
Formal and experimental  validation of a low 
overhead execut ion replay mechanism* 

Alain Fagot and Jacques Chassin de Kergommeaux  

IMAG, APACHE project 
46 avenue F~lix Viallet, 

F-38031 Grenoble Cedex 1, France. 
{Alain .Fagot,Jacq ues.Chassin-de-Kergom meaux)@imag.fr 

Abs t r ac t .  This paper presents a mechanism for record-replay of par- 
allel programs written in a remote procedure call (RPC) based parallel 
programming model. This mechanism, which will serve as a basis for 
implementing a user-level debugger, exploits some properties of the pro- 
gramming model to fimit drastically the number of records that need to 
be done. A formal proof of the equivalence between recorded and replayed 
executions is given. Systematic measurements of the time overhead of the 
recording indicate that it is sufficiently low for the recording mode to be 
considered as normal execution mode. Similar techniques can be applied 
to other programming models. 

Keywords: Instant  Replay, parallel debugging, deterministic reexecutions, Re- 
mote  Procedure Call. 

1 I n t r o d u c t i o n  

This paper  presents a mechanism allowing programmers  to cope with the inher- 
ent non-determinism of parallel executions, when debugging programs written in 
a remote procedure call (RPC) based programming model, designed for parallel 
multiprocessors. Many parallel programs present a non-deterministic behavior, 
even if they produce deterministic computat ion results. Non-deterministic exe- 
cution behaviors originate mainly  in execution environments of programs. Such 
an environment depends on a large number  of factors that  cannot be controlled 
by the programmer ,  such as the initial contents of cache memories,  the behavior 
of the operating system, etc. Programs adapting to the execution environment 
for efficiency reasons, using dynamic load balancing techniques, for example, are 
very prone to exhibit non-deterministic execution behaviors. Non-deterministic 
execution behavior of erroneous parallel programs may  result in transient errors 
which appear  very unfrequently or vanish when debugging tools are used, be- 
cause of changes introduced by these tools in the causal relationship between 
parallel processes. 

* This  work was par t ia l ly  s u p p o r t e d  by the  French Min i s t e ry  of  Research  
unde r  the  i n t e r - P R C  pro jec t  Trace. 
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The most classical technique used to catch transient errors appearing dur- 
ing executions of parallel programs is to record an initial execution and to force 
subsequent executions to be deterministic with respect to the initial execution, 
using the recorded information. Debugging an erroneous program then amounts 
to record an erroneous execution and to apply cyclic debugging techniques dur- 
ing subsequent replayed executions. In order for this technique to be effective, 
the perturbation resulting from the recording operation ought to be kept suffi- 
ciently low so that errors appearing in un-recorded executions do not vanish in 
recorded ones and vice-versa. If this overhead is low enough, recording can be 
left active during each execution of a parallel program, so that  an error occurring 
unfrequently can be captured and subsequently reproduced. 

Efficient record-replay techniques are mostly based upon the "Instant Re- 
play" mechanism of LeBlanc and Mellor-Crummey [5]. The efficiency of the 
instant replay comes from the observation that  it is sufficient to record the order 
of accesses to shared objects to be able to reproduce "indistinguishable" execu- 
tions. The instant replay mechanism was adapted to message passing program- 
ming models [6], where each process records on a tape the identifiers of received 
messages. The replay system forces re-executing processes to treat incoming mes- 
sages in the same order as during the initial recording. This mechanism was used 
as a basis for the implementation of parallel debuggers [8, 6, 3]. 

This paper describes an optimized record-replay mechanism for ATHAPAS- 
CAN 2, the programming model of the APACHE research project. APACHE aims 
at designing and implementing a parallel programming environment for parallel 
computers, providing both static and dynamic load balancing facilities [9]. The 
mechanism described in the sequel of this paper, exploits the characteristics 
of remote procedure calls to reduce drastically the volume of traces that  need 
to be recorded in order to be able to replay programs deterministically with 
respect to the original recorded computation. This mechanism can be applied 
to any RPC-based programming model. A formal proof of the equivalence of 
executions controlled by the described mechanism is also given. In addition the 
time overhead of recording is measured systematically, for the most classical 
parallel numerical algorithms, showing that  it always remains very low. 

