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Abstract: Shared memory multiprocessors are based on memory models, which are pre- 
cise contracts between hard- and software that spell out the semantics of memory opera- 
tions. Scalable systems implementing such memory models rely on cache coherency 
protocols that use dedicated hardware. This paper discusses the design space for high 
performance cache coherency controllers and describes the architecture of the program- 
mable protocol engines that were developed for the S3.mp shared memory multiproces- 
sot. S3.mp uses two independent protocol engines, each of which can maintain multiple, 
concurrent contexts so that maintaining memory consistency does not limit the system 
performance. Programmability of these engines allows support of multiple memory 
organizations, including CC-NUMA and S-COMA. 

1 I n t r o d u c t i o n  

Shared memory multiprocessors are gaining popularity due to their programming 
model, which tends to ease software development. In fact, most current multiprocessor 
systems use the shared memory paradigm, which leads to a growing body of software 
that is based on the assumption that all threads of a parallel application may access all 
memory. However, most of these machines use buses, which limits the number of sup- 
ported processors to about 10. There are numerous proposals for scalable shared mem- 
ory multiprocessors [ 1,2,3,4,5] that either have been built or are being implemented. 
Common to all of these machines is the use of a scalable switching fabric that passes 
messages between the processing nodes, which consist of one or more processors, I/O 
and memory. Generally, such switching fabrics do not support broadcasting, which 
means that the relatively simple memory consistency methods (snooping) from bus 
based MPs cannot be used. Instead, memory consistency is typically maintained by 
means of a directory and a cache coherency protocol that defines how memory transac- 
tions are translated into message exchange sequences between nodes that share data. 

Cache coherency protocols for scalable, non-broadcast systems are more complex 
than those for bus-based multiprocessors. While it is possible to implement a scalable 
CC-protocol completely in random logic [3], it is preferable to use a more structured 
approach that uses a combination of hardware and software, where the hardware is 
accelerating the common operations and the software is handling infrequent, but com- 
plicated, comer cases [1,21. 

This paper addresses the problem of designing efficient protocol engines to main- 
tain cache coherency for scalable, shared memory multiprocessors. Following this 
introduction is a brief overview of several existing implementations. Subsequently, a 
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discussion of the design space for high performance protocol engines addresses the 
specific needs to support memory consistency. In the remainder of this paper, the archi- 
tecture of the S3.mp protocol engines is described and evaluated. 

1.1 Background 

Remote memory references in the Stanford DASH [3] are processed by two units, 
the reply controller (RC) and the directory controller (DC), each of which are a collec- 
tion of hardwired functional units (data paths controlled by finite state machines). Both 
the RC and DC use field programmable logic devices (FPGAs, Xilinx) and program- 
mable read only memories (PROMs) that offer a very limited amount of programma- 
bility, which is mainly used to accommodate late design changes. The RC and DC use 
different, specific hardware structures and support only a limited degree of concur- 
rency (local bus operations may proceed while a remote access is being processed). 

The MIT Alewife [2] machine integrates the protocol processing onto one chip, 
the A-1000 CMMU [10]. This controller is tightly coupled to one processor chip and 
serves as its cache controller as well as the memory controller. This central position 
allows lower latencies. It also simplifies the logic because there is no need to support a 
local snoopy bus protocol in addition to the global CC-protocol, hence the hardwired 
coherency engine in the CMMU is smaller than the controllers in DASH. Alewife uses 
a hybrid approach to protocol processing where exceptional cases are handled by the 
local processor. This is made possible through the use of a special CPU chip that sup- 
ports fast context switching. Because of the intimate relationship between the CMMU 
and a fast context switching CPU, multiple outstanding transactions are supported. 

The PLUS [5] multiprocessor uses dedicated hardware (FPGAs) to tie one proces- 
sor to local memory and an interconnection network. The memory consistency proto- 
col is simpler and requires modifications to the application software. 

The main contribution of the Data Diffusion Machine [4] is the concept of a cache 
only architecture where data is no longer bound to a physical memory location. 
Instead, all of memory is structured as one multilevel cache hierarchy were data 
migrates to where it is used. This memory architecture complicates the cache coher- 
ency protocol. The first implementations of cache only memory architectures (COMA) 
systems, such as the KSR-1, used hardwired logic. 

Fig. 1. Basic Node Architectures 
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2 Protocol Engine Design Space 

The architecture of a cc-protocol engine (PE) is strongly influenced by the way it 
is connected to the rest of the processing node. In general, it is only part of the multi- 
processor hardware and is embedded in functional blocks that deal with the network, 
processor and memory interfaces. However for the purpose of providing a high level 
overview, the discussion of this support logic is deferred to the next section. 

