
Verifying Distributed Directorybased Cache Coherence
Protocols: S3,mp, a Case Study

Fong Pong, Andreas Nowatzyk*, Guiles Aybay* and Michel Dubois

Department of EE-Systems
University of Southern California

Los Angeles, CA 90089-2562

*Sun Microsystems Computer Corporation
Technology Development Group

Mountain View, CA 94043

Abstract. This paper presents the results for the verification of the S3.mp cache coher-
ence protocol. The S3.mp protocol uses a distributed directory with limited number of
pointers and hardware supported overflow handling that keeps processing nodes sharing
a data block in a singly linked list. The complexity of the protocol is high and its valida-
tion is challenging because of the distributed algorithm used to maintain the linked lists
and the non-FIFO network. We found several design errors, including an error which
only appears in verification models of more than three processing nodes, which is very
unlikely to be detected by intensive simulations. We believe that methods described in
this paper are applicable to the verification of other linked list based protocols such as
the IEEE Scalable Coherent Interface.

1 Introduction
S3.mp (Sun's Scalable Shared memory MultiProcessor) is a research project

which implements a distributed cache-coherent shared-memory system [12]. In S3.mp,
cache coherence is supported by a distributed directory-based protocol with a small,
fixed number of pointers and a hardware supported overflow mechanism which keeps
processing nodes sharing a d_a~a block in singly linked lists. Cache coherence protocols
that use linked lists have been proposed by Thapar [18] and are also used in the Scal-
able Coherent Interface (SCI) protocol [7].

To verify the S3.mp protocol is very difficult because the linked lists are main-
rained by a distributed algorithm. The addition and deletion of nodes from the linked
list reorganize the list. In addition to the complexity of maintaining linked lists, the
S3.mp protocol behavior is unpredictable because the non-FIFO (First-In-First-Out)
interconnect network does not preserve the order in which messages are delivered
between nodes.

We have applied the Stanford Murcp [4] tool and a specialized method based on a
Symbolic State Model (SSM) [13] to establish the correctness of the S3.mp cache
coherence protocol. During the verification, several design errors were discovered. We
will describe two subtle errors which were found in the validation of S3.mp cache pro-
tocols. The first error violates Store Atomicity [3], which is a property of all SPARC
memory models [17] prohibiting several processors from observing an inconsistent
order of store operations. The loss of consistency occurs when the protocol allows
more than one dirty cache line or the coexistence of shared and dirty copies. This con-
dition, however, is too narrow to cover all possible protocol errors. The values of all
data copies must also be tracked. The second error was detected in cases with more
than three processors but was not detected in intensive simulation runs. The result indi-
cates that there is a need for methods which can deal with protocol models with a large

288

number of processors. Verification and simulation runs on small models are not always
sufficient to establish the correctness of complex protocols.

2 O v e r v i e w o f t h e S 3 . m p S y s t e m a n d C a c h e Coherence Protocol
The S3.mp implements a CC-NUMA (Cache-Coherent Non-uniform Memory

Access) multiprocessor system (Fig. 1). A specialized interconnect controller is added
to the memory subsystem of a standard workstation [11]. The S3.mp is then built by
interconnecting clusters of workstations to form multiprocessor workgroups which
efficiently share memory, processors and I/O devices [12].

Each node may have several processors with private caches which are kept coher-
ent via a snooping protocol supported on the Mbus. This is the system bus in the Sparc-
station-10 and Sparcstation-20 series. Each processing node maintains a fraction of a
globally shared address space. When a processor accesses a remote memory location,
the memory controller translates the bus transaction into a message that is sent across
the network to the remote memory controller.

ii iiiJi ii ii i i ii ii!iii ii i i i iiiiiiiaiiiiiiiiiiiiiiiiiiiiiii i i i i i i

Fig. 1. Overview of the S3.mp System.
2.1 Distributed Directory-based Protocol

In the S3.mp, data consistency is maintained using distributed directories with a
limited number of pointers. Pointer overflows are handled by a protocol with a direc-
tory organized as singly linked lists. Every memory block is associated with a home
node which is the node where the physical memory page containing the memory block
resides [9]. The home node serializes concurrent requests to the block and maintains a
pointer to the head node of the linked list.

Part of the physical memory at each node is allocated as a large InterNode Cache
(INC). A copy of every cache block retrieved from remote nodes is loaded into the
INC. This copy is maintained in the INC for as long as there is a copy in one of the
processor caches at that node. This inclusion property is exploited by the directory pro-
tocol. In addition to providing support for the protocol, the INC cuts the network traf-
fic. The size of the INC is programmable up to half of the main memory at a node to
provide support for data migration. As a result, capacity misses to shared remote data
due to the small size of processor caches are served from the much larger INC (up to
32 Mbytes).

