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Abstract .  This paper studies network embeddings in the Hamming cubes, 
a recently designed interconnection topology for multicomputers. The Ham- 
ming cube networks axe supergraphs of incomplete hypercubes such that the 
additional edges form an extra binomial spanning tree. The recursively con- 
structible and unit incremental Hamming cubes have better properties than 
hypercubes, including half of logarithmic diameter and higher fanlt-toleraJace. 
They also support simple routing and efficient broadcasting schemes. In this 
paper, we show that Hamiltonian paths and cycles of all lengths, complete 
binary trees and their several variants are subgraphs of Hamming cubes. Our 
embeddings have both dilation and expansion equal to one. Furthermore, tak- 
ing advantage of the enhanced edges in the Hamming cubes, tree machines 
can be embedded with dilation of one and expansion of 7 Thus, Hamming 
cubes provide embeddings at a lower cost than (incomplete) hypercubes of 
the same size. 

Keywords:  Network embedding, dilation, interconnection network, Ham- 
ming cube, incomplete hypercube, binary tree, hypertree, tree machine. 

1 I n t r o d u c t i o n  

The demand for high-performance, reliable computing motivates the study of mas- 
sively parallel, distributed-memory machines. Many static interconnection network 
topologies have been proposed for multicomputers [Lei92]. Such a network is usually 
modeled as an undirected graph G = (V, E), where the node-set V represents the 
processor-memory modules and the edge-set E represents the communication links 
among these modules. 

Among the existing networks, the binary hypercubes have received significant 
attention because of such attractive characteristics as node and edge symmetries, 
logarithmic diameter, high fault-tolerance, scalability, simple communication mech- 
anisms, and embeddability of other networks. An n-dimensional binary hypercube is 
defined as Q ,  = (V,E), where V = {v~ = BR(i) I 0 < i < 2" - 1} consists of labeled 
nodes and BR(i) is the binary representation of integer i. An edge (vl, vj) E E exists 
if and only if the Hamming distance, p(vi, vj), between nodes vi and vj is one. 

* This research is supported by Texas Advanced Technology Program TATP-003594031. 
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The hypercube topology grows its order by a power of two. There exist two 
variants, namely incomplete hypercubes [Kat88], IQ~, of 2 n + 2 k nodes, where 
0 _~ k < n, and generalized incomplete hypercubes [TY91], IQ(N), for N _> I, 
with incrementabilities of 2 k and 1, respectively. The network IQ~ consists of two 
"complete" hypercubes, Q, (the front cube) and Qk (the back cube), while IQ(N) is 
composed of several complete hypercubes of different orders. These three networks 
can be classified as the hypercube-family. 

Recent efforts have been made to improve the performance of the hypercube- 
family of networks with additional links, leading respectively to folded hypercubes 
[EAL91], enhanced incomplete hypercubes [CT92], and enhanced generalized incom- 
plete hypercubes [DM94]. For example, an n-dimensional folded hypercube, FQn, 
has the complementary edges (vi, vT) for every node vl in the hypercube Qn, where 
is the address with all bits of i complemented. These networks can be categorized into 
the enhanced hypercube-family. Another example of this family is the incrementally 
extensible hypercubes [SS92]. 

There exist networks which modify the hypercube topology in order to derive 
new networks according to various design options. For example, a twisted n-cube 
lENS87] twists a pair of edges in the shortest cycle (consisting of four nodes) of the 
hypercube Q, .  A crossed cube [Ere92], on the other hand, recursively twists pairs of 
edges. These networks can be regarded as the hypercube-like family. 

We have recently derived Hamming cubes as another member of the enhanced 
hypercube-family [DM94a]. Our design is based on a theoretical network model, 
called the incremental Hamming group. These networks are supergraphs of incom- 
plete and folded hypercubes. As shown in [DM94a, DM94b], the Hamming cubes 
have better topological and performance properties than the hypercubes (complete 
or incomplete) of the same size, without incurring much additional cost. These prop- 
erties include recursive scalability, unit incrementability, half of logarithmic diame- 
ter, high fault-tolerance, simple routing and broadcasting schemes. 

The embedding or mapping of one network architecture into another is an im- 
portant problem because this way parallel algorithms developed for one architecture 
can be easily ported to another architecture. The (incomplete) hypercubes can effi- 
ciently simulate many other networks with a small factor of slowdown [Lei92, TCC90, 
OD95]. For example, binary hypercubes have only Hamiltonian cycles of even lengths 
[SS88, SSB93]. The (2" - 1)-node complete binary tree is a subgraph of Q,+I, and 
also can be embedded into Q, with dilation two [BI85]. 