In the case of an attached protocol engine (Figure 1) the processing node was not 
specifically designed to be part of a shared memory multiprocessor, rather it is a con- 
ventional computing system (workstation, PC, etc.) that uses a bus to connect one ore 
more processors to memory and I/O devices. The advantage of the attached design is 
that the starting point is a fully functional computing environment and that the shared 
memory interface may be added to existing machines. However, the attached PE needs 
to deal with a design that did not anticipate its needs. This leads to extra complexity and 
overhead. For example, a snoopy bus generally assumes that all attached caches can 
perform the tag-lookup in a relatively short and fixed amount of time. However, the PE 
is representing a large, remote memory with interconnect latencies that tend to be much 
higher that local bus transactions. In order to be able to participate in a snoopy bus with- 
out slowing it down, the attached PE needs to have the ability to conservatively predict 
the need to interfere with a bus transaction in a timely manner, which may require sig- 
nificant amount of fast, static memory dedicated to a fast directory lookup table. 

In the case of integrated PE, the designer exerts more influence over the memory 
design. In particular, it becomes possible to increase the memory bandwidth such that 
remote memory requests can be served without using up bandwidth on the local system 
bus. Furthermore, since most bus structures allow for variable memory response time, 
the snooping timing constraints are easy to meet. Continuing this line of architecture 
evolution is the merging of the PE with the CPU chip, so that the first/second level caches 
become accessible to the PE without cumbersome and time consuming bus protocols. 

PE designs can also be classified by their implementation technologies. Early PE 
designs were almost exclusively hardwired. However the trend is to more programma- 
ble designs because it becomes clear that cc-protocols have not matured yet. In fact 
this is an active area with considerable innovation potential. For example, automatic 
detection of migratory data objects has been shown to be effective while requiring only 
modest changes to a cc-protocol [11, 181. At the far end of this implementation spec- 
trum is the use of standard RISC processor cores, which are provided by many ASIC 
vendors as compact, fully tested megacells [12]. While shortening the design cycle, the 
use of a standard RISC core does however increase the number of cycles necessary to 
process the cc-protocol. 

2.1 System Interfaces 

The primary interfaces for the PE are the interconnect network and the connection 
to the processor. In the case of an integrated PE, it must also interface to the main 
memory. 

For attached PEs, the processor interface is essentially the system bus, which also 
serves to access main memory. The challenge is to design the PE so that it can deal 
with a given system bus, which generally did not anticipate the needs of a PE. As men- 
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tioned above, participating as a third party in snoopy bus transactions faces stiff timing 
constraints, which generally requires the use of expensive, fast and power hungry 
static memory devices (SRAM) to hold tables of memory locations that have been 
cached by remote nodes. Dealing with a system bus also complicates matters because 
it generally supports a multitude of transaction types, word sizes and alignments. A 
particular troublesome issue is the support of bus-locking, which tends to cause dead- 
locks in a scalable system without broadcasting. 

The interconnect network is generally tailored towards the need of the PE. Critical 
issues are bandwidth, message insertion rates and latency. It is desirable to have the 
ability to insert multiple messages concurrently. Furthermore, the use of either inde- 
pendent networks for requests and replies or the support for multiple priorities can 
eliminate the need for deadlock recovery methods. 

While the memory interface requirements don't differ much from that of an ordi- 
nary processing node, it is advantageous to support multiple banks and to have the 
ability to process several concurrent requests. Advanced DRAM devices, such as 
RamBus and S-DRAM, offer improved interfaces that allow multi-banked systems 
with modest effort. 

2.2 Sources of Parallelism 

The most obvious source of parallelism within a PE stems from the fact that the 
PE plays two roles, that of a client which initiates transactions and that of a server that 
has to respond to remote requests. The demand on both units in terms of number of 
transactions and the complexity of each transaction is roughly equal. 

Higher performance systems generally need ways to hide the latency of remote 
memory references, most of which result in a demand for more bandwidth and more 
concurrent transactions. Prefetching and lockup free caches will both supply the PE 
with multiple transactions before one has completed. Given that it is much easier to 
design interconnect networks with higher bandwidth than with lower latency, this par- 
allelism can be readily used. However the PE design becomes more complicated due 
to the need to coordinate multiple transactions, allocate resources in a non-blocking 
fashion and keep transactions separate. Furthermore, maintaining the proper memory 
semantics becomes more difficult. 

