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Abst rac t .  This paper presents the compilation techniques implemented 
in a compiler for a HPF-like language. The stress is especially put on the 
description of an optimized scheme which is dedicated to the compilation 
of parallel nested loops. The generation of the SPMD code is based on the 
polyhedral model and allows for the partitioning of the arrays involved in 
the loop in order to achieve symbolic restriction of iteration domains and 
message aggregation. Experimental results for some well-known kernels 
are shown. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

The data parallel model is often shown as a promising way to easily write pro- 
grams for distributed memory computers or clusters of workstations. 

Among data  parallel languages, High Performance Fortran [12] and its pre- 
cursors embed data partitioning features in a sequential language as a means to 
drive the parallelization and the distribution of programs. With this paradigm, 
the programmer is still provided with a familiar uniform logical address space 
and a sequential flow of control. The compiler generates code according to the 
SPMD model and the links between the code execution and the data  distribu- 
tion are enforced by the ownerocomputes rule: each processor executes only the 
statements that modify the data assigned to it by the user-specified distribution. 

This approach constitutes the basis of several compilers [17, 6] and is also 
applied in the PANDORE environment [4]. 

A simple scheme called runlime resolution [5] permits the translation of any 
sequential program into communicating processes. The first experiments have 
shown that  aggressive optimization techniques are needed to generate efficient 
code. 

The paper presents an optimized translation scheme, implemented in the 
PANDORE compiler, dedicated to the compilation of parallel loop nests with 
one statement.  The importance of parallel loop nests in scientific applications is 
manifest. On the one hand, these loops form most computation-intensive parts 
of scientific programs. On the other hand, these loops can be produced thanks 
to automatic  parallelization techniques such as affine-by-statement scheduling 
[10, 9] or automatic vectorization [1]. 
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We address the problem of determining the communication and computation 
sets induced by the user-supplied distribution of arrays. The work presented in 
the paper is related to [2, 18], [17] and [6] that use respectively polyhedrons, 
regular sections and overlaps (rectangular sections) to represent these sets. The 
problem has also been studied in the framework of the compilation of array 
statements in [7] and [11]; this time, a finite state machine and triplets permit 
the characterization of the different sets. 

The paper is organized as follows. We first give the principles of the optimized 
compilation scheme in section 2 and then illustrate the technique in section 3. 
Notations and definitions are posed in section 4 in order to present code gen- 
eration in 5. Experimental results for well-known kernels are shown in section 
6. 

2 Principles of the Optimized Scheme 

The optimized compilation scheme separates the generated SPMD code into a 
communication part and a computation part. The generation of each part relies 
on a domain analysis that  takes advantage of the user-partitioning of the arrays 
into rectangular blocks in order to  achieve symbolic restriction of iteration do- 
mains and message aggregation. Furthermore, this domain analysis is symbolic, 
i .e .  independent of the number of blocks of each array involved in the parallel 
loop nest. 

Our optimized compilation method applies to parallel loop nests where array 
references and loop bounds are affine functions of the enclosing indices and where 
each loop stride is equal to one. As regards data  distribution, we assume that an 
array is either replicated on all processors (the array is owned by each processor) 
or distributed, that is partitioned into rectangular blocks with constant sizes 
(known at compile-time), each block being assigned to exactly one processor. 
Scalar elements are systematically replicated. 

Because we assume that  the loop bounds and the array access functions are 
afflne, the data access domains can be characterized by polyhedrons and the 
generated code execution will consist in scanning these polyhedrons. Indeed, a 
loop nest performing the enumeration of its integer vectors can be associated 
with any non empty bounded polyhedron. Different algorithms can be used to 
solve the polyhedron scanning problem [13, 8, 14]; the algorithm implemented 
in the PANDORE compiler is detailed in [15]. 

3 Example 

For the sake of concreteness, let us consider the following (contrived) parallel 
nest: 

f o r i l  =1  , 1000 
for i2 = il , 2 . i 1 + 1  

S ( i l ,  is): X [ i l ,  is - i l ]  := V[i2,  2 �9 il  - 2] 
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where arrays X and Y are part i t ioned into 8 blocks numbered from 0 to 7, as 
indicated in figure I. 