In this paper, we study the embeddability of the Hamming cubes, showing that 
several standard topologies including Hamiltonian paths and cycles, complete bi- 
nary trees and their variants, and tree machines can be optimally embedded. These 
embeddings are better than those into (incomplete) hypercubes. For example, Ham- 
ming cubes are pancyclic, i.e. cycles of all lengths can be embedded as subgraphs. 
The complete binary tree is a subgraph of the same-sized Hamming cube, and also 
tree machines can be embedded at a lower cost than into hypercubes. 

The rest of this paper is organized as follows. Section 2 introduces the Hamming 
cubes and summarizes their properties. Section 3 deals with embeddings of guest 
topologies into the Hamming cubes, while Section 4 concludes 'the paper. 

Let us define a few notations to be used throughout this paper. Let BR(i) = 
(bkbk-1... bl) be the binary representation of a non-negative integer i, where bl is 
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the least significant bit. If there is no confusion, for brevity, BR(i) and i will be used 
interchange_.ably. For convenience, the following notations are also defined: i [/l = 
(bkb~- 1--.  b j . . .  bl) in which the j th  bit of i is complemented; 7 = (b~bk :1 .  :. bl), 
i.e. all bits of i are complemented; and i (m} = (bkbk-1... b,n...'b't) such that the 
rightmost m bits of i are complemented. 

2 Hamming Cubes 

This section formally introduces the Hamming cube networks originally due to Das 
and Mao [DM94a]. It also summarizes some of their properties relevant for the 
subsequent sections. 

2.1 N e t w o r k  Def in i t ion  

A Hamming cube of order N > 2, denoted as HC(N) -- (V, E), is an undirected, 
connected graph in which V = {v~ = BR(i) I 0 < i < N -  1} is the set of labeled 
nodes. (For simplicity, node vl will also be donted as i.) Let v~ and vj, for i < j,  
be two nodes in HC(N), each being represented by [log(j + 1)] bits. Then an edge 
(vi, vj) E E exists iff any one of the following two conditions is satisfied [DM94a]: 

( E l ) :  The Hamming distance p(vl, vj) = 1; or 
(E2):  p(v,, vj) -- h -- rlog(j + 1)] for j ~ 1. 
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Fig. 1. Hamming cubes HC(N) for N = 6, 7, 8 and 16. 

The edges defined by Conditions (El )  and (E2) are designated as El-edges 
and E2-edges, respectively. Clearly, the El-edges define the underlying incomplete 
hypercube topology of HC(N). An E2-edge v~ and vj is said to be rib-dimensional 
(or in dimension nh), if p(vl, vj) = h = [log(j + 1)] and j > 1. Note that (0, 1) is 
an El-edge as well as an E2-edge. Figures l(a)-(d) depict Hamming cubes HC(N) 
for N = 6, 7, 8 and 16, where the E2-edges are distinguished by the broken lines. 
For example, since p(v3, vl2) = 4 = [log(12 + 1)], there exists an n4-dimensional 
E2-edge between the nodes v3 and v12 in HC(16). Similarly, p(vl, v6) = 3 implies 
that v6 is linked to vl through an n3-dimensional E2-edge. For conformity, HC(2 n) 
will be called the n-dimensional Hamming cube, denoted as HCn. 

A binomial spanning tree is a binomial tree which spans all nodes in a net- 
work. Such a tree of height n has the characteristic that the number of nodes at 
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Fig. 2. A binommial 
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spanning tree of tiC4, rooted at node v0, using the E2-edges. 

level i is (n), for 0 < i < n. A binomial spanning tree rooted at node v0 can be 
constructed in HC. with the help of the E2-edges (see Figure 2 for an example), 
which precisely gives a physical interpretation of these extra edges. By definition, 
there exists . .-dimensional E2-edges in HC. between all node-pairs vi and vj such 
that p(vl, vj) = n. Such edges correspond to the complementary edges in the folded 
hypercube [EAL91], which is thus a spanning subgraph of HC,,. 

2.2 Topologica l  P r o p e r t i e s  

Several important topological properties of the Hamming cube networks, including 
the edge complexity, node degree, and diameter are derived in [DM94a]. The Ham- 
ming cube He(N), where N = 2 n and n > 1, has E(N) = -~ log N + N - 2 edges, 

f l~ Thus, using only 2" - 2 extra edges compared and its diameter is at most ~ 2 ~" 
to Qn, the diameter of the n-dimensional Hamming cube (HC,) reduces to [~]. 