Finally, there is a certain amount of parallelism within each transaction itself, 
which is best matched with a pipelined design that schedules data movement and con- 
trol transfers separately. 

2.3 Protocol Families 

The two main classes of cache coherency protocols are labeled nonuniform mem- 
ory access (NUMA) and cache-only memory architecture (COMA). The non-unifor- 
mity in NUMA refers to the fact that the memory latency becomes a function of the 
location of the memory block. The PE support for NUMA requires a mechanism to 
keep track of the cached copies of a particular memory block. Typically, this is done by 
maintaining a directory. Directories can either be stored at the location of the main 
memory [1,2,3] or a the location of the (processor-) caches [7,8]. While the latter 
approach requires less dedicated storage for the directory, it does require a more inti- 
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mate connection to the processor, which is typically not possible in the attached PE 
configuration due to the characteristics of the system bus. 

In addition to the directory, NUMA systems benefit from a cache that stores the 
data from remote memory references. It turns out that in PE designs that use the client/ 
server approach, the directory is only updated by the server while the cache for remote 
data is maintained exclusively by the client. 

In addition to the facilities of a NUMA system, a COMA supporting PE needs to have 
a mechanism to locate the data for a given address. This involves the support for table 
with semi-associative lookup capability, much like the tag-store of conventional caches. 

3 The S3.mp Protocol Engines 

The S3.mp scalable, shared memory multiprocessor is an experimental research 
project that is being implemented by SMCC's Technology Development group. The 
S3.mp architecture is similar to systems mentioned in section 1.1, however unlike 
these conventional CC-NUMA MP's, S3.mp is optimized for a large collection of 
independent and cooperating parallel applications that share common computing 
resources which may be spatially distributed. Consequently, support for concurrent I/O 
operations, as in a video server, is important besides the traditional parallel applica- 
tions. S3.mp nodes may be spatially separated by up to 200m, which means that a 
S3.mp system could be distributed over an entire building. 

Fig. 2. S3.mp System Overview 
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Figure 2 shows the generic S3.mp components: each node is essentially equivalent 
to a workstation with one or more processors, memory and I/O. The two S3.mp spe- 
cilic components are the interconnect controller (IC) and the memory conlroller (MC). 
The IC is a topology independent router that allows the construction of switching fab- 
rics without centralized switches that have a bisection bandwidth that is comparable to 
that of a Cray T3D, but at much lower costs [13]. The interconnect fabric is composed 
of either fiber optic links or electrical connections that can carry bit serial data at rates 
exceeding 1.3 Gbits/sec. For the purpose of the subsequent discussion, the IC network 
should be regarded as a black box that can transport messages reliably between any 
two nodes in the system. This interconnect systems offers 4 levels of priorities. 
Because of the adaptive routing algorithm used by the IC, the message delivery order 
is not maintained. 

The memory controller includes the protocol engines that are responsible for 
translating between local bus transactions and the messages that are transmitted over 
the interconnect system. There are two identical protocol engines, each with its own 
writable microcode memory. 
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3.1 The S3.mp processing element 

Each S3.mp node consists of 2 gate arrays with about 200K gates combined that 
are part of one multi chip module (Figure 3). The MC interfaces directly to the mem- 
ory chips, the local processor bus (Mbus) and the interconnect controller (IC). Nor- 
really, the MC serves memory operations from the local bus to the local memory, just 
like a conventional memory controller. However, it maintains a global 64 bit address 
space and allows the local processor to issue memory operations for remote data. The 
MC can also initiate transactions on the Mbus as a result of messages received from 
remote nodes, In the base configuration, two processors are connected to each MC 
through the Mbus. 

Fig. 3. A S3.mp Node 
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The MC is designed to directly drive a 64 to 256 Mbyte memory array that uses 16 
or 64 Mbit synchronous DRAM devices. Coherency is maintained on memory blocks 
of 32 bytes, which is the size of one cache line on Mbus based systems. The architec- 
ture is not tied to a particular cache line size because remote data is cached in the MC 
and the MC could maintain subblocks or multi-line objects. 

The MC uses 18 bits of ECC overhead and 14 bits of directory overhead for every 
32-bytes of memory. 14 bits provide sufficient storage to keep a 12-bit node pointer 
and 2-bit state for each cache line. 

The Mbus of each S3.mp node can be connected to other devices, which is the pri- 
mary facility to attach I/O devices to the system. Inparticular, it is possible to plug a S3.mp 
module into any Mbus slot (for example into a Spare Station 10 or 20 Workstation). 