X 0 
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5 

6 

3999 7 

3 ~  y 
5OO 

3999 0 Illtlt 
1 2 3 4  5 6 7  

399~ 

Fig. 1. Partitioning of Arrays 

C o m m u n i c a t i o n  C o d e  G e n e r a t i o n .  

a - The set of vectors ( jx  j r  il i2) where j x  (resp. jY)  E 0..7 is a block of X 
(resp. Y), (il i2) an iteration vector such that  S(i,,  i2) writes in j x  and reads 
in i f ,  can be characterized by the polyhedron P l  defined by the system: 

0_< ix_<7  
o < j Y  <7 
1 < i l  < 1000 
i~ < i}< 2 , i l  + l 
5 0 0 , j y  <_ il <_500.jx+499 
500.  < 2 .  il - 2 < 500.  jr_4_ 499 

b - The enumerat ion code of polyhedron 7~ can be computed by one of the algo- 
r i thms [15, 13, 8, 14]; for instance, the algorithm implemented in PANDORE 
[15] yields the following nested loop: 

for jX = o , 2 
for  jY = m a x ( 0 , 2 . j x - 1 )  , r a i n ( 3 , 2 . i x 4 1 )  

for il = max(250*jY41,  500.j  X) , 
min(250*j v,4,4,250, 500.j x,4,499) 

for i2  = i l  , 2 . i141 

It  is impor tan t  to notice that  the first two loops of this enumeration code do 
not scan the whole cartesian product  0..7 x 0..7, as it can be seen in figure 
2. The subset of 0..7 x 0..7 described by the ( jx ,  jY)-loop is defined as the 
convex-hull of the integer projection of polyhedron Pl  along the il ,  i2 axes. 

c - We then insert two masks and a communication instruction in this enumer- 
ation code in order to generate the SPMD send code and then a dual SPMD 
receive code. The send code is generated as follows: 
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Fig. 2. Restriction of Iteration Domains 

for  j x  = 0  , 2 
i f  myself ~ owner of block j x  of X t h e n  

for  jY = max(0 ,  2 . j x - 1 )  , rain(3,  2 . i x + l )  
i f  mysel] = owner of block jY of Y t h e n  

for  il = m a x ( 2 5 0 * j Y + l ,  500*j x)  , 
min(250*j  Y + 2 5 0 , 5 0 0 . j  x +499) 

for  i2 = il , 2 . i 1+1  
pack  Y[i2, 2 * il - 2] in buffer 

send  buffer to the owner of block j x  of X 

The  runt ime l ibrary routine pack performs da t a  elements aggregation.  Al- 
though the previous loop contains masks,  the reader should note  tha t  these 
masks are evaluated at the block level and not at  the  i terat ion vector level as 
in the run t ime resolution. Furthermore,  the ( jx ,  jY)-Ioop enumerates  only 
a few vectors, as seen in figure 2, and the locat ion of  the first mask  prevents 
f rom enumera t ing  all these vectors. 

C o m p u t a t i o n  C o d e  G e n e r a t i o n .  

a - As before, the set of  vectors ( jx  il i2) where j x  E 0..7 is a block of  X,  (il i2) 
an i teration vector such tha t  S(it, i2) writes in j x ,  can be characterized by 
the polyhedron P2 defined by the following system: 

0 < i x < 7  
1 < il < 1 0 0 0  

il <_i2<_2.i1+1 jx  
500 �9 j x  < {1 <__ 500 �9 -t- 499 

b - The  vectors of 7)2 can be enumera ted  by the nested loop: 

for  j x  = 0  , 2 
for  il = m a x ( 5 0 0 . j  x ,  1) , m in (500 , j  x +499, 1000) 

for  i2 ~ il , 2 . i lq-1 

which shows tha t  the blocks 3..7 of  X are not  wri t ten during the computa t ion  
(the iX- loop  scans the convex-hull of the integer project ion of  polyhedron 
7)~ along the i l ,  i2 axes). 
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c - Finally, a mask  is inserted to produce the SFMD computa t ion  code: 

for  j x  = 0 , 2 
i f  myself -=- owner of block j x  of X t h e n  

for  ia -=- max(500*j  x ,  1) , m in (500 . j  x +499, 1000) 
for  i2 = ia , 2*ia +1 