We will not model the processor caches. This simplification is justified by two
facts. First, the Mbus snooping protocol supporting the first-level coherent caches and
the mechanisms for maintaining the inclusion property are well-understood -- when-
ever the INC receives a write-invalidation from the network, an invalidation is broad-
cast on the local Mbus to remove all potential copies in the first-level caches. Second,
verifying the coherence protocol between the second-level INCs is our primary goal.

289

2.1.1 Directory and lnterNode Cache States
We refer to the "state of the block in the INC" as the "cache state" and the "state of

the block in the memory directory" as the "directory state". For every memory block,
the home directory can be in one of four stable states: Resident (RES; the block only
resides in the home node. The first-level processor caches are looked up and/or invali-
dated by incoming requests from remote nodes), SharedRemote (SR; the memory
copy is up to date and consistent with remotely cached read-only copies. The directory
contains a pointer to the head node of the linked list formed by nodes sharing the
block), and Exclusive_Remote (l/R; the memory copy is stale and the block is owned
and modified by one remote node. The home directory contains a pointer to the remote
owner of the block).

Every cache block in the INC can be in one of three stable states: Invalid (I n v ;
the cache does not have a valid copy), Read-Only (Ro; the cache has a clean copy
which is potentially shared with other caches), and Read-Write (RW; the cache owns an
exclusive copy of the block). INC tags also provide additional storage space for proto-
col information; they are used specifically to store 'pointers' for the linked lists used
by the protocol.

2.1.2 Cache Algorithm
The S3.mp protocol is an ownership-based, write-invalidate protocol, A read hit

or a write hit to an owner copy do not cause coherence transactions. A cache miss is
always serviced by the home node if there is no owner copy in the system. When an
owner copy is present, the owner node is requested to provide the data. In the S3.mp,
the requesting node always becomes the new head of the linked list.

When a write miss occurs, the linked list is cleared by an ordinary invalidation
process. Invalidation is initiated by the home node which sends an invalidation to the
head node of the linked list. The invalidation then propagates through the list and the
last node acknowledges the home node to complete the invalidation process.

INVAL ACK ~ req~e ~.
. . . . I : - old elm m

. ~ ~ new ehain

�9 ,~,n I ~,_I - -] ~ g ~ w _ ~ v o _ m . ~ , ~ _ F ~ _ s ~
k, , ,~y I D~ t ~ - . . . _ . . , ~ " ~ ~ 4~"g'~

...a

Fig. 2. Procure Ownership.

In the case of requesting for ownership, the home node initiates a selective invali-
dation cycle to remove all other cached copies but the requesting node copy. The trans-
action is shown in Fig. 2. The local node P2 sends a request for ownership (EX__ REQ)

of the block to the home node. When the home node receives the request, it issues a
selective invalidation request (IIWJAL_REQ_SEL) to the head node P1 of the linked
list. This invalidation message carries a null ID, which is not associated with any node.
When PI receives the invalidation, it invalidates its copy and forwards the invalidation

request (INVAL FWD SEL) to P2. When Pz receives the invalidation, it checks the
node ID carried in the message. If it finds a null ID, it replaces the null ID with its own
ID before propagating the message. In this case, P2 will become the new exclusive

290

owner of the block. If the message carries any other ID, P2 will invalidate its copy and

forward the invalidation to the next node in the list. Therefore, if more than one pro-
cessor tries to write, the first one in the list will be granted ownership. This mechanism
deals with the possibility that multiple processors in the list may issue EXREQ mes-
sages concurrently, hence the number of outstanding EX_REQ messages are not known
to the home node. After processing the first EX REQ message, subsequent EX REQ
messages are obsolete and cause only harmless invalidations once they are processed
by the home node. In the example, when P3 receives the invalidation, it invalidates
itself and acknowledges the home node.