3.2 The Memory Controller 

The MC is responsible for handling accesses to local and remote memory and for 
implementing directory based cache coherence protocols. In addition to operating as a 
normal memory controller, the MC performs the following functions: 

1. Maintaining the directory information for the local memory under its control 

2. Constructing and sending messages to remote nodes on the network initiated by 
local MBUS transactions that require remote access or in response to messages 
received from other nodes on the network 

3. Performing memory operations and MBUS cycles on the local node in response to 
messages received from remote nodes 

4. Maintaining an Inter-Node Cache (INC) which is used to store a copy of every 
cache line retrieved from a remote node 

5. Sending and receiving diagnostic messages to or from other nodes to program 
configuration parameters, handle errors, etc. 
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Fig. 4. Datapaths Through The Mc 
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From the CPU's point of view, the MC operates as a virtual bus extender. CPUs 
connected to the MC on the local Mbus can assume that they are talking to a cache 
coherent bus. Except for the extra latency in accessing remote locations, details of get- 
ting data from remote nodes and distributed cache coherence protocols are completely 
hidden from these processors. Parallel application software targeted for a shared-bus 
cache-coherent multiprocessor system, written in accordance with the SPARC memory 
models [7], should execute correctly on a S3.mp system without any modification. 
However, performance tuning may be necessary to achieve good performance for 
some applications. The MC, acting as a virtual bus extender, allows single-threaded 
programs to utilize the collective physical memory in a cluster of workstations for 
memory intensive applications and allow uniform access to all I/O devices for high 
performance server applications. 

The MC is structurally divided into the following set of modules (Figure 5): 

1. A bus controller to interface to the Mbus 

2. A memory sequencer to interface to SDRAMs 

3. the protocol engines to implement distributed cache coherency protocols (RAS and 
RMH) 

4. A configuration controller unit to take care of configuration management, errors, 
diagnostics, etc. 

5. Input and output queues for interfacing to IC (or to a general purpose point-to-point 
interconnec0 

Fig. 5. The MC Structure 
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3.3 The MC Environment  

The MC is designed like a system on a chip. Modules are designed to be as func- 
tionally self-sufficient as possible. Eqch module can generate and receive a small num- 
ber of transactions. The number of signals going between modules are kept to an 
absolute minimum. Functional units communicate with each other through an address 
bus, a data bus and a packet bus. Access to these buses are managed by a central con- 
troller, the scheduler. The scheduler receives dedicated request lines from each master 
module and ready lines from each slave module (Figure 6) and sends dedicated grant 
lines to each master and dedicated request lines to each slave. Requests requiring data 
or acknowledgments to be returned are handled as split transactions. In addition, most 
slaves are required to be able to function as a master and initiate transactions to return 
data and/or acknowledgments. 

Fig. 6. Central ized Communicat ion Control  
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A typical transaction proceeds as shown in Figure 7: 

1. The initiator asserts its dedicated request line (R_req) to the scheduler. R_req is a 
multi-bit signal including information about the resources to be used (i.e. A-bus, D- 
bus, P-bus), the number of cycles required for the transaction, module ID of the tar- 
get unit and the type of the transaction. Each unit has its own dedicated R_req line 
going to the scheduler. 

2. Slave modules assert a dedicated ready line (T_rdy) to the scheduler whenever they 
are ready to accept transactions. 

3. Every cycle, the scheduler examines request inputs from master modules and ready 
lines from slave units. When the scheduler determines that all resources required for 
a request are available, it schedules a transaction for that request. Necessary 
communication resources are reserved for the duration of the transaction. A grant 
signal (SC_R_grant) is sent to the requestor and the request type and requestor ID is 
relayed to the target module (with SC_T_req signal). 

4. Requestors are responsible for driving data on the bus as soon as they receive the 
grant signal from the scheduler. Typically, requestors latch the data into their output 
registers in the cycle they assert their request. The grant signal from the scheduler is 
used as an enable to drive data from these registers to the buses in the same cycle 
the transaction is scheduled. 
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Fig. 7. Internal B u s  P r o t o c o l  o f  M C  
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The main transaction initiators within the MC, the MBUS Controller, the Remote 
Memory Handler and the Remote Access Server, compete for access to the memory 
controller. The memory controller is designed to be able to handle two simultaneous 
transactions to a 4-banked memory subsystem. The split transaction communication 
protocol used in the MC reduces the contention on internal buses by reserving the 
buses only when data transfer is taking place. The data bus has a bandwidth of 1 
Gbyte/sec, that connects the Mbus (320 MB/sec peak), the memory (640 MB/sec peak) 
and the two protocol engines (sharing the I/O queues with 440 MB/sec). Using split 
transactions such that data is always pushed by the sending unit which initiates arbitra- 
tion also introduces a level of parallelism and pipelining. It is possible to send the 
address for a transaction on the address bus while an independent data transfer is tak- 
ing place on the data bus. Moreover, since acknowledges are generated by the target 
module as new transactions, communication is clock-delay independent. Changes in 
the cycle timings of transactions (i.e. time taken to respond to a certain request) does 
not affect the overall functionality. 