X[ ia ,  i2 - i l ]  :=  Y[i2,  2 �9 i~ - 2] 

4 N o t a t i o n s  a n d  D e f i n i t i o n s  

If  x is a row or column vector with n components ,  zq (1 < q < n) stands for 
the qth componen t  of  x. Given a row or column vector u with n components  
Ul,. . . ,  u=, X[u] d e n o t e s  the reference X[ul,...~ u,] to array X.  If  the access 
funct ion associated with an array reference is affine, for instance X[ i+3 ,  2 i + j + l ] ,  
the reference m a y  be noted in ma t r ix  form as follows: 

Finally, for row vectors u and v with n and p components  respectively, (u v) 
s tands  for the vector with (n + p )  components  ( U l . . .  un v l . . .  vp). This nota t ion  
can be extended to an arbi t rary  number  of vectors. 

N o t a t i o n s  r e l a t e d  t o  D i s t r i b u t e d  A r r a y s .  In order to simplify the nota-  
tions, we assume that  the lower bound  is 0 in each dimension of  an array. Let 
X be a m-dimensional  dis tr ibuted array and let h x (resp. s x )  be the number  of  

elements (resp. the block size) of  array X in the pth dimension (p E 1 . .  m). 
We note Part(X) = {p e 1 . .  m / s X < h X)  the set of  par t i t ioned dimensions 

of  X and d(X, q) the qth par t i t ioned dimension of  X if q E 1 . .  IPart(X)l. For 
arrays Y and Z given in figure 3 for instance: 

h ~  = 400 h ~  = soo h z = 500 h z = 700 

~ = 200 ~ = 250 s ~  = 500 ~ = 300 
Part(Y) = {1, 2} Part(Z) = {2} 
d(Y, 1)=l  d(Y, 2)=2 d(Z, 1)=2 

,I 
2 

y z 
0 0 250 399 

2011 

39~ 499 

3OO 
699 

Fig.  3. Partitioning of Arrays 
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Let n be the number  of  par t i t ioned dimensions of  ar ray  X.  We term block 
of  X indexed by the vector j ,  where j is a row vector with n components  such 
tha t  Vq E 1. n 0 < jq < x x �9 [hd(x,q)/Sd(x,q) ] -- 1, and we note Block (X , j ) ,  the 

block X[lbndl . .  u b n d l , . . . ,  lbndm.,  ubndm] of array X defined by 
�9 X X lbndd(x ,q)  = 3qSd(X,q) a n d  ubndd(x ,q )  = min( jqsXa(X,q)  --b 8d(X,q)X _ 1, hd(x ,q)  - -  1) f o r  

each partitioned dimension d(X, q) of Z (q �9 1.. n), 
lbndv = 0 and ubndv = h x - 1 for each dimension p of X which is not partitioned. 

Intuitively, the components  of  j are related to the coordinates  of  Block(X,  j )  in 
the space of  the blocks of  array X when all the dimensions of  X are part i t ioned.  
In the general case, j mus t  be related only to the coordinates  of  B l o c k ( X , j )  
associated with the par t i t ioned dimensions of  X.  For arrays Y and Z for instance: 

Block(Y, (0 1)) = Y[0. .199,250. .499],  Block(Y,(1 3)) = Y[200. .399,750. .  799]. 
Block(Z, (0)) = Z[O.. 499, 0. .  299], Block(Z, (2)) = Z[O.. 499,600.. 699]. 

and more  generally: 

Block(Y, (jl j2)) = Y[2OOjl.. 200jl + 199,250j~.. min(250j2 + 249,799)] Vjl �9 
0.01 Vj2 �9 0 . .3 ,  
Block(Z, ( j l ) )= Z[O..499,300ja..min(300ja +299,699)] Vjl � 9  

Finally, for a vector u with rn components  and a vector j with n components ,  
we note Belong(X, u, j)  the set of  inequalities tha t  mus t  be satisfied by vector 
u so tha t  the reference X[u] belongs to the block B l o c k ( X , j )  of X:  

�9 x - x x - 1  for each q � 9  1 . .n ,  JqSa(x,q) <_ ua(x,q) <_ Jqsd(x,q) + Sa(x,q) 
X X X up < [h v / %  ] - 1 for each partitioned dimension p of X such that h v is not a 

multiple of spX. 