For an arbitrary order N > 2, the diameter of HC(N) is given by [ 1~ + 1. 
Also the Hamming cubes have been shown to be optimally fault-tolerant since the 
node-connectivity is equM to the minimum degree [DM94a]. We have shown that the 
minimum and maximum node-degrees of HC, are n + 1 and 2n - 1, respectively. 

Table 1 compares the topological properties of several hypercube-like networks. 
Note that Q(N), TQ(N), FQ(N), and CC(N) have incrementability of g = 2n and 
EIQ(N) has incrmentability of 2 k for 0 < k < n. Whereas the rest of the networks 
in Table 1 have unit incrementability. 

Clearly, the diameter of the Hamming cube HC(N) of an arbitrary order N is 
the smallest among all the unit-incremental networks mentioned here. The fact that 
Hamming cubes are recursive in nature (that is, a smaller order HC is an induced 
subgraph of a larger order HC) implies that they do not require reconfiguration 
while expanding, as opposed to the incrementally extensible hypercubes. Also, the 
diameter of HC,~ is almost the same as the n-dimensional crossed cube and folded 
hypercube at the cost of 2 n - 2 and 2 n-1 - 2 extra edges, respectively. However, 
folded hypercubes are not recursive in nature. 

2.3 Recurs ive  D e c o m p o s i t i o n  

Due to the definition of the Hamming cubes, HC,~ can be recursively decomposed 
into ( n - l )  induced and disjoint subgraphs, denoted as HCn = {HC2, Q2,..., 0,~-1). 
Note that HC2 consisting of the node-set V 1 - {v0, vl,v2, v3) forms a complete 
graph of four nodes. The node-sets of other subgraphs O~ are given by V ~ -= {va ] 
2 i < O~ < 2i+I}, for 2 < i < n - i. The nodes in each induced subgraph of this 
decomposition have the same degree and satisfy the fiode-symmetry [DM94a]. 
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Table 1. Topological compsrison of several hypercube-like networks. 

I Networks  
of N modes 

Binary  H y p e r c u b e  

T w i s t e d  b y p e r c u b e  
TQ(N) 

Folded h y p e t c ~ b e  

Crossed cube  
CO(N) 

Enh&nced I n c o m p l e t e  
H y p e r c u b e  EIQ(N) 

N=2~+~ ~ ~or 0.< ~ . <  n 
I n c o m p l e t e  h y p e r c u b e  

Zq(N) 
E a h ~ c e d  (~eneza, l i z e d  

Incomple te  h} ,pezcube EGIQ(N) 
Incrementa l l y  E x t e n e l b l e  

H ~ e r c u b e s  I J~(~ ( N) 
H a m m i n g  c e b e  

HC(N) 

# Ease, s 
~for N : 2 ~ 

' ~  log N 

lmeszee (~) 

lo  S N 

Io~ N 

2~T- (los N 4- I) 

2'~ log N 

log  Ar d- I 

~ l o g  N N log 

2'~ (los N + t)  

~ ] o g  N 

z < ~ _< los N 

2 < @ ~ log N-'J- 1 

l o g N  < 4, ~ ' o s N - I -  1 

~logN+N--2 2__. r 2 1 o g N - - 1  

Regul~r?] D i a m e t e r  
~o*" N > " 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

Reconfigur&tion 
re, in|red? 

log  N no 

Io S N -- I yes  

f l o w n  1 2 ye~ 

t l i o ~ N l  + *J y e .  

l og  N no 

i '1~ ,o 

LSos NJ + * yes 

[ log  NJ 1 
2 I ~ ' 1  no 

In HC(N), where 2 k-1 < N < 2 k and k > 1, we can partition the node-set into 
I several subsets. Let N -- Y~i=l 2P', where 1 < 1 < k and' Pi+l > pi. The ! number 

of node-subsets are V pz --- {va [ 0 ~ ot < 2 pl} and VPr {va [ ~ j= l - i+ l t  2p i _< 

, 2P~} oc < ~j=z- i  for 1 < i < I -  1. The subgraph induced by the node-subset 
V pl forms a pz-dimensional Hamming cube, HCpl, and the other subgraphs induced 
by VP('-o form the binary hypercubes Qp0 r- Such a decompomtlon will be de- 

l l  - 2pz - " " noted as He(N)  = { Cp~,IQ(N )} = '(HCpI,QpI_,,...,Qp,}. For example, 
HC(15)  = {HC3, Q2, Q1, Q0}, where HC3 consists of the nodes {v0, v l , . . . ,  vT}, Q2 
of { v s , . . . ,  v n } ,  Q1 consists of {v12, via}, and Q0 is v14. 