Replacing a block in the state RW causes a write-back to the home node. If the vic-
timized block is in state RO, a conditional invalidation message is used to remove the
node containing this block from the sharing list. As shown in Fig. 3, the local node Pz
first sends an uncache request (UNC REQ) to the home node, which subsequently
sends a conditional invalidation (INVAL_REQ_COND) to the head node P~. This inval-

idation message contains a null ID. When P1 receives the invalidation, it updates its
next pointer with the received ID. P1 then forwards P2 an invalidation message
(INVAL_FWD_COND) which includes its own ID. When P2 receives the invalidation,

it invalidates itself and propagates to P3 the same message received from P1. When P3

receives the invalidation message, it changes its pointer to the ID of P,. P3 acknowl-
edges the home, which promotes P3 to the new head node of the linked list. The condi-

tional invalidation is similar to the selective invalidation, except that it removes only
the cache blocks which are waiting to be discarded in one pass through the sharing list
and reverses the linked list. Linked list reversal solves the problem of unnecessarily
invalidating part of the sharing list while invalidating a single node, which has been
considered a disadvantage for protocols utilizing single linked lists [18]. The home
node can tell from the acknowledgment when the last outstanding copy is discarded.

INVAL ACX ~

~ ' ~,. I ~ ~ ~

Fig. 3. Replace a Block in Shared State.

A Recall operation occurs when a processor at the home node has an access miss
and there exists a remote owner. The current owner is asked to relinquish its copy and
to return the new data to the home memory. The S3.mp supports a special operation
called Write-AU which allows a node to update an entire 32-byte memory block and
forces all cached blocks to be invalidated using ordinary write-invalidation process.
This operation accelerates bulk data moves or I/O operations.

3 Verification of the Protocol
3.1 Protocol Model

In the formal verification model several abstractions are made in order to con-
struct a model with manageable complexity. Only one block is modeled and no infor-

291

marion is kept on transactions to other memory locations [10,13]. We assume that
replacements can take place at any time and we model them as processor accesses.

With respect to a single memory block, we abstract the architecture by the model
of Fig. 4. The model consists of a home node and multiple processor-cache pairs. The
first-level cache is explicitly modeled for the home processor in order to test the Recall
operation. For remote processors, the first-level caches are not modeled as explained in
section 2.1. Each processing node has only one processor which is associated with one
message sending channel (CH!) and one message receiving channel (CH?) to model
the message flow between caches and main memory. All message clmnnels are charac-
terized as non-FIFO buffers to simulate the network. Furthermore, we assume that
messages are never lost.

home node

t I
i i
I I

I

I I

t I

pt~0col maclaine (system stae)

b ~ ~ n e

m?

~ f

m?

Fig. 4. Ver i f i ca t ion M o d e l .

Another important abstraction made in the model is to allow only one ghost or
unresolved message (per message type) in any message channel [2,14]. Ghost requests
are caused by messages whose meaning is lost between their transmission and their
reception because some other message has changed the state of the block. In the cases
of uncache and ownership requests, there is a slight possibility in the S3.mp protocol to
leave ghost requests in the network. For example, consider the case where processors
P] and P2 initially share the block and issue requests for ownership of the block con-

currently. Suppose that Pl's request wins the race so that P2's copy is invalidated. P2 is

therefore forced to re-initiate a request for an 'exclusive copy' of the block, leaving an
out-of-date ghost request for ownership of the block floating in the system. The other
source of ghost messages occurs when processors P1 and P2 send requests to discard

their copies at the same time. If Pl'S request arrives at the home node first, both Pl's

and P2's copies are discarded (a conditional invalidation removes all entries scheduled
to be discarded), while P2's request remains pending.

Ghost requests for ownership and for block replacement are designed to be harm-
less to the correctness of the S3.mp protocol. In a correct design, unresolved requests
for ownership merely purge the linked list and unresolved uncache requests only
reverse the linked lists. However, obsolete requests waste network bandwidth and slow
down the system, as well as exacerbating the complexity of the verification. On the
other hand, protocols that are free of ghost-messages require more message exchanges
and limit the concurrency, which results in lower performance for the common case.
Due to the non-FIFO interconnect network, the number of ghost messages is not
bounded, which prevents convergence of the verification process. Limiting ghost rues-

292

sages in any given message channel to one per message type does not compromise the
validity, but greatly simplify the verification. Because the network is non-FIFO and a
ghost message can be indefinitely delayed in the model, processors may receive ghost
messages in arbitrary states. An alternative approach to model ghost messages consists
in using pseudo processors which only act only as event generators injecting ghost
messages into the verification model unconditionally. In section 4.4, we will explain
how the SSM method automatically supports this alternative.