Indeed, if p is a par t i t ioned dimension of  X,  the constraints  up < [hex/s x]  - 1 
where h x is a mult iple of  seX are implicit  in this sys tem and thus useless. For 
instance, for the vector u = (il + 1 il + 2i2): 

Belong(Y,u,(ja j2)) = {20011 _< il + 1 < 200j1 + 199, 2503"2 < il + 2i2 < 
250j2 + 249, il + 2i2 < 799}, 
Belong( Z, u, (jl)) = {300jl <__ il + 2i2 < 300jl + 299, ia + 2i2 < 699}. 

N o t a t i o n s  r e l a t e d  t o  N e s t e d  L o o p s .  In the following, a perfectly nested loop 
whose (row) i teration vector is i, i terat ion domain :D and body  B will be noted 

for  i i n / )  or for  i : Ai T + b > 0 
B B 

if the i teration domain  of  the nested loop is a polyhedron defined by the set of  
affine constraints Ai T + b > O. 

P o l y h e d r o n s  f o r  C o d e  G e n e r a t i o n .  Let us consider a parallel loop nest 
whose i teration vector is i and whose i teration domain  is defined by the sys- 
tem of  affine constraints  Ai T + b > O. The  generat ion of  the communica t ion  and 
computa t ion  codes for the loop nest lies in the synthesis of  polyhedrons  called 
P l  and 7~2 which are functions of the references to dis t r ibuted arrays appear ing 
in the nest assignment.  
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(:liven two references x [ c x i  T -k d x] and X ' [ c X ' i  T Jr d x'] to distributed 
arrays in the parallel nest assignment, 1)1 (X[ CXiT q-dX], X'[  CX'iT q-dX']) is 

. X  I 
the set of (row) vectors of the form ((jx)vel..[pa~t(x)l (3q)qel..[Part(X')l i) 
and satisfying the system of inequalities: 

Vp E 1. IPart(X)l o ~ jX ~_ x x �9 [hd(x,v)/Sd(x,p) ] -- 1 
. X  I X I X I Vq E 1..[Part(X')[ 0 <_ 3q <_ [hd(x,,q)/Sd(X,,q)] -- 1 

Ai T q- b >_ 0 
. X  Belong(X, c X i  T q- d X, (3v)re1.. [Part(X)]) 

. X  ! Belong(X', cX ' i  T + d x',  (lq )qe,..IP~t(x')l) 

One can easily check that  this system defines a polyhedron because all its con- 
straints are affine (the references to arrays X and X I are affine). In other terms, 
~PI(x[cXi  T + dX], X ' [ c X ' i  T + dX']) is the set of vectors ((iX)pea.. IPart(X)l 

. X  I 
( 3 q ) q E 1 . . [ P a r t ( X ' ) [  i )  such that the references x [ c X i  T q- d X] and Xt[CX' i  T + 

�9 X I 
d x'] belong to Block(X,  ( j x )p~l . .  IPart(X)[) and Block(X' ,  (3q)qe l . .  Igart(X')l) 
respectively. 

For the references Y[il  + 1,il + 2i2] and Z[i2 - i l ,3 i l  - 2] to the arrays 
shown in figure 3, located in a parallel nest whose iteration domain is defined 
by {1 < il < 230, il + 1 < i2 < 350}, the constraints satisfied by the vectors 
(JY1 JY JZl iT i2) of I ' l(Y[i~-+ 1,-il + 2i2], Z[i2 - il, 3il - 2]) are the following: 

O _ < j ~ < l ,  o < j Y < 3  
0_<jz_<2 
1 < i l  _<230, i l - k l  _<i2 ~350 
200jff _< il + l _< 200jff +199, 250j Y_<il +2i2_<250j~'+249, i1+2i2_<799 
300j z_<3i l -2_<300j1  z+299,  3i~ -- 2 _< 699 

For a reference X[Ci  T +a~ in the parallel nest, the polyhedron "P2(X[CiT+a~) 
denotes.the set of (row) vectors of thc form ((Jp)pel.. IPart(X)l i) satisfying the 
set of affine inequalities: 

X X Vp E 1.. IPart(X)] 0 < jv <_ [hd(X,p)/Sd(xm)] -- 1 
Ai T + b >_ 0 
Belong(X, Ci T + d, (Jp)vel..Ip~rt(X)l) 

More simply, each vector ((Jv)v~l..IPart(X)l i) of 7~2(X[Ci T + a~) defines an 
iteration vector i such that the reference X [ c i T +  d] belongs to the block 
Block(X,  (Jp)pE1.. [Part(X)[) of X. 

