetic programs. The greedies always delivered their results in less than one 
second on a workstation, while iterative algorithms could spend up to one hour. 
To summarize: 

- L P T F  is better  than modulo in most of the tests and may be sufficient when 
communication costs are low. 

- Taking into account communication times is important  and LGCF is for this 
reason the best greedy algorithm. 

- Iterative algorithms did not result in important  improvements relatively to 
LGCF. Figure 5 summarizes experimental mapping results by giving the per- 
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centage of improvement resu/ting from the use of tabu instead of L G C F ,  for 
the cost function which takes into account the torus architecture. The im- 
provement remains low for the majority of the tests (about 15% in the worst 
case). This may be due to several reasons: the graphs of these benchmarks are 
well-structured and the ratio communication/computation was not chosen 
high. Tests using random task graphs demonstrated that iterative algorithms 
perform better for programs having a high communication/computation ra- 
tio. 
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4.3 Use of  ALTO 

We propose a stepwise process where a first mapping is done with a greedy 
algorithm. If some parameters are unknown, the greedy uses default parameters. 
Next, the parallel program is executed using monitoring tools. Monitoring results 
are used to run an iterative mapping algorithm. If the mapping is not good 
enough, these steps can be repeated as long as needed and the statistical analysis 
will try to improve the mapping. Usually, one step is sufficient. 

Monitoring is used to determine the mapping parameters, computation and 
communication costs, and thus improve the quality. Monitoring gives the total 
execution time of a program, the number of bytes communicated between each 
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pair of tasks, the computing time of each task, the idle time of each task (the 
time wasted by waiting communications), the total idle time of each processor, 
and the number of bytes communicated between each pair of processors. 

In our benchmarks, the knowledge of communication and computation costs 
has proved to be very important. To simulate the behavior of an user having only 
an approximate knowledge of these values and to use the possibility of a feedback 
mechanism (to use the post-mortem trace analysis), we modified the information 
given to the tabu for the graph corresponding to the matrix-vector product. In 
figure 6, the communication costs were multiplied by x for the mapping. The 
results stress the importance of having a correct estimate of communication 
times to generate an efficient mapping. They also indicate that it is better to 
overestimate than to underestimate communication costs. 
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5 C o n c l u s i o n  

The ALTO toolbox includes greedy algorithms, modulo, LPTF, LGCF and struct- 
quanti as well as iterative ones, simulated annealing and tabu search. ALTO was 
thoroughly assessed to study both the efficiency of the mapping algorithms, that 
is the time taken to deliver a solution, and the quality of the mapping, that is 
the value of the cost function optimized by the mapping algorithm. 

The first experiments were performed using randomly generated task graphs. 
A large number of more realistic experiments were performed using synthetic 
programs modeling the most classical numerical algorithms, executed on a trans- 
puter based architecture including 128 processors. These were used to assess the 
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cost functions which can be used in ALTO and which proved to be linearly re- 
lated to the program execution times. Therefore any of them can be used in the 
mapping algorithms since decreasing its value will result in improved execution 
time. 

Another experiment studied the sensitivity of the mapping  result to the cost 
estimates done for the programmer  for the computa t ion  of tasks and inter-tasks 
communication volumes. It  indicated the interest of combining the mapping  tools 
with monitoring tools. The main  result of the large number  of experiments done 
with ALTO is that  a mapping  tool should include several mapping  algorithms 
and a method to use these Mgorithms. 
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