3.2 Modeling of Data Consistency
The S3.mp supports three memory consistency models: Total Store Order, Partial

Store Order, and Relaxed Memory Order [15]. The strict Sequential Consistency model
[8] is not supported. Rigorously speaking, the S3.mp cache protocol only guarantees
the property .of consistency: the value of a load access La to memory location a is the
value written by the most recent store Sa that was globally performed or by the most
recently initiated store by the same processor. The "globally performed order" among
stores is defined by the program order and the execution order of synchronization
accesses [1]. The programmer can specify the order constraints of memory accesses
either implicitly by the choice of memory model or explicitly by using memory-barrier
(NEMBAR) instructions [17].

To verify the property of consistency, we need to keep track of values of all data
copies. Extending the abstraction in [13], the value of any cached copy can be in one of
five states: NoData (the cache has no valid copy), GlobalFresh (the cache has an
up-to-date copy; value is def ined by the latest global ly per formed write),
G l o b a l F r e s h Ho ld (the cache writes a new value which is not yet visible to other
processors), Lo ca 1 F r e s h (a valid copy for read; a new value defined by another pro-
cessor is not yet visible to the cache), and O b s o l e e e (the cache has an out-of-date
copy). The memory copy can also be one of the above states.

Consider the case of a write miss handled by the S3.mp protocol in Fig. 5. Ini-
tially, processors P1, P2, and P3 share the block. Their copies are globally fresh as well
as the memory copy. When processor P0 experiences a write miss, it sends a request to
the home node which provides a data copy to P0 and initiates an invalidation cycle to
purge the linked list. As soon as P0 receives the data, it performs the pending write and
immediately defines a new value, whereas P2 and P3 have not yet received the invali-
dation. As a result, inconsistency may exist among data copies cached by Po, P2, and
P3, nevertheless, the system still operates correctly in conformance with the SPARC
consistency models by "hiding" the value stored by Po from other nodes until the
invalidation cycle is complete. In our abstraction, when P0 performs the write, it
defines a new value (GlobalFresh Hold), but this value is not yet visible to other
processors. Processors P2 and P3 are still allowed to read their locally fresh (L o c a l -
F r e s h) copies. Thus, the read accesses by Pz and P3 appear ahead of the write access
by Po in a legal order of execution. As shown in Fig. 5, the MEMBAR instruction orders
the store access and memory accesses after the NEMBAR instruction. The NEblBAR
instruction stalls processor P0 until the completions of preceding accesses. When

293

finally receiving an acknowledgment from home, P0 holds the most recent value, and

all other copies in the system (including the home memory copy) become obsolete.

- / _ . ~ w ~ - PI P2 P3

i NoData GlobalFresll GlobalFresh GlobalFresh GlobalFresh
, Po . Pl �9 P2 P3

MEMBAR
GlobalFresh_Hold LocalFresb NoData LocalFresh LocalFresh

Request P0 aek P1 P2 P3
t:>- Linked-list f3) ~ ~ ~

GlobalFresll Obsolete NoData NoData NoData

Fig. S. Trace Values of Data Copies.

From this abstraction, we verify that the S3.mp protocol never allows a processor
to read a memory location with an obsolete value.

3.3 Verification Methodologies
3.3.1 State Enumeration

First, we use the Stanford Murcp system [4] to verify the protocol. The Murcp
implements a state enumeration method which explores all possible system states. We
start the expansion process with an initial state in which all processors are in the
Invalid (TN-V) state, and the home node is in the Reside (RES) state. All possible tran-
sitions are exercised, leading to a number of new states. The same process is applied
repeatedly for every new state until no new states are generated. (Some transitions may
lead back to states which have already been generated.)

To deal with the large state space, the Murq~ exploits the symmetry of the system
by grouping together states whose representations are permutations of each other [6].
According to the symmetry as shown in Fig. 4, the contexts of processors (represented
as base machines) can be swapped without affecting the behavior of the system. Given
a protocol model with n processors, the maximum reduction is n!. The Murk0 also
incorporates state encoding to reduce memory usage and hash tables to speed up the
search and comparison operations.

We have successfully applied the Murcp to verify completely a system model
including one home node and two remote nodes. Many design errors were found
quickly in this small model. The trace generation facility provided in the Murcp has
proven to be very useful. However, this model is fairly small and a moderately larger
model is needed to obtain more reliable verification results.

