
Formal and experimental validation of a low
overhead execut ion replay mechanism*

Alain Fagot and Jacques Chassin de Kergommeaux

IMAG, APACHE project
46 avenue F~lix Viallet,

F-38031 Grenoble Cedex 1, France.
{Alain .Fagot,Jacq ues.Chassin-de-Kergom meaux)@imag.fr

Abs t r ac t . This paper presents a mechanism for record-replay of par-
allel programs written in a remote procedure call (RPC) based parallel
programming model. This mechanism, which will serve as a basis for
implementing a user-level debugger, exploits some properties of the pro-
gramming model to fimit drastically the number of records that need to
be done. A formal proof of the equivalence between recorded and replayed
executions is given. Systematic measurements of the time overhead of the
recording indicate that it is sufficiently low for the recording mode to be
considered as normal execution mode. Similar techniques can be applied
to other programming models.

Keywords: Instant Replay, parallel debugging, deterministic reexecutions, Re-
mote Procedure Call.

1 I n t r o d u c t i o n

This paper presents a mechanism allowing programmers to cope with the inher-
ent non-determinism of parallel executions, when debugging programs written in
a remote procedure call (RPC) based programming model, designed for parallel
multiprocessors. Many parallel programs present a non-deterministic behavior,
even if they produce deterministic computat ion results. Non-deterministic exe-
cution behaviors originate mainly in execution environments of programs. Such
an environment depends on a large number of factors that cannot be controlled
by the programmer , such as the initial contents of cache memories, the behavior
of the operating system, etc. Programs adapting to the execution environment
for efficiency reasons, using dynamic load balancing techniques, for example, are
very prone to exhibit non-deterministic execution behaviors. Non-deterministic
execution behavior of erroneous parallel programs may result in transient errors
which appear very unfrequently or vanish when debugging tools are used, be-
cause of changes introduced by these tools in the causal relationship between
parallel processes.

* This work was par t ia l ly s u p p o r t e d by the French Min i s t e ry of Research
unde r the i n t e r - P R C pro jec t Trace.

168

The most classical technique used to catch transient errors appearing dur-
ing executions of parallel programs is to record an initial execution and to force
subsequent executions to be deterministic with respect to the initial execution,
using the recorded information. Debugging an erroneous program then amounts
to record an erroneous execution and to apply cyclic debugging techniques dur-
ing subsequent replayed executions. In order for this technique to be effective,
the perturbation resulting from the recording operation ought to be kept suffi-
ciently low so that errors appearing in un-recorded executions do not vanish in
recorded ones and vice-versa. If this overhead is low enough, recording can be
left active during each execution of a parallel program, so that an error occurring
unfrequently can be captured and subsequently reproduced.

Efficient record-replay techniques are mostly based upon the "Instant Re-
play" mechanism of LeBlanc and Mellor-Crummey [5]. The efficiency of the
instant replay comes from the observation that it is sufficient to record the order
of accesses to shared objects to be able to reproduce "indistinguishable" execu-
tions. The instant replay mechanism was adapted to message passing program-
ming models [6], where each process records on a tape the identifiers of received
messages. The replay system forces re-executing processes to treat incoming mes-
sages in the same order as during the initial recording. This mechanism was used
as a basis for the implementation of parallel debuggers [8, 6, 3].

This paper describes an optimized record-replay mechanism for ATHAPAS-
CAN 2, the programming model of the APACHE research project. APACHE aims
at designing and implementing a parallel programming environment for parallel
computers, providing both static and dynamic load balancing facilities [9]. The
mechanism described in the sequel of this paper, exploits the characteristics
of remote procedure calls to reduce drastically the volume of traces that need
to be recorded in order to be able to replay programs deterministically with
respect to the original recorded computation. This mechanism can be applied
to any RPC-based programming model. A formal proof of the equivalence of
executions controlled by the described mechanism is also given. In addition the
time overhead of recording is measured systematically, for the most classical
parallel numerical algorithms, showing that it always remains very low.

2 The Athapascan programming model

In ATHAPASCAN, the execution of parallel programs is performed by a set of iden-
tical virtual processors operating asynchronously [2]. Expression of parallelism is
achieved by blocking and n0n-blocking remote procedure calls (requests), thereby
hiding the underlying communication protocols under the parameters and re-
sults transmission mechanisms. Thus the ATHAPASCAN model is well suited
for expressing control parallelism. Each virtual processor includes several En-
try Points, which are the targets of remote procedure calls (see figure 1). No
other communications are available in ATHAPASCAN.