2 The Athapascan programming model 

In ATHAPASCAN, the execution of parallel programs is performed by a set of iden- 
tical virtual processors operating asynchronously [2]. Expression of parallelism is 
achieved by blocking and n0n-blocking remote procedure calls (requests), thereby 
hiding the underlying communication protocols under the parameters and re- 
sults transmission mechanisms. Thus the ATHAPASCAN model is well suited 
for expressing control parallelism. Each virtual processor includes several En- 
try Points, which are the targets of remote procedure calls (see figure 1). No 
other communications are available in ATHAPASCAN. 

2 ATHAPASCAN is the language of the Apaches. 
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le,.u~v procedure - - "  . . . . .  ' - ~Ll t e~utt~ m the execution of a ugLL~-wetgh~ process 
(thread) within the virtual processor holding the target entry point. This thread 
may in turn create new threads by issuing remote procedure calls. Upon com- 
pletion, each thread returns a result to its caller thread. Several light-weight 
processes execute concurrently within each virtual processor to hide the latency 
of communications in parallel systems. ATHAPASCAN offers two types of remote 
procedure calls: 

- blocking (Call): control is returned to the caller after receiving the result of 
the called procedure, 

- non blocking (Spawn): control is returned to the caller after the creation of 
the remote thread. Two operators are provided to test (TestSpawn) or wait 
(WaitSpawn) for the completion of non-blocking remote procedure calls. 

3 M i n i m a l  t r a c e  r e c o r d i n g  

The non-deterministic behavior of an ATHAPASCAN program execution is due 
to the variable order in which requests are handled by entry points and to the 
results of non-deterministic primitives which are related to the current state of 
the system. The two causes can be tracked down separately. 

3.1 Bas i c  m e c h a n i s m  

The principle of the control driven replay is to record the order of accesses to 
shared resources. Classical implementations of Instant Replay record the order 
of system-level primitives for passing messages [6] or accessing shared variables 
[5]. In the ATHAPASCAN model, shared resources are entry points, accessed by 
requests. Our record-replay mechanism uses an intermediate level of abstraction 
where several system-level events can be abstracted in one, thereby reducing the 
number of records while being independent of the underlying communication 
system. 

Each call to an entry point results in a typical sequence of such "abstract" 
events. Figure 1 represents a complete sequence of events generated by a call to 
an entry point, from the request emission (event a) to the result receipt (event 
d) passing through the request receipt (event b) and the result emission (event 
c). A replay can be driven by forcing the execution order of request receipts 
(event b). Since an entry point controls racing requests, it can be responsible for 
recording the order in which it serves incoming requests. 

The order of request emissions (event a) is not recorded since an emitting 
thread will reproduce this order if all its non-deterministic operations produce 
the same values. However, this order may not be significant since the ATHAPAS- 
CAN model does not impose this order to be followed by the request receipts. 

The order of request receipts (event b) is the order in which incoming requests 
are processed by an entry point. This fundamental order represents the order in 
which access is granted to shared resources and is recorded by each entry point. 
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Fig. 1. Sequence of events for a call to an entry point. 

The order of result emissions (event c) is not significant since a single result 
is emitted by a thread and this occurs at the end of its execution. 

The order of result receipts (event d) is not visible from the point of view of 
the client thread. A client thread is informed of the presence of the result only 
through primitives TestSpawn and WaitSpawn in the case of a non blocking call 
or implicitly in the case of a blocking call. 

Each entry point is responsible for recording its request receipt history (event 
b). This history contains the order of request unique identifiers. A request iden- 
tifier is constructed independently by the client thread emitting the request in 
a deterministic way: in particular, it is independent of the other threads sharing 
the same virtual processor. For the ATHAPASCAN model, it has the following 
form: (VirtualProcessorlD, EntryPointID, ThreadID, RequestlD). 