3.3.2 Symbolic State Model (SSM)
Based on the symmetry and homogeneity of cache protocols (e.g., all bases

machines in Fig. 4 are symmetrically and functionally identical), the SSM method dif-
fers from other state enumeration methods in the ways of representing and pruning
global states. Since, in all existing protocols, data consistency is enforced by either
broadcasting writes to all copies or by invalidating the copies in all other caches, the
exact number of data copies in a shared state is irrelevant to protocol correctness. What
is critical is whether there exists 0, 1, or multiple copies in a particular state (such as
more than one RW copy). As a result, the SSM maps system states to more abstract
states which do not keep track of the exact number of copies. The following repetition

294

constructors are used to represent global states (for a detailed justification, see [13-
14]).

Definition 1. (Repetition Constructors)

1. Null (0) indicates zero instance.
2. Singleton (1) indicates one and only one instance.
3. Plus (+) indicates one or multiple instances.
4. Star (*) indicates zero, one or multiple instances.

In a system with an unspecified number of caches, we group base machines (Fig.
4) in the same state into a state classes and specify the number of caches in the class by
one of the repetition constructors. For example, we can represent all the global states
such that "one or multiple caches are in the Invalid state, and zero, one or multiple

caches are in the Read-Only state" by (I n v +, RO*). This representation includes a
large set of states, which would otherwise be listed explicitly in a state enumeration
method.

Unfortunately, this abstract representation is not sufficient to represent linked lists.
Therefore, we use a hybrid model in which processors in the linked lists are explicitly
maintained and other processors are represented by the abstraction. The formal defini-
tion of a global state (called composite state) is defined as follows.

Definition 2. (Composite State) With respect to a given block, a composite state
represents the state of the protocol machine for a system with an arbitrary number of
caches. It is constructed over an explicit linked list which contains the states of
processors sharing the block. Processors that are not kept in the linked list are
grouped and represented by the abstraction of the symbolic state model. Specifically, a
composite state has the form

(q~ff~,--->RlClsl-->RzC2sz-->... -->RkC~sk,(Rk+aCk+l~,:*+~ R Cn~)),
where C i is the cache state, R i and S i represent the states of the message receiving and

sending channel respectively, ri:k+l..n E [0, | , +, *] and q ~ i s the state of the home
memory. The arrows represent the pointers in the linked list.

Repetition constructors are ordered by the possible states they specify. The result-
ing order is 1 < + < *; the null instance is ordered with respect to *, i.e., 0 < *. These
two orders lead to the definition of state containment.

Definition 3. (Containment) Composite state S z contains composite state $1, or S 1

s if

1. S1 and $2 have exactly identical linked list,

r�91 r 2
z . s 2 _< i.o., , _< and

3. qgz~a = q ~ e

where r v r 2 ~ [0, 1, +, *[.

This definition is an extension of our previous work which deals with snooping
and central directory-based protocols [13,14]. We have added the requirement that two

295

global states must have exactly identical linked lists in order to model the distributed
directory structure of the S3.mp. As shown before, the SSM abstraction leads to a
monotonous containment relation such that, if S 1 ~ S 2, then the family of states repre-

sented by $2 is a superset of the family of states represented by $1. Augmenting the
abstraction with the explicit linked list does not affect this property of monotonicity.
Because S 1 and S 2 must have the same linked lists, states evolving from activities of

processors in the linked lists of $1 and S 2 are identical.

Theorem 1. (Monotonicity) l f S 1 ~ S~ then for every ~1 reachable from S 1 there exists
~2 reachable from S 2 such that ~1 ~ ~2.

As the expansion process progresses, the SSM only keeps composite states which
are not contained by any other state. At the end of the expansion process, the state
space is partitioned into several families of states (which may be overlapping) repre-
sented by essential states.

Definition 4. (Essential State) Composite state S is essential if and only if there does
not exist a composite state ~ such that S c ~.

Based on the monotonicity property of the SSM abstraction, we run the verifica-
tion incrementally. The verification is started by limiting the maximum number of pro,
cessors allowed to actively share the block to two (the length of the linked list). This
number is then increased by one in each consecutive run. The set of essential states
reported at the end of the current run is used as the set of initial states for the next run
in order to quickly accumulate the state information. As the model size grows, the state
space expands. We therefore run the verification until we run out of memory to store
the state information.

4 Verification Results
Because of the high complexity of the S3.mp protocol, we have used a technique

called case-splitting to avoid dealing with the entire protocol at one time. We have
identified and isolated events that can be verified separately. For instance, the reason
for modeling the first-level cache of the home processor is to test the Recall operation.
The Recall operation occurs when an access misses in the cache of the home node
while an exclusive copy exists in a remote node. To test Recall operation, we first run a
small model of three processors with the full set of operations; then the home proces-
sor cache and the accesses from the home processor are removed in larger models.
This simplification is justified because the small model covers the case in which a
remote owner exists; regardless of the model size, only one owner is allowed in the
system, and concurrent transactions are serialized by the home directory. When the
home processor initiates a Recall transaction, there must exist only one owner copy
and this transaction is guaranteed to complete before the next coherence transaction is
executed by the home directory. This makes it possible for coherence transactions ini-
tiated by home processors to be checked in small models and eliminated from larger
model so that the doubling of the size of the state space is avoided.