2 ATHAPASCAN is the language of the Apaches.

169

le,.u~v procedure - - " ' - ~Ll t e~utt~ m the execution of a ugLL~-wetgh~ process
(thread) within the virtual processor holding the target entry point. This thread
may in turn create new threads by issuing remote procedure calls. Upon com-
pletion, each thread returns a result to its caller thread. Several light-weight
processes execute concurrently within each virtual processor to hide the latency
of communications in parallel systems. ATHAPASCAN offers two types of remote
procedure calls:

- blocking (Call): control is returned to the caller after receiving the result of
the called procedure,

- non blocking (Spawn): control is returned to the caller after the creation of
the remote thread. Two operators are provided to test (TestSpawn) or wait
(WaitSpawn) for the completion of non-blocking remote procedure calls.

3 M i n i m a l t r a c e r e c o r d i n g

The non-deterministic behavior of an ATHAPASCAN program execution is due
to the variable order in which requests are handled by entry points and to the
results of non-deterministic primitives which are related to the current state of
the system. The two causes can be tracked down separately.

3.1 Bas i c m e c h a n i s m

The principle of the control driven replay is to record the order of accesses to
shared resources. Classical implementations of Instant Replay record the order
of system-level primitives for passing messages [6] or accessing shared variables
[5]. In the ATHAPASCAN model, shared resources are entry points, accessed by
requests. Our record-replay mechanism uses an intermediate level of abstraction
where several system-level events can be abstracted in one, thereby reducing the
number of records while being independent of the underlying communication
system.

Each call to an entry point results in a typical sequence of such "abstract"
events. Figure 1 represents a complete sequence of events generated by a call to
an entry point, from the request emission (event a) to the result receipt (event
d) passing through the request receipt (event b) and the result emission (event
c). A replay can be driven by forcing the execution order of request receipts
(event b). Since an entry point controls racing requests, it can be responsible for
recording the order in which it serves incoming requests.

The order of request emissions (event a) is not recorded since an emitting
thread will reproduce this order if all its non-deterministic operations produce
the same values. However, this order may not be significant since the ATHAPAS-
CAN model does not impose this order to be followed by the request receipts.

The order of request receipts (event b) is the order in which incoming requests
are processed by an entry point. This fundamental order represents the order in
which access is granted to shared resources and is recorded by each entry point.

170

(Call/Spawn)
I1

d

(entry poinO

Client thread Server thread

Fig. 1. Sequence of events for a call to an entry point.

The order of result emissions (event c) is not significant since a single result
is emitted by a thread and this occurs at the end of its execution.

The order of result receipts (event d) is not visible from the point of view of
the client thread. A client thread is informed of the presence of the result only
through primitives TestSpawn and WaitSpawn in the case of a non blocking call
or implicitly in the case of a blocking call.

Each entry point is responsible for recording its request receipt history (event
b). This history contains the order of request unique identifiers. A request iden-
tifier is constructed independently by the client thread emitting the request in
a deterministic way: in particular, it is independent of the other threads sharing
the same virtual processor. For the ATHAPASCAN model, it has the following
form: (VirtualProcessorlD, EntryPointID, ThreadID, RequestlD).

3.2 Non-determinist ic primitives

Non-deterministic primitives may be considered as predefined non-deterministic
entry points of the ATHAPASCAN kernel. For this type of entry points, results
cannot be computed during replayed executions as during a recorded execu-
tion. Therefore, the instant replay mechanism must record the results computed
for each non-deterministic request along with the request identifier in order to
provide the same result to the same request during the replay. This technique
mixes data driven replay with the general control driven strategy. It is used to
record-replay the ATHAPASCAN TestSpawn primitive whose result is dependent
on communication delays.

3.3 Interest of the proposed mechanism

The simplifications brought to the classical model result from the communication
simplicity of the ATHAPASCAN-0 model. Processes obey a Client-Server protocol
which is a sub-class of the model of communicating processes. Each request cor-
responds to a result and a result is emitted only if a request was received. The
ATHAPASCAN request and result transmissions can be implemented in several
different ways without consequences on the design of the record-replay mech-
anism. This independence leads to a reduction of the number of trace-points

171

for some implementations, up to a factor of six relative to the classical solution
of implementing the record-replay at the system level. This reduction factor is
obtained at low cost since no additional information is appended to the messages.