3.2 Non-determinist ic  primitives 

Non-deterministic primitives may be considered as predefined non-deterministic 
entry points of the ATHAPASCAN kernel. For this type of entry points, results 
cannot be computed during replayed executions as during a recorded execu- 
tion. Therefore, the instant replay mechanism must record the results computed 
for each non-deterministic request along with the request identifier in order to 
provide the same result to the same request during the replay. This technique 
mixes data driven replay with the general control driven strategy. It is used to 
record-replay the ATHAPASCAN TestSpawn primitive whose result is dependent 
on communication delays. 

3.3 Interest of  the proposed mechanism 

The simplifications brought to the classical model result from the communication 
simplicity of the ATHAPASCAN-0 model. Processes obey a Client-Server protocol 
which is a sub-class of the model of communicating processes. Each request cor- 
responds to a result and a result is emitted only if a request was received. The 
ATHAPASCAN request and result transmissions can be implemented in several 
different ways without consequences on the design of the record-replay mech- 
anism. This independence leads to a reduction of the number of trace-points 
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for some implementations, up to a factor of six relative to the classical solution 
of implementing the record-replay at the system level. This reduction factor is 
obtained at low cost since no additional information is appended to the messages. 

4 E x e c u t i o n  e q u i v a l e n c e  d e m o n s t r a t i o n  

In this section, we prove formally that  using the record mechanism defined in 
section 3 results in deterministic replayed executions of ATHAPASCAN programs 
with respect to an original recording. An execution model is given for ATHAPAS- 
CAN, in the framework of which it is possible to define the equivalence between 
two executions of the same program. The notion of equivalence is such that  equiv- 
alent executions of a program exhibit the same behavior from the programmer 
point of view. 

The demonstrat ion is similar to the demonstration of equivalence given by 
Mellor-Crummey in [8]. A parallel program execution is composed of a set of 
(light-weight) processes, each of which executes a function to compute the re- 
sponse (result) to a request. A mapping relation M defines the bijection between 
emitted requests and computing processes. The demonstration shows that  it is 
sufficient to enforce the same mapping relation M in both executions to make 
them equivalent. The modified ATHAPASCAN run-time kernel implements the 
record-replay mechanism by recording the mapping relation of the initial execu- 
tion and forcing the replayed execution to follow this mapping relation. 

4.1 E x e c u t i o n  m o d e l  

A s s u m p t i o n s .  In the following, we will assume that: 

1. Recorded and replayed executions of a parallel ATHAPASCAN program are 
done using a fixed and ordered set of virtual processors VP. Each execution 
is started with the same initial parameters. Each virtual processor offers a 
fixed and ordered set of entry points EPvp. All replayed executions can use at 
least the same amount of resources as the initially recorded one: processors, 
memory and disk space, etc. 

2. The global variables of any Entry Point can only be accessed through a call 
to this Entry Point. Such an Entry Point declaration defines the limit of 
concurrent accesses allowed for these global variables. Therefore the state 
of each Entry Point during the computation of an ATHAPASCAN program is 
only determined by the order according to which the requests are received 
and processed by the Entry Point. 

3. ATHAPASCAN programs do not use system non-deterministic primitives. The 
equivalence result obtained for such programs can be simply extended for 
programs using non-deterministic primitives, provided the results of these 
primitives are recorded in the recording phase and read in subsequent re- 
played phases. 
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4. The use of inputs /outputs  in ATHAPASCAN programs is restricted. The pro- 
grammer must ensure that  the inputs of replayed executions are the same 
as the inputs of the recorded one. Access to shared output  devices need to 
be encapsulated in A T H A P A S C A N  Entry Points. 

5. Transmission times of requests and results are finite. 

D e f i n i t i o n l .  A history of request receipts hr~p,ep is associated with each entry 
point of each virtual processor. It defines the order according to which incoming 
requests are handled. The denotation of the history of request receipts of entry 
point ep of virtual processor vp is the following: 

hrvp, , = c ;  , �9 �9 �9 

The execution model refers to the histories of request receipts hr~p,ep which 
are defined as the sequence of processes executed on the entry point. Each com- 

~P'eP is performed by the process identified with the unique triple putation Cth 
@p, ep, th) expressing the thread th running the entry point ep on the virtual 
processor vp. 