With the same iteration domain as previously, P~(Y[il + 1, ix -4- 2i2]) is the 
set of vectors (jl j2 il i.~) satisfying: 

O___jl_< 1, 0_< i2_<3  
1 _~ il _~ 230, il + 1 ~ i2 < 350 
200jl _~i1+1 _~200j1+199, 250j2_~il +2i2_~250j2+249, il +2i2_~799 

and each vector ( J l i l  i2) of ~o2(Z[i2 - il, 3il - 2]) is such that: 

0 < j 1 ~ 2  
I _< il _< 230, il + 1 _~ i2 < 350 
300jl < 3 i l - 2 < 3 0 0 j 1 + 2 9 9 ,  3 i l - 2 < 6 9 9  
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5 C o d e  G e n e r a t i o n  

Actually, two compilation schemes are defined depending on whether the left 
hand side (lhs) of the assignment refers to a distributed array or a replicated 
array. 

5.1 C o m p i l a t i o n  S c h e m e  i f  t h e  lhs  r e f e r s  t o  a D i s t r i b u t e d  A r r a y  

In this case, the parallel loop nest is of the form 

for i :  A i  T + b )_ 0 

x[vXi T +d x] : =  Exp(Vist U ~epZ) 

where the array X referenced in the lhs is a distributed array, 7)ist the set 
of references to distributed arrays in the expression Exp and ~epl the set of 
references to replicated variables (arrays or scalar variables) in Exp. 

C o m m u n i c a t i o n  C o d e  G e n e r a t i o n .  Let us note Corn = 7)ist - { x [ c X i  T § 
dX]} the set of references in 7)ist that may generate communications between 
processors (it is clear indeed that,  if X[cXiT+dX] belongs to 7)ist, this reference 
does not lead to any interprocessor communication). It should be highlighted 
that the set Corn can be reduced still further if some references in 7)ist are aligned 
(in a HPF-manner) with x [ c X i  T + dX]. In the following code for instance: 

!HPF$ ALIGN X(K,L) WITH Y(L+I,K) 

DO I = 0, N-I 

DOJ=O,N-I 

X(2*I,2*J) = X(2*I,2*J) + Y(2*J+I,2*I) * Z(I+J) 

END DO 

END DO 

the set Corn is only composed of the reference Z( I+J ) .  Actually, the communica- 
tion code generated by the compiler is a sequence of communication codes, one 
code being produced for each reference Y[cY i  T + d Y] in Corn as follows: 

a - Compute the code enumerating the vectors ( jx  jY i) of polyhedron 7~1 (x[cXiT-} - 
X Y T  Y d ], Y[C i + d ]) by one of the algorithms [15, 13, 8, 14]. This yields the 

nested loop: 

for j x  in 1)1 
for jY in D2(j x) 

for  i in •3(jx,j v) 

where 7)1, 7)2(j X) and 7)3(j X, jY) denote the iterations domains associated 
with the iteration vectors j x ,  jY and i respectively. 

b -  Insert two masks and communication instructions in this nested loop to 
produce the SPMD send code: 
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for j x  in l)1 
if  myself # owner of Block(X,j X) then 

for jY in 1)2(j X) 
if myself = owner of Block(Y, jY) then 

for i in 7)3(jx,j v) 
pack Y[cY i v + d Y] in buffer 

send buffer to the owner of Block(X,j x) 

c -  Produce the dual SPMD receive code: 

for jx  in D1 
if  myself-~ owner of BIock(X,j x) then 

for jY in l)2(j X) 
if myself ~ owner of Block(Y, jY) then 

receive buffer from the owner of Block(Y, jY) 
for i in 7)3(jx,j Y) 

unpack  Y[cY i T + d Y] from buffer 

The runtime library routine unpack extracts data elements from the buffer 
and copies them in the local memory of the processor. 