This design methodology does not necessarily result in the fastest possible imple- 
mentation, however, it makes design management and verification simpler. The con- 
cept is similar to object oriented programming. Each module has a small set of  
externally visible data structures and a set of transactions (methods) that operate on 
these structures. Modules can be tested independently of the whole system by con- 
structing simple test modules. Multiple implementations of modules can be maintained 
and cost-performance trade-offs can be postponed until late in the design process. 
Also, it is easy to reuse parts of the design targeted at different platforms and/or tech- 
nologies. For example, the memory controller module has a very simple functional 
definition: it either reads or writes a 32-byte block of memory (a cache line) of mem- 
ory. This requires that some of the logic to handle byte insertion, etc. is moved into 
other modules, but it makes the memory controller extremely modular. A Rambus or 
DRAM based version of the memory controller could be used in a future version of the 
MC design with minimal interface redesign effort. 
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This modular design methodology also decreases the complexity of the verifica- 
tion. Part of the development effort is to verify the correctness of the inter-module 
communication protocol using formal verification tools. Simple module interfaces and 
the small set of transactions supported by each module makes it possible to deal with 
the communication protocol at a high level of abstraction where formal verification 
tools like Murcp [14] and SMV [15] are applicable. At the module level, a simple inter- 
face and a small set of transactions enable designers to test their modules almost 
exhaustively before integration of the full-chip model. With the simple interface 
approach, integration of modules at different levels of abstraction is also possible. 

3.4 Protocol  Eng ines  - R A S  and R M H  

The S3.mp cache coherency protocols are implemented by two protocol engines 
on the MC chip, the Remote Memory Handler (RMH) and the Remote Access Server 
(RAS). The RMH is responsible for locally initiated memory operations that refer to 
remote memory. It retrieves data from remote nodes, services invalidation and data 
forwarding requests, and maintains the INC. The RAS serves requests by remote nodes 
to the local memory. It services data request messages from remote nodes, maintains 
the directory and generates invalidation and data forwarding messages. 

Fig. 8. Protocol Engine Datapath 
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The RMH and RAS each use an instance of the microcode controlled datapath 
shown in Figure 8. This is a specia/purpose protocol controller with a simple instruc- 
tion set that is tailored specifically towards the execution of cache coherency proto- 
cols. Each engine consists of 3 independently operating components: the input FSM, 
the actual micro controller and an output FSM. The input FSM receives requests from 
the system interface, which can be either a new packet from the input queue or a 
request from the bus interface unit. In either case, the input FSM receives the request 
and places it in the input buffer. It also interprets the request and decides if it belongs 
to one of the currently executing threads or if a new thread needs to be created. In the 
later case, the input FSM initializes all registers in the transaction state register file 
(TSRF) that collectively forms the state of a thread (addresses, program counter, auxil- 
iary data, timer, retry counter, state variables, etc.). A TSRF entry has a total of 121 
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bits. The micro sequencer may be executing on a different, active thread while the 
input FSM operates. 

The micro sequencer schedules a thread for execution once the input FSM has 
completed the initialization or when a thread is suspended or terminated while there is 
at least one other active thread in the TSRF. Context switches essentially require no 
extra time: the micro sequencer can be executing an instruction from TSRF entry #1 
and #2 in adjacent clock cycles (15 nsec or 66 Mhz). The instruction set of the micro- 
sequencer includes a number of data move, test and set instructions that aid in the 
assembly and interpretation of messages. It also includes several more complicated 
instructions, such a performing a 3 way set-associative table lookup or a receive 
instruction that suspends the current thread until either a matching reply is received or 
a time-out occurs. Most instructions include a multi-way branch (2-16 ways). Instruc- 
tion fetch, decode and branch take place within one clock cycle without branch delay 
slots. 

The output FSM is invoked by the micro-sequencer to send replies or requests to 
other units (,memory, output queue and bus interface). It off-loads the need to arbitrate 
for resources and control the data transfer from the micro-sequencer, which can pro- 
ceed to work on another thread. 