3 Embeddings  in H a m m i n g  Cubes  

The embedding of a guess graph G = (Va, EG) into a host graph H = (VH, EH) is to 
find two functions, �9 and ~P, such that ~ : VG , VH is a mapping of their vertices 
while ~ : Ea  , { paths in H }  is a mapping from edges in EG to paths in H. 

There are four metrics to measure the cost of an embedding. The dilation of an  
edge e in G is the length of the path ~(e)  in H. The dilation of G in an embedding 
is the maximum dilation over all edges. The expansion of an embedding is the ratio 
IV, I The edge-congesSion is the maximum number of edges in G which are mapped Ivav 
by function ~ to a single edge in H. The load is the maximum number of nodes in 
G mapped by r to a single node in H. In our study, the node-mapping function 
is considered as one-to-one, thereby the maximum load is 1. 

If each of dilation and edge-congestion is equal to 1, the guest network is a 
subgraph of the host. Since there is a trade-off between the dilation and expansion, 
by optimal embedding we mean one with unit dilation and minimum expansion. 

In this section, we present subgraph and/or optimal embeddings of various net- 
works into the Hamming cubes. 

3.1 H a m i l t o n i a n  Cyc l e s  
Binary hypercubes are Hamiltonian and, in fact, all cycles of even lengths can be 
embedded in Q,. It is easy to see that the sequence of nodes traversed along the 
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binary reflected Gray Codes [SS88] forms an embedded Hamiltonian cycle. Since 
there are n! different Gray code sequences of length n, each of which corresponds to 
a permutation of the set D = {0, 1 , . . . ,  n - 1} of dimensions of edges in Qn, hence 
Qn can have n! different Hamiltonian cycles. (Two embedded Hamiltonian cycles are 
said to be different if they differ in at least one edge.) However, it can be shown that 
Qn has 2n-3n! different Hamiltonian cycles [SSB93]. For the sake of completeness, 
let us sketch this scheme. A pair of nodes in the hypercube is connected by an i- 
dimensional edge if and only if their binary labels differ at the ( i+  1)th bit, where the 
least significant bit corresponds to i = 0. Asequence of dimensions, S, determining 
the traversal of edges in an embedded Hamiltonian cycle is obtained from D as 
follows [SSB93]. 

A l g o r i t h m  S e q u e n c i n g / ,  Construct the sequence S of dimensions , /  
b e g i n  
1~ 
2. 
3. 

. 

end  

Arbitrarily choose a dimension dl E D and let D = D - {dl}. 
Let S1 = dl. 
For each i, 2 < i < n, choose a dimension di  E D and let D = D - { d i } .  

Let Si =Si-1 * di �9 S i - 1 ,  where �9 indicates the concatenation operation. 
Let S =Sn �9 dn .  

Given a node vi and a sequence Sr of dimensions, where ~r = did2.. .do, a Hamil- 
tonian cycle C(vi, S~) is traversed which starts at vl and follows the cycle-edges 
determined by S , .  Since there are 2 n possible choices of the node vi and n! possi- 
ble choices of permutation 7r, there are at most 2~ embedded Hamiltonian cycles 
in Qn. However, only 2n-3nl of them are different, as constructed by Algorithm 
Sequencing. 

In the following, we show that the Hamming cubes are pancyclic networks, i.e. 
cycles of all lengths are embeddable, which is an advantage over binary hypercubes. 

H a m i l t o n i a n  Cycles  in  HCn. By definition, the Hamming cube HCn has two 
kinds of edges: the El-edges (hypercube edges) and E2-edges (enhanced edges). 
There exist an no-dimensional E2-edge (vl, t7) for every node vi. Therefore, the 
size of the dimension-set D = {0, 1 , . . . , n  - 1,nn} in HCo is n + 1, which implies 
that we have (n + 1)! potential choices for the permutation 7r. Therefore, Algorithm 
Sequencing applied to HCn leads to the following theorem. 

T h e o r e m  1. The network HCn has 2~ + 1)[ different Hamiltonian cycles. 

E x a m p l e  1: Consider an embedding o fa  Hamiltonian cycle C(vo, S~) in HC4, where 
the permutation of dimensions is ~r = 20n41. The sequence of dimensions is $2on,1 = 
202n42021202n42021 and C(vo, S~on,1) = (0,4,5,1,14,10,11,15,13,9,8,12,3,7,6,2,0). 
Note that (1, 14) and (12, 3) are n4-dimensional edges in this cycle. 

H a m i l t o n i a n  Cycles  in  H C ( N ) ,  w h e r e  2 k- I  < N < 21% We consider two 
cases depending on the value of N. 