D e f i n i t i o n 2 .  A history of request emissions hep is associated with each process 
p = (vp, ep, th). It defines the sequence of requests emitted by this process during 
execution. The denotation for the history of request emissions of process p is the 
following: 

~ 0 ,  ~ 1 ,  ~ 2 ,  �9 �9 �9 

" (vp, ep) is directed towards entry point ep on Each request emission e i = 
virtual processor vp. For each process p, the history of request emissions he, 
reflects the interactions of this process with the rest of the program. 

D e f i n i t i o n 3 .  The mapping relation M is a set of triples in the form (Pl, i, p2} 
indicating that  the request emission e pl = (vp, ep} is computed by process p2 = 
(vp, ep, th). 

The relation M realizes a bijection between the set of emitted requests and 
the set of computations. This bijection guarantees that  each emitted request is 
computed and each process computation corresponds to a request. 

Following these definitions, the execution X is characterized by the triple 
(H, E, M), where H is the set of histories of request receipts, E is the set of 
histories of request emissions and M is the mapping relation. 

In the following we assume that  for all the computations of the same pro- 
grams, the same mappings are enforced. 

4.2 E x e c u t i o n  e q u i v a l e n c e  

D e f i n i t i o n 4 .  Two executions X and X I are said to be equivalent if for each 
process p = (vp, ep, th) both  executions assign the same history of request emis- 
sions to process p. The equivalence of two executions X and X I is denoted as 
X ~ X ' .  
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This definition of execution equivalence is suitable for debugging a program 
since the behavior of each individual process is identical in all equivalent execu- 
tions. These identicM behaviors enable a p rogrammer  to refine his understanding 
of the execution of a program through repeated executions. A cyclic debugging 
technique can then be applied. 

I, e m m a  5. Sequential ATHAPASCAN processes having no external interaction are 
deterministic. 

This l emma  expresses the basic hypothesis of all instant replay mechanisms. 

Consequences: 

1. For any execution of a parallel ATHAPASCAN program, a process started with 
the same initial conditions will emit  the same first request or the same result, 
if it does not emit  any request. 

2. For any execution of a parallel ATHAPASCAN program, a process started 
with the same initial conditions and whose previously emit ted requests were 
identical and returned the same results, will emit  the same following request 
or result, if it does not emit  any more request. Here the difference is that  
the process interacts wi th  its environment.  However its interactions remain 
the same through all its computat ions.  

For the purpose of the equivalence demonstration,  let us define a vector clock 
[7] for ATHAPASCAN. 

D e f i n i t i o n 6 .  A vector clock for ATnAPASCAN is defined as a vector whose 
dimension is the number  of Entry  Points used by an ATHAPASCAN program 
execution and updated  for each Entry  Point in the following way: 

1. The  i th component  of the vector clock of an Entry Point is incremented each 
vp,i is handled on the Entry Point, tha t  is a new t ime an incoming request cth 

process is created and started: 

YCi[i] := YCi[i] + 1 = th 

2. The vector clock VCi  of EPi is piggy-backed to each message sent by a 
process of EPi ,  be it a request or a result message. 

3. The vector clock VCi of EPi is updated  on receipt of each message by the 
Entry  Point: if the message is a request, it is when star t ing a new process, 
just  before incrementing the i th component  of the vector clock (see above); 
otherwise, if the message is a response, the incrementation takes place when 
the message is passed to the requesting process. Updat ing performs the fol- 
lowing operation: 

vc~ : =  sup(VCi, vc~ , )  

sup being a component-wise m a x i m u m  operation. 
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We now use this vector clock to define a partial order on the messages emit- 
ted during a computation. Let n be the number of Entry Points during both  
computations. Let mi and mj be two messages emitted from Entry Points EP~ 
and EPj during the computat ion of an ATHAPASCAN program and VCi and VCj 
the values of the vector clocks piggy-backed to mi and mj.  