The key point of this design is that it implements a logical pipeline with three 
stages that receive transactions, process them and distribute the replies via dedicated 
agents that share resources. 

The cache coherency protocols are separated into two parts, the server (RAS 
microcode) and the client (RMH microcode). Microcode is stored in two on-chip 
RAMs, so that it is possible to program different protocols. 

The typical operation of the protocol engines is shown in Figure 9. In the most 
common case, there are two kinds of transactions performed by the protocol engines: 

1. Transactions that require an acknowledge. This kind of transaction typically has a 
short burst of local activity (i.e. local cycles, memory cycles) which is terminated 
by sending a request packet. From this point on, the microcode waits for a reply 
from a remote node. This wait period is in the order of microseconds in the current 
implementation of the S3.mp system. When the reply is received, the transaction is 
terminated with another short burst of local activity. 

2. Transactions that do not require an acknowledge. These are typically initiated by 
receiving a request packet and can be served using only the local resources of the 
receiving node. They are terminated by sending an acknowledge packet to the 
requestor. 

Due to the long latency associated with waiting for a reply, it would have been 
inefficient to run the protocol engines in a mode where the microcode sequencer was 
kept busy for the entire duration of the transaction. This is the rational that led to the 
design with multiple contexts. The TSRF has several sets of registers to keep track of 
multiple concurrent transactions. The lowest 7 bits of the cache block address (bits 
[11:5] of the local address for 32-byte cache lines) are used as a tag for transactions. 
These 7 bits are preserved during address translation, thus, they effectively divide the 
global address space into 128 sets. Any protocol engine can be working on N of these 
sets concurrently where N is the number of register windows in the TSRF of that proto- 
col engine. The current implementation of the MC chip uses 4 TSRF windows. The 
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optimal number of contexts is a function of the available concurrency, which is limited 
by the current set of CPUs that issue only one memory reference at a time. 4 contexts 
roughly match the remote traffic that can be expected from 2 CPUs, provided that there 
is some support for prefetching and block copy operations that can proceed in the back- 
ground and may be used for I/O or page migration. Once processors with lockup free 
caches, speculative execution and the ability to issue multiple outstanding memory ref- 
erences become available, the number of TSRF entries will need to be increased. 

Fig. 9. S3.mp Protocol Engine Activity 
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Transactions received by the protocol engines can be of two types: request or 
acknowledge. Request transactions require a new microcode thread to be generated. 
For transactions received from the local bus controller, the transaction type relayed by 
the scheduler is used as an entry point into the microcode. For packets received from 
the input queue, type information from the packet is used as the entry point. The next 
available TSRF window is assigned to this transaction and a new thread is generated 
and marked as ready to execute. When the microcode sequencer detects that this thread 
is ready to run, it starts executing this thread. The TSRF entry corresponding to this 
thread becomes part of the state space of the microcode sequencer for the duration of 
this execution. Until this thread is completed, all other subsequent transactions having 
the same ID will be suspended by the input FSM. Once the microcode sequencer com- 
pletes the initial set of local operations and sends a request packet to a remote node, the 
current thread goes to sleep and any other thread which is marked as ready to execute 
can start running on the microcode sequencer. 

When an acknowledge packet is received by the RAS or the RMH, ID field of this 
packet is compared to the ID fields of threads that are currently sleeping in that module. 
A sleeping thread waiting for the particular acknowledge packet is found. This thread is 
woken up, i.e., marked as ready to run. The microcode sequencer picks up the thread 
whenever it is available and continues executing after the point where the thread had gone 
to sleep previously. Basically, a thread goes to sleep whenever it needs to communicate 
with a remote node and is woken up whenever the acknowledge message is received. 
Between these two events, microcode sequencer is free to service other transactions. 

A set of watchdog timers, one for each TSRF thread, are used to deal with the case 
where an acknowledge is expected but never received from a remote node. Whenever 
a thread waits for a reply, its timer is programmed to generate an error acknowledge if 
an acknowledge is not received within a preset amount of time. 

In addition to providing a way of matching waiting threads and acknowledge mes- 
sages from remote nodes, the ID field provides a convenient way to lock the directory 
and/or the INC while these data structures are in a transient state. The RAS can poten- 
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tially lock N out of  128 slices of  the directory independently, where N is the number of  
register windows in the TSRF. The RMH can also lock accesses to the INC with the 
same mechanism. By convention, the RAS does not touch the INC while the RMH 
does not access the directory. ID-locking is utilized exclusively by S3.mp directory 
protocols to implement delay independent operation. The example in Figure 10 illus- 
trates the ID-locking feature. 