Case  1: For 2 k-1 < N < 2 k-1 + 2  k-2 and k > 3. 
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Let N = 2k- l+m,  where 1 < m < 2 k-2. By Section 2.3, the decomposition yields 
H C ( N )  -- {HC~-I ,  IQ(m)}  in which the subgraphs HCk-1 and the incomplete 
hypercube IQ(m)  are induced by the node-sets V(HCk-1)  = {va I 0 < ct < 2 k- l}  
and V(IQ)  = {va I 2k-1 < a < 2k-1 + m}, respectively. By the definition of 
Hamming cubes, each node vi in IQ(m) is linked to two different nodes vil,~ and 
vi~kj in HCk-z  through the k-dimensional El-edge and nk-dimensional E2-edge, 
respectively. Recall here that i [k] is obtained by complementing the kth bit of i, and 
i {k} is obtained by complementing the rightmost k bits of i. Since the Hamming 
distance p(Vipd,  Vi{k }) = k - 1, there exists an (nk,1)-dimensional E2-edge between 
the nodes vilk I and v i ~ .  Thus, we have: 

P r o p e r t y l .  Let vr and v# be two nodes in HC~-I  fo rk  > 3, such that va is linked 
to v/~ through an (n~_l)-dimensional E2-edge, i.e. c~ = fl{~-l). Then in HCk, there 
exists a path P = (v~, v-l, va) of length 2, which goes through node v.~ such that 
a = 7 [k-tl and/~ = 7 (~}. 

By Theorem 1 and Property 1, Hamiltonian cycles can be embedded into the 
Hamming cubes of orders satisfying Case 1. We first apply Algorithm Sequencing 
to construct the Hamiltonian cycle C(vi, S,r) in the subgraph HCk-z .  Then in the 
permutation r = (pl ,P2,- . - ,Pk-z) ,  we choose the element Pl = nk-1 while the 
other elements are arbitrarily chosen from the set D = {0, 1 , . . . ,  k - 2}. Note that 
the starting node vi can be any node in HCk-1. The resulting sequence of dimen- 
sions corresponding to r has the form Snk_~p2...p~_a = nk-lp~nk-lPSnk-lp~nk-1 .. . .  
Let the required Hamiltonian cycle be C(vi, Sn~_:p=...pk-~) = ia2a3.. . ,  azk-~_li, in 
which we search those pairs of nodes that are linked via the (n~_z)-dimensional 
E2-edges. Then, between those node-pairs, we appropriately insert the nodes of the 
subgraph IQ(m)  following Property 1. 

Since there are 2 k- 1 possible choices of the starting node vi and ( k -  1)! possible 
choices of 7r, the subgraph HCk-1 has 2~-4(k - 1)] different Hamiltonian cycles, for 
k > 4. For each of these cycles, the edges that are (nk_l)-dimensional E2-edges, 
are expanded as paths of length two to include the nodes of the subgraph IQ(m).  
Furthermore, by Property 1, the edges used in the expanded paths are different from 
those used in the Hamiltonian cycle in HCk-1. Therefore, we have the following 
lemma. 

L e m m a  1. The Hamming cube HC(N) ,  where 2 k-1 < N < 2~-1+2 ~-~ and k > 4, 
has 2~-4(k - 1)! different Hamiltonian cycles. 

E x a m p l e  2: Consider g C ( l l )  = {HCs, IQ(3)}, where V(HCa) = {vq I 0 < 
c~ < 7} and V(IQ)  = {vs, vg, v~o}. Let ~r = n320 and v~ be the starting node. 
Then S,,u0 = ns2nzOn32n30. The Hamiltonian cycle in HCa is C(v6, Sn~:o) = 
(6, 1 ,5 ,  2,3,  4, 0, 7,6).  Now inserting vs, vg, and v~0 into the node-pairs (0, 7), 

(6, 1), and (5,2), respectively, the Hamiltonian cycle in H C ( l l )  is obtained as 
(6 ,9 ,1 ,5 ,10,2 ,3 ,4 ,0 ,8 ,7 ,6) .  

Case 2 : F o r 2  ~ - 1 + 2  ~ - ~ < N < 2  ~ andk>_3.  
Let N = 2 ~-~ + m, where 2 ~-~ < rn < 2 ~-~, and H C ( N )  = {HC~_~, IQ(m)} .  

This case has been proved rigorously by dividing it into two subcases depending on 
whether m is even or odd. The basic idea involves how to combine the embedded 
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Hamiltonian cycles in HC~-I  and IQ(m) in order to construct the required cycle in 
HC(N) .  We summarize the results here. For details, refer to [DM95]. 