The Write-All access can be dropped in larger models for the same reason, i.e. a
Write-All access essentially results in an ordinary write-invalidation which clears the

296

sharing list. Since the home directory is locked during the propagation of invalidations,
the invalidation caused by a Write-All request is equivalent to a normal write-invalida-
tion operation, Therefore, in larger models, we do not need to repetitively model the
Write-All operation.

4.1 Efficiency of the SSM Method
All the verifications were ran on a Sun4/690 system with 500Mb of physical memory. The

performance of the verifications for all model sizes from 2 to 5 processing nodes is
listed in Table 1. As shown in the table, the verification process is memory-intensive,
partly because the SSM state information is not encoded in the SSM and, since the
state classes are dynamically created and discarded, a large amount of memory is
needed to maintain the complete representation of a global state in the SSM. The veri-
fication time increases rapidly with the number of nodes in the sharing list. Because we
use the results generated in a current run as the set of starting states for the next run,
the verification time accumulates. Most of the time is wasted for generating, searching
and comparing states which have been produced. In fact, the efficiency of the SSM
method depends on how fast the final set of essential states are generated. Unfortu-
nately we do not have a very good heuristic to this end. The results listed in Table 1 are
obtained by using a a depth-first expansion scheme. Namely, the next expansion path is
explored only when the current expansion path is exhausted.

TABLE 1 : The Verification Results by Using the SSM Method.

Sharing Degree Verification Time Memory (Mb)
2 11.33 0.03

3 7,419.57 28.32

4 326,413.80 352.46

5 402,638.63 a 500

a. This run is not fully completed.

As expected, the hybrid SSM method does not generally avoid the state explosion
problem because processors sharing a memory block are explicitly tracked.

4.2 Data Inconsistency Caused by Stale Write-Backs

Although requests in the S3.mp protocol are always acknowledged, messages are
context sensitive. Two nodes may concurrently send two independent request messages
for the same memory location, such that each request is regarded as the acknowledg-
ment by the recipient. For example, the home node may issue a Recall request while at
the same time the remote owner sends a write-back request to the home node. No addi-
tional messages are generated to complete this exchange. The advantage of context
sensitive semantics is lower latency and less traffic in some cases, but the design and
verification of the protocol are more complex.

An error of data inconsistency caused by a stale write-back is shown in Fig. 6. Ini-
tially cache P0 has a dirty copy of the block, and performs a write-back (WB_REQ) to

the home node. In order to guarantee that the memory receives the block safely, cache
P0 keeps a valid copy of the block until it receives an acknowledgment. Meanwhile,
cache PI sends a request (CRE REQ) for an exclusive copy to the home node. Cache

P0 then processes the data-forward-request (DFWI9 E REQ) from home, sends the

297

data to P1, and continues, ignoring the acknowledgment from the home node. P1 then

performs its write and victimizes the block after some unrelated misses. As shown in
Fig. 6, a race condition exists between the two write-back requests. If the write-back
from P1 wins the race, the stale write-back from P0 overwrites the values updated by

P1- Note that, in this example, all state transitions are permissible.

i . w B RF.Q

Fig. 6. Data Inconsistency Caused by Stale Write-Back.

If we do not keep track of the values of the data copies, this error goes unde-
tected because the system correctly allows only one exclusive owner copy at any time.
In our abstraction, when P1 performs its write, it defines a globally fresh copy as com-
pared to the obsolete copy carried by P0's write-back message. This error is easily

detected.

4.3 Data Inconsistency Found in a Larger Model

A fairly complex error which only appears when the verification model includes
more than three processors was found and the sequence of events leading to this error
shown in Fig. 7 is as follows:
1. Initially processor P0 writes back its exclusive copy (WB REQ) to the home node.

Also, processor P1 and P2 request shared copies (CR_REQ). P0 keeps a valid copy of
the block until it receives an acknowledgment from the home node.

2. The home node receives the request for a shared copy from P~. The home node

establishes a new link pointing to P1 and issues a data-forward request
(D_FWD REQ) to the current owner P0- Processor P1 is considered to be the new
head of the list.