Fig. 10. INC Locking Mechanism 

M a i n  . 

1. Initially, the directory is in the Shared_Remote state and the local node has a valid 
copy of the cache line. 

2. A remote node issues a write to the same line and sends an exclusive ownership 
request to the home node. 

3. The home node sends an invalidation request to the local node. 

4. Before receiving the invalidation request from the home node, the local node 
decides to discard the line and sends an uncache request to the home node. This 
request and the invalidation request from the home pass each other in the 
interconnect network. 

5. The local node receives an invalidation request while it was expecting an 

acknowledgment for its uncache request. Since the ID's match 1, the waiting RMH 
thread resumes execution. The invalidation request is treated as an acknowledgment 
and the thread is terminated. 

6. The home node receives an uncache request message while it was expecting an 
invalidation acknowledge. The home node can safely treat this request as an 
acknowledgment to its invalidation request since the processors on the local node 
cannot access the INC for the same address until the invalidation request is received 
by the local node. The transaction is completed and ownership of the cache line is 
transferred to the remote node by changing the directory to Exclusive_Remote state. 

1. Once the input FSM has matched the ID of the received message against all active TSRF 
enWies, a subsequent address match is performed if there was an ID hit. Because of the unique- 
ness of the ID, only one such match is possible, hence only one address comparator is needed. 
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3.5 Flowcontrol and Deadlocks 
Given that there is only a finite number of TRSF entries, flow control is needed to 

avoid acceptance of a request without the required resources The input and output 
queues provide flow control and the scheduler will not grant a request unless the desti- 
nation unit is ready. However, simply refusing to accept new messages can result in 
deadlocks because transactions may require acknowledge messages to complete. To 
avoid such deadlocks, the message exchange subsystem (//O queues and IC network), 
support multiple levels of priority. The protocol engines have two virtual ports with 
independent flow control such that secondary messages can be sent at an elevated pri- 
ority while blocking new requests that have lower priority. 

3.6 MC Directory Operation 
As mentioned above, the directory is actually part of main memory, hence it is 

read on every normal memory read operation. The local bus controller checks the 
directory on every memory access without increasing latency. On local references that 
need to recall or invalidate remotely cached data, the RAS is called to perform these 
operations. Only the RAS may change the directory state. 

The MC reserves a programmable fraction of the main memory and uses this stor- 
age for the INC, which is required to include all locally cached blocks of remote mem- 
ory and which is used for an address compression scheme that minimizes bandwidth 
demand for control messages, Since remote references have at least 3x higher latency 
than local memory references, even a relatively slow INC is beneficial. The INC is 
programmable in size and may occupy up to 50% of the total memory. It is imple- 
mented as a 3-way set associative cache with LRU replacement policy. Although 
S3.mp in this configuration is still fundamentally a CC-NUMA architecture, it does 
have many of the properties of a cache only memory architecture (COMA). Hence 
S3.mp offers a variable degree of COMA behavior that can be used to fine tune the 
system for specific applications. 

Fig. 11. Reading Data from a Remote Node 
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3.7 Putt ing it all toge ther  

This section contains a brief description on how one remote memory transaction 
progresses through the MC. The first agent is the local bus controller, which receives 
the transaction (1) in Figure 11 and identifies it as a reference to a remote part of the 
address space (2). The bus controller has read-only access to both the directory state 
and the INC state. It is capable of performing all operations that do not require assis- 
tance from a remote node, for example processing an INC hit (3). 

In the case of an INC miss, the bus controller aborts the bus transaction, freeing it 
for other transactions 2, and forwards a copy of the INC state to the RMH (4). In this 
transaction, all state pertaining to a transaction is handed over to the RMH. This saves 
time because the RMH does not need to read the INC state. However, it also introduces 
a problem: the INC state may be become stale before the RMH processes the request. 
A mechanism similar to the Load-Linked/Store-Conditional instruction pair for syn- 
chronizing multiprocessors is used to track the validity of the INC state. 

Once the new thread begins executing in the RMH, it will queue a request mes- 
sage (5) according to the CC-protocol and wait for a reply. 

Fig. 12. Servicing Remote Read Request 
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When the request packet is received by the home node (Figure 12), the following 
sequence of events happen: 

1. The request packet is removed from the interconnect by the input queue 

2. The input queue decodes the type of the packet to determine the destination unit and 
sends the packet to the RAS 

3. The RAS requests a snoop cycle on the home Mbus. If  one of the home caches have 
an exclusive copy of this cache line, data is read from this cache. This snoop action 
is necessary since the current S3.mp protocols do not distinguish between the 
resident directory state and states where a cache line is shared or owned by one of 
the CPUs at the home node. 