L e m m a 2 .  The Hamming cube HC(N) ,  where 2 k - 1 +  2 k-2 < N < 2  ~ for k > 3, 
has A ([log(N - 2k-1)] - 2)! different Hamiltonian cycles, where Z~ = (k - 1)! for 
N even and A = ( k -  2)[ for N odd. 

From Lemmas 1 and 2 we obtain 

T h e o r e m  2. The Hamming cube of order N,  where 2 k-1 < N < 2 k for k >_ 3, has 
(k - 2)!(['log(g - 2 / : - 1 ) ]  - 2 ) !  different Hamiltonian cycles. 

The above results also prove that H C ( N )  is a pancyclic network, for N _> 3. 

3.2 C o m p l e t e  B i n a r y  Trees  a n d  R e l a t e d  Var ian ts  

Both the complete binary tree and binary hypercube are bipartite graphs. A node of 
the hypercube Qn is said to have even parity if its binary representation has an even 
number of one bits; otherwise, it has an odd parity. Also, Qn has 2 n-1 even parity 
nodes and 2 "-1 odd parity nodes. In the bipartite partition of the binary tree, the 
nodes at the even (or odd) levels are put together. Therefore, it can be shown that 
the complete binary tree C B T ( n  - 1) of height n - 1 and consisting of 2 n - 1 nodes 
is not a subgraph of Qn. However, the 2n-node two-rooted complete binary tree is 
a subgraph of Qn [BI85, Lei92]. Thus C B T ( n  " !) can be embedded into Qn with 
dilation two, while it is a subgraph of Q,+I .  

In this section, we will show that C B T ( n  - 1) is a subgraph of the n-dimensional 
Hamming cube, HCn," consisting of 2 n nodes. This result clearly shows that Ham- 
ming cubes have better performance (in terms of tree embeddings) than binary 
hypercubes of the same size. 

The decomposition yields H Cn = {HCn-1,  Qn-1 }, induced by the vertex-subsets 
V I = {v~ ] 0 < a < 2 n - l}  and V" = {v~ [ 2 n-1 < ~ < 2n}, respectively. Due 
to the recursive structure, HCn-1 = {HCn-2,  Qn-2}  and Q , - I  = {Qn-2,1 Qn-2},2 
Therefore, H C ,  = {HCn-2,  Qn-2, Q~-2, Q~n-2} such that the nodes in these four 
subgraphs have the labels (00.), (01.), ( I0.) ,  and (11.), respectively, where �9 e 
{0,1} "-2. The following property can be stated for a node vi 6 H C, -2 .  

P r o p e r t y 2 .  Let HCr, - {HCn_~, Qn-~, Qln_2, Q2,_2} for n >_ 2, in which the sub. 
graphs are induced by the vertex-subsets V 1 --- {va 10 _< a < 2n-2}, V 2 = {va [ 
2 n -2  _~ a <: 2n-1} ,  V 3 "- {va I 2n-1  --~ a <~ 2 n - l j r  - 2n -2} ,  and V 4 ,m.. { v  a [ 

2 " - I + 2  "-2 _< a < 2"}. A node vi 6 H C . - 2  is linked to eli. 1 6 Qxn_ 2 and 
VI(,~} ~ Q2_2,  through the ( n -  1)-dimensional El-edge and the nn-dimensional 
E2.edge, respectively. 

Let us now construct, by induction, the embedded CBT (n  - 1 ) in  HC,~. Let 
v0 be the root of the single node tree. Let C B T ( n  - 2) be the embedded complete 
binary tree in HCn-1,  having the leaves in the set V 2. The embedded C B T ( n  - 1) 
in HCn grows from C B T ( n  - 2) by making the nodes in the set V" = V 3 U V 4 as 
the children of the leaves of C B T ( n  - 2) through the (n - 1)-dimensional El-edges 
and nn-dimensional E2-edges. 
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Fig. 3. The embedding of the complete binary tree CBT(4) of height four in HCs. 
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Fig. 4. The embedding of tree-cube TC(3) rooted at node vo in HC~. 

T h e o r e m 3 .  The (2 n - 1)-node complete binary tree C B T ( n  - 1) is a subgraph of 
the n-dimensional Hamming cube H C , ,  having 2" nodes. 