D e f i n i t i o n  7. The partial order between messages induced by the ATHAPASCAN 
vector clock will be denoted -<vc: 

mi "<vc mj ~:~ VCi -< VCj 

with 

VC~ -< VCj r VC~ [k] _< VCj [k], Vk e [1, n] 

~ v c  is a partial order since non causally linked messages cannot be ordered. 
Several requests emitted by the same process p may hold the same vector clock. 
However they can be ordered by using the indice o of the request emission ePo to 
extend the order -<vc. 

Theorem 8. Let X = (H, E, M) be an ATHAPASCAN program execution. Let X ~ 
be an execution of the same program under the assumptions defined above (see 
beginning of section 4.1). 

For X '  to be equivalent to X,  it is sufficient to map all requests of X r using 
M. 

Proof: The proof is done by contradiction. Let us assume there exists at least 
one message of X '  without corresponding identical message in X. If there exist 
several messages of this kind, there exists a set of smallest messages, under the 
"<vc relation. Let rl j be one of the messages of this set, the jth message emitted 
by process i. Two possible cases may arise: 

1 .  Either j = 1, which means that  r~ is the first request emitted by process 
i, or the answer emitted by process i if it does not emit any request. Again 
two possible cases: 

(a) Either i = 1, r~ 1 is the first request emitted during the ATttAPASCAN 
program execution. The program was started with the same input pa- 
rameters in X and X ~ and therefore the sequential computations before 
the first request emissions should be identical in X and X '  (consequence 
of lemma 5). Therefore requests r~ and r~ 1 are identical. 

(b) Or r~ 1 is the first request emitted during the computat ion of process i or 
the answer of process i, if it does not emit any request. Since process i: 

- was created as a consequence of the same request in both executions 
X and X' ,  this request being lower than r~ 1 in the order "<vc, 

- was started under the same initial conditions because the mapping 
M defined by execution X is used during execution X ' .  

- did not receive any other external input before emitting r~ 1, 
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it will perform the same sequential computation between its initialization 
and the cmission of r~ 1 (consequence of lemma 5). Therefore r~ 1, emitted 
during X' is identical to r I emitted during X. 

2. Or j > 1. But prior to the emission of r~ j, process i: 
- -  was started under the same initial conditions because the mapping M 

defined by execution X is used during execution X'. 
- received the same inputs, in the same order as in execution X, since 

' of X'  with i ij otherwise there would be some message m~ m~ "~vc ri 
without corresponding identicM message mi in X, which contradicts the 
assumption above. 

Because of lemma 5, it is not possible for r~ j to be different from the jth 
request of process i in X and the assumption of the proof is contradictory. 

The assumption done is proven false under any circumstances which demon- 
strates by contradiction that every request from X ~ has a corresponding request 
in X. A similar reasoning proves that it is impossible for a request of X not to 
have its counterpart in X ~. 12 

5 T i m e - o v e r h e a d  m e a s u r e m e n t  o f  t r a c e  r e c o r d i n g  

A prototype ATHAPASCAN kernel was instrumented with the mechanism de- 
scribed in this paper. The kernel is built on top of PVM and several thread 
libraries available for different hardware architectures. The determinacy of reex- 
ecutions was tested with a highly non-deterministic process-farm implementation 
of the N-queens problem, by observing the order of solutions in the result list. 

5.1 T ime-overhead  m e a s u r e m e n t  m e t h o d  

Performance measurements were done using the ANDES (Algorithms aNd DE- 
Scription) modeling language and synthetic programs generator (see figure 2) 
[4] which was adapted to model and generate ATrlAPASCAN programs. A syn- 
thetic parallel program is a real program whose resource consumption, proces- 
sor, memory and communication, can be easily controlled. The main advantages 
of synthetic programs are the possibility to generate them automatically and 
the ease of changing parameters regulating the consumption of resources. Syn- 
thetic programs can be used to measure the overhead of trace recording since 
this overhead is the same for real or synthetic programs. Another advantage of 
this method was the availability of a set of existing ANDES models. This is the 
approach of the ALPES project (ALgorithms, Parallelism, and Evaluation of Sys- 
tems), combining synthetic program generation tools with software monitoring 
of parallel programs [11]. 