C o m p u t a t i o n  C o d e  G e n e r a t i o n .  The computation code is produced depend- 
ing only on the Ihs reference x [ c X i  T q- dX]. 

a - Compute the enumeration code of polyhedron 7~2(X[CXi T + dX]): 

for j x  in 1)4 
for i in "D~(j X) 

In this loop, 7)4 and 7)s(j X) stand for the iteration domains associated with 
j x  and i respectively. 

b - Produce the SPMD computation code by inserting an adequate mask: 

for j x  in/)4 
if myself = owner of Block(X,j x) then 

for i in 79~(j X) 
z[cXi  T + d x] := Exp (7)ist ~J 7~epl) 

5.2 C o m p i l a t i o n  S c h e m e  if  t h e  lhs re fe rs  to  a R e p l i c a t e d  V a r i a b l e  

The communication code generated by the compiler can be simplified and also 
optimized, by taking advantage of collective communication routines, when the 
lhs of the parallel loop nest: 

for i : Ai T -k b > 0 
r := Exp (Dist ~J T~epl) 

refers to a variable (array or scalar variable) which is replicated in the local 
memories. 
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C o m m u n i c a t i o n  C o d e  G e n e r a t i o n .  One communication code is produced 
for each Y [ c Y  i T + d y] in 2)ist as follows: 

a -  Compute  the enumeration code of polyhedron P2(Y[CYi  T + dY]): 
for jY in/)1 

for i in l)2(j Y) 

b - Produce the SPMD send code: 

for j r  in / )x  
if  myself -- owner of Block(Y,j v) t hen  

for i in / )2 ( j  Y) 
pack  Y[cY i T d- d Y] in buffer 

broadcas t  buffer 

c - Produce the dual SPMD receive code: 

for jY  in D1 
if myself ~ owner of Block(Y,j Y) t hen  

receive buffer 
for i in ~I)2(j Y) 

unpack  Y[cYi  T Jr d Y] from buffer 

C o m p u t a t i o n  C o d e  G e n e r a t i o n .  According to the owner-computes rule, the 
parallel loop nest is replicated on all the processors: 

for i : Ai T + b > 0 
r := Exp (l)ist ~J Repl) 

5.3 C o m p i l i n g  P a r a m e t e r i z e d  L o o p s  

The method previously presented allows the compilation of parameterized par- 
allel loop nests, that  is to say parallel loop nests depending on variables (not 
assigned in the loop nest) or surrounding loop counters�9 Let us note k the vector 
of parameters  associated with the loop nest and M k  T + h ~ 0 the system of 
constraints, that  may  be empty, satisfied by k. In this case, the parameterized 
loop nest is of the form: 

for i : Ai T + Bk T + c ~_ 0 
lhs_r# := Exp (Wst  ~ nepZ) 

where Ai T + Bk  T -b c ~ 0 defines the iteration domain of the loop parameterized 
by the vector k. In the following code for instance, the inner / - loop is a parallel 
loop nest parameterized by the surrounding loop counter k: 

f o r k =  1 , 100 

f o r i =  1 , k 
A[i + k] := B[i] + (:[2 �9 k + if 
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For these parameterized loops, the SPMD code is generated the same way, the 
polyhedrons ~1 and ~2 defined in section 4 being now parameterized by k. 

Given two references x [ c X  i T + D X  k T + e X] and X ' [ c X '  i T + D x '  + e x ']  
to distributed arrays in the parallel nest assignment, " P l ( X [ C X i  T + D X k  T + 
e X ] , x ' [ c x ' i  T + D X ' k  T + eX']) is the set of vectors ((jX)p~l..IPart(x)l 

. X  t (3q)qel . . IPart(x ') l  i) satisfying the system of inequalities: 

V p E 1 .  IPart(X) l  O<_jx  < x x �9 [ h d ( x m ) / S d ( x m ) ]  --  1 
.X I X I X I 