Figure 3 is an embedding of CBT(4)  in HCb. An edge label indicates its dimension. 
Since the subgraph of H C ,  induced by the set V" = V3UV 4 forms the hypercube 

Q , - 1 ,  the nodes at each level j ,  for 0 < j < n, of the embedded C B T ( n  - 1) in 
HCn are connected as a j-dimensional binary hypercube, Qi, consisting of  the nodes 
V(Qi)  = {vi [ 2 i < i < 2J+1}. Let us call such a network architecture a tree-cube, 
TC(n  - 1), of  height n - 1. Figure 4 shows the embedding of  the tree-cube TC(3)  
in the Hamming  cube HC4. The hypercube edges are shown as broken lines. Due to 
this structure, several variants of complete binary trees with additional links between 
the nodes at the same level can be embedded in the n-dimensional Hamming cube. 

For example, a hypertree structure HT(n  - 1) of height n - 1 is a complete 
binary tree such that  the additional links at each level are chosen to be a subset of 
a hypercube [GS81]. So HT(n  - 1) is a subgraph of the tree-cube TC(n  - 1), and 
hence a subgraph of H C , .  With the help of the embedded tree-cubes and using the 
fact tha t  the binary hypercubes are Hamiltonian, the full-ringed (hence half-ringed) 
binary tree of  height n - 1 can also be embedded into HCn. 

3.3 T r e e  M a c h i n e s  

A tree machine, TM(n) ,  of dimension n consists of two CBT(n) ' s  - called the upper 
and lower trees - which are connected back to back along the common leaves. Thus, 
T M ( n )  has (3 �9 2 n - 2) nodes and (2 n+2 - 4) edges. It  can be embedded in the 
hypercube Qn+~ with expansion approximately equal to 4 and dilation one [Efe91]. 
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It is also shown [OD95] that TM(n) can be embedded in the incomplete hypercube 
IQ(3 �9 2 n) with both dilation and edge congestion equal to 2. 

We will show that the TM(n) is a subgraph of the Hamming cube HC(3.2 n + 
2n-1), implying that dilation is 1 and expansionis approximately ~. Note that  with 
the same expansion of ~, the tree machine TM(n) cannot be embedded as a subgraph 
into the incomplete hypercube IQ(3 �9 2" + 2n-1). Again, this provides an advantage 
of the Hamming cubes over the same-sized hypercubes. 

Let us view the structure of the tree machine as follows. In TM(n), the 2 n 
common leaves and their 2 n parents (half of them in the upper tree and the other 
half in the lower tree) form 2 n-x building blocks, each being a hypercube Q2: These 
building blocks are then connected by the upper and lower complete binary trees of 
height n - 1, one less height than the original trees in TM(n). Note that  the leaves 
of these two new trees are now the parents of the cornerwise nodes in the building 
blocks. When the dimension of the tree machine increases, say from n to n + 1, the 
number of building blocks is doubled, from 2 n-1 to 2". Thus, we need 2'* new leaves 
for each upper and lower tree to connect the new set of 2 n building blocks. 

In the Hamming cube HC(3.2  n + 2 '~-1) for n > 3, each node label has length 
n + 2 .  According to the first and second lowest bits of these labels, we can decompose 
HC(3.2n+2 n - l )  into 3.2n-2+2 '~-a building blocks, Q~, for 0 < i < 3 .2" -2+2 '* -a -1 .  
Since the upper and lower trees in TM(n) are symmetric along their common leaves, 
without loss of generality, we can concentrate on only one tree. 

s ~ 2~ 

I 4 I~ t? 24 

, o \ ~  _ :  . J  

1 
Fig. 5. a) The embedding of TM(3) in HC(28). b) The upper tree of TM(3). 

Let nodes v3 and v0 in Q0 be respectively the roots of the upper and lower trees 
in TM(n). The root va has the children vl and v4 through the 1-dimensional El-edge 
and the na-dimensional E2-edge. Similarly, v0 has the children v2 and v7, 

In the embedded TM(n) for n _> 3, an internal node vl at level j ,  for 1 _< j _< n - 3 ,  
of the upper tree has the left child vit2j+2] and the right child vi(2j+2 ) linked through 
a (2j + 1)-dimensional El-edge and (n2j+2)-dimensional E2-edge, respectively. By 
this way, we can construct the top n - 1 levels of the upper tree. The remaining step 
is to construct the leaves of the upper tree which are those parents of the cornerwise 
nodes in the building blocks. 

We divide the nodes at level n - 2 into two subsets, V' and V" such that V' 
consists of the first 2 " -3  nodes from the left, while V" consists of the remaining 
2 n-z  nodes on that level. A node vi E V' has two leaves vit.+ll and vi{.+, ) linked 
through the n-dimensional El-edge and (nn+l)-dimensional E2-edge, respectively, 
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in the Hamming cube. While a node vl 6 V" has two leaves vitn+2] and vi(,+2). Thus, 
the entire upper tree is constructed. 