4. If the snoop cycle has failed, the RAS reads the cache line and the associated 
directory information from the main memory. 

2. The Mbus is a tenured bus, but allows a relinquish&retry reply, which is an approximation to a split trans- 
action protocol, which would have superior performance. 



284 

5. If the directory is valid (i.e. the directory is not in ExclusiveRemote state), an 
acknowledge packet including the data is constructed and sent to the output queue. 
The RAS updates the directory information in the main memory if necessary. 
Assuming that no other node had a copy of the cache line involved in this 
transaction, directory state will be changed from Resident to Shared_Remote and 
the directory pointer will be updated to point to the local node. 

6. The acknowledge packet including the data is sent back to the local node through 
the interconnect. 

Fig. 13. Complet ion o f  a Remote  Read 
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After the acknowledge packet is received by the remote node (Figure 13): 

1. The acknowledge packet is removed from the interconnect by the input queue and 
sent to the RMH. This packet wakes up the sleeping RMH process which had initi- 
ated the request for this transaction. 

2. The RMH reads the INC tags corresponding to the address of the cache line from 
the memory and allocates an INC entry. If there are no free INC entries available, 
RMH victimizes an existing INC entry in LRU fashion. 

3. Data from the packet is written to the INC and INC tags are updated. 

4. The MBUS controller is acknowledged to complete the transaction. 

3.8 Cache Coherency Protocols 

S3.mp was initially designed exclusively to support a CC-NUMA protocol and a 
large intemode cache that resides in main memory and that could be changed in size 
when the system is initially turned on (static configurability). Advances in the ASIC 
technology during the design of the MC made it possible to replace the mask-pro- 
grammed ROMS in the RAS and RMH with writable microcode SRAMS. 

Discussions with Ashley Saulsbury from the Swedish Institute of Computer Sci- 
ence (SICS) showed that his ideas on how to implement a Simple-COMA [16] system 
are applicable to the S3.mp nodes with only minor extensions to the protocol engines. 
The most significant modification concerns the INC access logic, which was modified 
to support a data-less mode that only stores the tag and state information. This turns 
the INC into a reverse translation table. 
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3.9 Evaluation and Comparison 

Alewife and S3.mp use roughly comparable technology (LSI Logic ASICs) for 
the PE, both of which can be expected to perform better than the implementation with 
standard components that was used in DASH. Unlike Alewife and DASH, S3.mp uses 
microcoded engines that offer programmability without slowing the design. A dual 
RISC core implementation was considered for S3.mp, which would have reduced the 
design time and increased versatility. This option requires roughly the same amount of 
chip area (RISC core + SRAM), but would need about 10x more cycles to process the 
cc-protocol. For a comparable design, the RISC core needs to be augmented by a 
larger register files to support rapid context switching and by a packet handler to 
assemble and decode messages efficiently and that could utilize the co-processor inter- 
face of the RISC core. 

TABLE 1 : Protocol Engine Performance 

Client #of gates 
Server #of gates 
Clock frequency 

Uiient #of concur 
rent operations 
Server #of con- 

current operation, 
Client #cycles fo~ 

simple read 
Server #of cycles 
for simple read 

S3.mp Alewife 
28 K 13 K 
28 K 16K 

66 Mhz 30 Mhz 
4 >= 3 

(SW assisted) 
4 >= 3 

(SW assisted) 
6+3 -8 : 

8 -8  

DASH 
45 K 

23.5 K 
33Mhz 

1 

1 

10+11 

11 

Hardware accelerators to process cache coherency protocols are critical compo- 
nent of scalable shared memory multiprocessors. While there is a wide range of imple- 
mentation choices for such protocol engines, it was shown that adding programmability 
by either microcoding or the use of embedded RISC cores are viable design options. It 
is advantageous to provide multiple context so that latency hiding techniques may use 
sever concurrent memory transaction to deal with high network latencies. 

The S3.mp project opted to use microcoding to build a relatively small PE that is 
balanced with the other components of the memory controller chip. 

4 Summary 

The S3.mp protocol engines achieve very good performance in terms of low flow 
through latency and high throughput with a relatively modest amount of logic. This 
opens the possibility that these PEs can be integrated onto the processor, which is one 
of the project goals. At the same time, programmability allows to adopt advances in 
cache coherency protocol designs. 
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