3. The data-forward-request from the home node, is interpreted by P0 as an
acknowledgment. Po forwards its copy to P~ (by DATA._FWD E) and invalidates its

copy. When the home node receives the write-back from Po, it updates the memory
copy and releases the directory entry locked by the transaction from P~. The
directory changes to the stable state SR.

4. Home receives the request for shared copy from P2. The home memory copy is
supplied to P2, which becomes the new head of the list. P1 is now the second node
in the list. P1, meanwhile, is still waiting for the copy forwarded by Po.

5. Home receives a harmless ghost request for replacement of a read-only copy
(UNC REg, section 3.1). This request merely reverses the linked list in a correct
protocol. When P1 receives the conditional invalidation passed by P2, P1 needs to
keep its pointer to P2 to set up the list correctly.

298

6. When P1 receives the forwarded exclusive data from Po, P1 nullifies its pointer since

it thinks that it has the only copy. This causes the chain to be broken and I>2 is left

off the list. When other processors write to the block, P2's copy is not properly

invalidated.
horn* P0 home P0

Pa P1 P2 PI

O) (2)
home P0 hon~ Po

DATA_ I~JVD_ E DATA_FWD_E

P2 Pt P2 PI
(3) (4)

home PO home Po

(5) (6)

Fig. 7. Data Inconsistency due to a Broken Chain.

This error only occurs when at least four processors are involved. It was not
detected in the model with two or three processors.

4.4 Generation of Events in the SSM

It should be noted that the state enumeration method and the hybrid SSM abstrac-
tion do not deal with the extreme case that the sharing list is infinitely long. To some
extent, the SSM method loses some of its advantages over other approaches of verify-
ing cache coherence protocols for arbitrary number of processors [13]. Nevertheless,
we still exploit the other advantages provided by the symbolic state model in spite of
this constraint.

Given a limited amount of memory and computation time, the advantage of using
the SSM model versus a state enumeration method is that more test sequences are gen-
erated than in the state enumeration method which has a fixed number of processors.
The state enumeration method only explores the interactions between the set of proces-
sors included in the model. The hybrid SSM model generates additional sequences of
memory accesses initiated by processors out of the linked lists. When a processor is
retired from the linked list, it moves to the part of the state representation abstracted by
repetition constructors and interacts with the rest of the system for the rest of the
expansion process.

Consider the scenario shown in Fig. 8. In So, processors P0, P1 and P2 initially
share the block and issue requests (EX REQ) for ownership of the block at the same
time. Other processors have no copies and are grouped in the abstracted part of the rep-

299

resentation. In the example, some processors are in the INV state and some processors
are in the CRE_t transient state with issued requests for the owner copy of the block in
their sending channels. In accordance to the protocol, when P2's request wins the race,

it obtains an exclusive copy. Po and P1 are retired from the sharing list and are forced to

regenerate requests (CRE_REQ) for owner copies. The states of P0 and P1 are com-

bined into a new class in the abstraction, this new class evolves with the state expan-
sion and never vanishes as shown in the transition f rom S 2 to $3. As a result,

processors grouped in the abstracted part of the representation act as event generators
which constantly inject new memory transactions into the system. The original
requests (EX REQ) issued by P0 and P1 are ghost messages in S 2 and S 3.

Po P1 P2

r (* * 5) S 1 : [SRN --4 eEX_t~x_Re~ ~ eEX_:Ex_REQ "-4 eEX - tEX~.REQ' ~r vr r CI~E_REQ)}

Request from p; wins t l ~ ~

((�9 * +
CRE t c~E r~Q CRE t cRs

EX REQ

Hon~ colmumes C R E _ R ~

((O * C R E-t*CRE-REQ' t~C R E-IEx-r~Q' * RF.Q)) $3: Invr ,0 r eRE_
r EX_REQ

CRE _REQ: req~eat for exc lu sire owner copy CREt: tra~air ~ for tracking CRE_REQ request
F2f_R EQ: reqtlest for ownership EXt: tranair nt ~ar for ~racking EX_REQ request

Fig. 8. State Expansion and Event Generation in the Hybrid SSM Method.

The SSM method can be simplified even more by dropping the plus (+) construc-
tor. The plus constructor was introduced to track the existence of a data copy. For the
S3.mp protocol, we do not have to be concerned about the exact number of processors
in a particular state class since deterministic information such as the processors sharing
the same memory block is maintained in the linked lists. The plus constructor can
therefore be dropped without affecting the validity of the SSM method.