By the same method, the lower tree rooted at node v0 can also be constructed. 
The common leaves for both the trees are then determined by the parent nodes 
of the building blocks, which are the leaves of upper and lower trees, through the 
El-edges of dimensions 0 and 1. 

T h e o r e m 4 .  The tree machine T M ( n  - 1) can be embedded as a subgraph into the 
Hamming cube HC(3 �9 2 "-1 + 2 "-2)  with an asymptotic expansion of r 

E x a m p l e  3: Figure 5a) shows the embedding of the tree machine TM(3) in HC(28) 
and Figure 5b) shows the upper tree. This figure includes all nodes of HC(28), but 
omits the edges which are not used in the tree. There are four building blocks (i.e., 
Q2's) formed by the 0- and 1-dimensional El-edges, and one can .clearly see the 
geometric relation of these building blocks in HC(28). 

T a b l e  2 .  C o m p a r i s o n  o f  e m b e d d i n g  r e s u l t s .  

R i n g  
R(,,~) 

C o m p l e l e  B i n a r y  
Tree CBT(.~) 
X-~ree 

H y p e r t * e e  
HT(~) 
T r e e  M a . r  
TM(.~) 

B i n L r y  [ IQn ( # H y p  . . . .  b e  ot  n o d e s  ~r = 2 n )  

For  0 < m r~  2 n , 
�9 S u b g r L p h ,  w h e n  m is  e v e n ;  
�9 ~) ~ 2 ,  EC =11 when  ~ i s  o d d . [  
�9 S u b g r ~ p h  C B T ( n  - -  2) 
�9 CBT(n -- 1) wi th  D = s =2  
�9 X(n -- i) with ~ = s =2 

�9 H T ( n  --  1) wi th  19 =2  

] n c o m p l e % e  H y p e r c u b e  
[Zq(N), N > 
F o r  0 < tn <_ N ,  
�9 S u b g r e ,  p h ,  w h e n  rn i s  e v e n ;  
�9 D = E C  = 2 1  w h e n  rn i s  o d d .  
�9 C B T ( n  - -  1) in I Q ( 2  n --  1) w i t h  
D~EC=2 
* X ( .  -- 1) i n  I Q ( 2  n - 1) w i t k  
D = E C  =2 
�9 H T ( n  - -  1) i u  I Q ( 2  n )  w i t h  
> =2  

. Subsraph TM(~ -- 2) �9 TM(n -- I) i n  IQ(3* 2 n-I ) with 
~) =EC =2 

H L m m i n g  cube 
[HC(N) 

p ~ n c y c l i c  

�9 S u b g r ~ p h  CBT(n -- i) 

�9 S n b g r a p h  X ( n  -- I )  

�9 S u b g r L p h  H T ( n  - -  I) 

�9 S u b g r a p h  T M ( n  -- I )  i n  
H C ( S .  2 n - I  . [ . . , , * - 2 )  

4 C o n c l u s i o n s  

We have studied the embeddability of the recently proposed Hamming cube networks 
[DM94a]. Several topologies including Hamiltonian paths and cycles, complete bi- 
nary trees and their variants, and tree machines are optimally embedded into the 
Hamming cubes with unit dilation (7)) and edge-congestion ($), and minimum ex- 
pansion. Table 2 compares our embedding results with (incomplete) hypercubes. 

Due to the bipartiteness of incomplete hypercubes, a Hamiltonian cycle of odd 
length cannot be embedded with dilation of one. Using the additional enhanced 
edges in the Hamming cubes, Hamiltonian cycles of all lengths can be embedded as 
subgraphs, implying that Hamming cubes are pancyclic networks. 

Although a complete binary tree is not a subgraph of the same-sized binary 
hypercube, it is a subgraph of the same-sized Hamming cube. Additionally, X-trees, 
hypertrees, full-ringed and half-ringed binary trees are all subgraphs of Hamming 
cubes with unit expansion. 

Tree machines can also be embedded into the Hamming cubes with dilation of one 
and expansion of 7. Whereas, tree machines can be embedded into the incomplete 
hypercubes with expansion approximately equal to one, and both dilation and edge 
congestion being equal to two. With the same expansion of 7 g, the embedding of tree 
machines into the incomplete hypercubes still have dilation and edge congestion of 
two. This provides another advantage of the Hamming cubes. 

Our future research will aim at the fault-tolerant embedding of guest networks 
into the Hamming cubes. 
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