Vq �9 1. .  IPart(X') l  o < 3q <-~ Fh~(x,,q)/sd(x,,q)] -- 1 
Ai  T + Bk  T + c >_ 0 

.X  Belong(X, c X i  T + D X k  T + e X ,  ( ? p ) p E 1  . . I P a r t ( x ) l )  

X I .X  I Belong(X', CX'i T + D X ' k  T + e , 0q )qel.. IP,~t(x')l) 

For a reference X [ C i  T -4- D k  T -4- e] in the parallel nest, the polyhedron 
~ 2 ( X [ C i  T + O k  T + e]) denotes the set of vectors ((jp)pel .. IPart(X)l i) satisfying 
the set of inequalities: 

X X Vp �9 1 . .  IPart(X) l  o <_ jp <_ [hd(x,p)/S~(x,p)] - 1 
A i  T -b B k  T + c > 0 

Belong(X~ Ci T -4- Dk T A-e, (Jp)pel.. IP~t(X)l) 

Again, the algorithms [15, 13, 8, 14] permit the generation of a nested loop 
scanning these parameterized polyhedrons in the context M k  T + h > O. 

6 E x p e r i m e n t s  

6.1 R u n t i m e  S u p p o r t  

The runtime resolution and the optimized scheme rely on the implementation of a 
paged array management I16] which tries to balance the speed of accesses and the 
memory requirements�9 The runtime library routine pack used in the optimized 
scheme performs several communication optimizations. Direct communication is 
performed whenever possible; what is transferred in this case is a memory zone 
that is contiguous both on the sender and the receiver, thus eliminating any 
need of coding/decoding between message buffers and local memories�9 Message 
aggregation is also carried out and reduces the effect of latency by grouping 
small messages into a large message. Furthermore, the routine pack eliminates 
redundant communications that  may occur with non injective access functions 
or when several references to the same distributed array appear in the right hand 
side. 

Because of these optimizations (messages exchanged between processors are 
generally composed of contiguous memory zones), it should be noted that the 
compiler does not exactly produce the receive codes given in 5.1 and 5.2; the 
array el6ments are not element-wise unpacked from the received buffer. 
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6.2 E x p e r i m e n t a l  R e s u l t s  

Some results of experiments with the optimized compilation scheme are pre- 
sented in this section. Performance results are shown in figure 4 for two kernels: 
Cholesky factorization and Jacobi relaxation; the description of the paralleliza- 
tion of a wave propagation application can be found in [3]. 
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Fig. 4. Speedup 

Measurements have been performed on a 32-node iPSC/2.  The presented 
graphs show the speedup against the number processors for several input sizes. 
Speedup is defined as the parallel time over the time of the original sequential 
program measured on one node. The obtained efficiencies are satisfactory, rang- 
ing from 85% to 95% on 8 processors and reaching around 80% on 32 processors 
for the largest data size. 

7 C o n c l u s i o n  

In this paper, we have presented an optimized compilation technique for parallel 
loop nests expressed in HPF-like languages. This scheme has been fully imple- 
mented in the PANDORE compiler and cohabits with the runtime resolution, thus 
permitting the compilation of the whole input language. The optimized method 
performs a symbolic polyhedron-based domain analysis that  exploits the parti- 
tioning of the arrays involved in the computation in order to achieve restriction 
of iteration domains and message aggregation. The scope of this scheme can 
be extended to more general regular loops by integrating parallelization tech- 
niques that  produce automaticMly the parallel loops that  can be handled by our 
technique. 

The performances obtained on a series of numerical kerne]s are satisfactory 
even though enhancements can be made along several axes. First, we plan to 
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improve the compilation technique in order to avoid the multiple enumerations 
of the same memory  location that  may  occur with non injective access functions 
or when several references to the same array appear in the right hand side. 
At the moment ,  the runt ime support  prevents from translating these multiple 
enumerat ions into multiple sends. This problem can be handled at compile- 
t ime by  scanning directly the polyhedron affine image, or at least a superset, 
associated with a right hand side array reference. Moreover, this scanning can be 
reorganized to exploit the contiguity in the local representation of the distributed 
arrays in order to maximize direct communication~ that  is the communication of 
contiguous memory  zones. 
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