5 Conc lus ion

We have presented the results of verifying the S3.mp cache coherence protocol.
The difficulty in verifying a distributed directory protocol is to abstract the linked lists
efficiently, while correctly preserving properties that need to be checked. Since correct
maintenance of the linked lists is orthogonal to maintaining data consistency, a possi-
ble solution is to isolate the problem of verifying the integrities of the linked lists from
the problem of verifying data coherence. We think that the techniques applied to the
S3.mp cache coherence protocols are applicable to other linked-list based cache coher-
ence protocols, for example the SCI [7].

We have also demonstrated how to formulate the condition of data consistency in
the context of relaxed memory consistency models. The approach in this paper only
verifies the property of consistency, for which the state of a single memory block must

300

be tracked. A more difficult problem is the verification of correct memory ordering of
all memory accesses according to the memory consistency model. No formal method
has been conceived as of today to tackle this problem. Even if a formal f ramework is
found, the states and the values of mul t ip le m e m o r y locat ions would have to be
tracked, and this requirement would no doubt exacerbate the state space explosion
problem.

References

[1] Adve, S.V. and Hill, M.D., "Weak Ordering--A New Definition", Proc. of the 17th Int'l
Symposium on Computer Architecture, May 1990, pp.2-14.

[2] Archibald, J.; "The Cache Coherence Problem in Shared-Memory Multiprocessors",
Ph.D Dissertation, University of Washington, Feb. 1987.

[3] Collier, W.W., Reasoning About Parallel Architectures, Prentice Hall, Englewood Cliffs,
New Jersey.

[4] Dill, D.L., Drexler, A.J., Hu, A.J. and Yang, C.H., "Protocol Verification as a Hardware
Design Aid", Int'l Conf. on Computer Design: VLSI in Computers and Processors, pp.
522-525, Oct. 1992.

[5] Holzmaun, G.J., "Algorithms for Automated Protocol Verification", AIX&T Technical
Journal, Jan./Feb. 1990.

[6] Ip, C.N. and Dill, D.L., "Better Verification Through Symmetry", Proc. llth Int'l Syrup.
on Computer Hardwae Description Languages and Their Applications, pp. 87-100, Apr.
1993.

[7] James et al., "Scalable Coherent Interface", IEEE Computer, June 90, Vol 23, No. 6, pp
71-82.

[8] Lamport, L., "How to Make a Multiprocessor Computer that Correctly Executes Multi-
process Programs", IEEE Trans. on Computers, Vol. C-28, No.9, Sept. 1979, pp.690-691.

[9] Lenosky, D., et al., "The Directory-Based Cache Coherence Protocol for the DASH Mul-
tiprocessor", Proc. of the 17th Int'l Symposium on Computer Architecture, June 1990, pp.
148-159.

[10] McMillan, K.L. and Schwalbe, J., "Formal Verification of the Gigamax Cache Consis-
tency Protocol", Proc. of the ISSM Int'l Conf. on Parallel and Distributed Computing,
Oct. 1991.

[11] Nowaztyk, A. and Parkin, M., "The S3.mp Interconnection System and TIC Chip", Hot
Interconnects 1993.

[12] Nowatzyk, A., Aybay, G., Browne, M., Kelly, E., Parkin, M., Radke, B. and Vishin, S.,
"The S3.mp Scalable Shared Memory Multiprocessor", HICCS, 1994.

[13] Pong, F. and Dubois, M., "The Verification of Cache Coherence Protocols", Proc. of the
5th Annual Symp. on Parallel Algorithm and Architecture, pp.ll-20, June 1993.

[14] Pong, E and Dubois, M., "Formal Verification of Complex Coherence Protocols Using
Symbolic State Models", Technical Report CENG-94-01, University of Southern Califor-
nia.

[15] Sindhu, P.S., Frailong, J-M. and Cekleov, M., "Formal Specification of Memory Models",
In Dubois M. and Thakkar, S., Editors. Scalable Shared Memory Multiprocessors. Klu-
wer, Norwell, MA, 1992.

[16] Stenstr6m, P., "A Survey of Cache Coherence Schemes for Multiprocessors", IEEE Com-
puter, Vol. 23, No. 6, pp. 12-24, June 1990.

[17] The SPARC Architecture Manual, Version 9, Prentice Hall.
[18] Thapar, M. and Delagi, B., "Stanford Distributed-Directory Protocol", IEEE Computer,

June 1990, pp. 78-80.