From a model of algorithm written in ANDES, it is possible to generate a wide 
range of different synthetic programs with different structures. For example with 
the Prolog-like search tree algorithm, it is possible to change the branching factor 
of the nodes or the depth of the tree. In the experiments, only one structure was 
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Fig. 2. Evaluation chain. 

retained for each model of algorithm. The computation/communication ratio of 
synthetic programs was adjusted by tuning the values of the parameters of the 
program models. Experiments were performed by generating, for each model of 
algorithm, a synthetic program for each of the selected ratios. Execution threads 
defined in the models were mapped on the virtual processors executing the syn- 
thetic programs using one of the greedy algorithms of the mapping toolbox of 
the APACHE project [1]. From these mappings and the ANDES models of algo- 
rithms, synthetic ATHAPASCAN programs were generated. Then the execution 
times of all synthetic programs were measured, for all the selected ratios. 

We restricted ourselves to program models having a deterministic behavior. 
The behavior of a non-deterministic program can indeed be so different for each 
of its executions that comparisons become impossible, as it was experienced with 
the N-queens program where some executions recording traces executed faster 
than unmonitored executions. For programs whose behavior is non-deterministic, 
it is not possible to apply a statistical measurement method, based on the hy- 
pothesis that observed executions have similar behaviors. The selected models 
include the following structures of algorithms Divide and Parallelize (balanced 
tree), Prolog-like Search Tree (unbalanced tree), Regular Iteration (same number 
of forks in each step), Master-Slaves (variable number of forks in each step) and 
Strassen's Matrix Product [10] (recursive numerical algorithm). 

To measure the time overhead of the recording, the execution times of syn- 
thetic programs were measured "with" and "without" the recording mode set. 
For each benchmark, the desired precision was to make sure that, with a proba- 
bility of 95%, the real mean execution time was enclosed within an interval of 3% 
of the mean execution time centered around the estimated mean execution time. 
The whole experiment represented 2400 different executions of ATHAPASCAN 
programs. Each overhead was computed as the ratio of the difference of mean 
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execution time "with" recording mode set and mean execution time "without" 
recording mode set, divided by the mean execution time "without" recording 
mode set. The division between two results known with a precision of 95% each 
reduced the precision of the overheads to a certitude of 90%. Synthetic programs 
were executed by a prototype of the ATHAPASCAN kernel running on a 32 nodes 
IBM SP1 entirely dedicated to the measurements. 

5.2 T i m e - o v e r h e a d  m e a s u r e m e n t  resu l t s  

Measurement results are summarized in figure 3 which displays the measured 
recording overheads with their confidence ranges. The main outcome from these 
measures is that recording overheads are lower than 5~, even for the improba- 
ble cases where communication costs represent 10 times computation costs. No 
algorithm seems pathological with respect to the time overhead of recording. 
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Fig. 3. Preliminary results. 

6 Conclusion 

Cyclic debugging of inherently non deterministic parallel programs can be done 
using the Instant Replay technique. This paper describes an adaptation of the 
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Instant Replay mechanism to a hierarchical, RPC-based programming model, 
where parallel programs are executed by a potentially high number of light- 
weight processes, grouped in virtual processors. This adaptat ion was optimized 
by exploiting the characteristics of the programming model, resulting in an im- 
portant  reduction of the number of records necessary to replay programs deter- 
ministically. The techniques described in the paper can be used for any RPC- 
based parallel programming model such as applications structured according 
to a Client-Server architecture. Similar techniques could be adapted to some 
object-oriented parallel programming models. 

A prototype implementation of the RPC-based ATHAPASCAN programming 
model including record-replay techniques was done and tested. Systematic mea- 
surements indicated that  the costs of the recording - t ime overhead and volume 
of recorded traces- remain very limited and that  the recording mode can be 
used as the normal ATHAPASCAN execution mode, enabling to capture unfre- 
quent errors as soon as they occur and debug them using a cyclic method. The 
implementation of the instant replay mechanism will serve as a basis for the 
development of an ATHAPASCAN debugger which is currently being designed. 
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