4 E x e c u t i o n e q u i v a l e n c e d e m o n s t r a t i o n

In this section, we prove formally that using the record mechanism defined in
section 3 results in deterministic replayed executions of ATHAPASCAN programs
with respect to an original recording. An execution model is given for ATHAPAS-
CAN, in the framework of which it is possible to define the equivalence between
two executions of the same program. The notion of equivalence is such that equiv-
alent executions of a program exhibit the same behavior from the programmer
point of view.

The demonstrat ion is similar to the demonstration of equivalence given by
Mellor-Crummey in [8]. A parallel program execution is composed of a set of
(light-weight) processes, each of which executes a function to compute the re-
sponse (result) to a request. A mapping relation M defines the bijection between
emitted requests and computing processes. The demonstration shows that it is
sufficient to enforce the same mapping relation M in both executions to make
them equivalent. The modified ATHAPASCAN run-time kernel implements the
record-replay mechanism by recording the mapping relation of the initial execu-
tion and forcing the replayed execution to follow this mapping relation.

4.1 E x e c u t i o n m o d e l

A s s u m p t i o n s . In the following, we will assume that:

1. Recorded and replayed executions of a parallel ATHAPASCAN program are
done using a fixed and ordered set of virtual processors VP. Each execution
is started with the same initial parameters. Each virtual processor offers a
fixed and ordered set of entry points EPvp. All replayed executions can use at
least the same amount of resources as the initially recorded one: processors,
memory and disk space, etc.

2. The global variables of any Entry Point can only be accessed through a call
to this Entry Point. Such an Entry Point declaration defines the limit of
concurrent accesses allowed for these global variables. Therefore the state
of each Entry Point during the computation of an ATHAPASCAN program is
only determined by the order according to which the requests are received
and processed by the Entry Point.

3. ATHAPASCAN programs do not use system non-deterministic primitives. The
equivalence result obtained for such programs can be simply extended for
programs using non-deterministic primitives, provided the results of these
primitives are recorded in the recording phase and read in subsequent re-
played phases.

172

4. The use of inputs /outputs in ATHAPASCAN programs is restricted. The pro-
grammer must ensure that the inputs of replayed executions are the same
as the inputs of the recorded one. Access to shared output devices need to
be encapsulated in A T H A P A S C A N Entry Points.

5. Transmission times of requests and results are finite.

D e f i n i t i o n l . A history of request receipts hr~p,ep is associated with each entry
point of each virtual processor. It defines the order according to which incoming
requests are handled. The denotation of the history of request receipts of entry
point ep of virtual processor vp is the following:

hrvp, , = c ; , �9 �9 �9

The execution model refers to the histories of request receipts hr~p,ep which
are defined as the sequence of processes executed on the entry point. Each com-

~P'eP is performed by the process identified with the unique triple putation Cth
@p, ep, th) expressing the thread th running the entry point ep on the virtual
processor vp.

D e f i n i t i o n 2 . A history of request emissions hep is associated with each process
p = (vp, ep, th). It defines the sequence of requests emitted by this process during
execution. The denotation for the history of request emissions of process p is the
following:

~ 0 , ~ 1 , ~ 2 , �9 �9 �9

" (vp, ep) is directed towards entry point ep on Each request emission e i =
virtual processor vp. For each process p, the history of request emissions he,
reflects the interactions of this process with the rest of the program.

D e f i n i t i o n 3 . The mapping relation M is a set of triples in the form (Pl, i, p2}
indicating that the request emission e pl = (vp, ep} is computed by process p2 =
(vp, ep, th).

The relation M realizes a bijection between the set of emitted requests and
the set of computations. This bijection guarantees that each emitted request is
computed and each process computation corresponds to a request.

Following these definitions, the execution X is characterized by the triple
(H, E, M), where H is the set of histories of request receipts, E is the set of
histories of request emissions and M is the mapping relation.

In the following we assume that for all the computations of the same pro-
grams, the same mappings are enforced.

4.2 E x e c u t i o n e q u i v a l e n c e

D e f i n i t i o n 4 . Two executions X and X I are said to be equivalent if for each
process p = (vp, ep, th) both executions assign the same history of request emis-
sions to process p. The equivalence of two executions X and X I is denoted as
X ~ X ' .

173

This definition of execution equivalence is suitable for debugging a program
since the behavior of each individual process is identical in all equivalent execu-
tions. These identicM behaviors enable a p rogrammer to refine his understanding
of the execution of a program through repeated executions. A cyclic debugging
technique can then be applied.

I, e m m a 5. Sequential ATHAPASCAN processes having no external interaction are
deterministic.

This l emma expresses the basic hypothesis of all instant replay mechanisms.

Consequences:

1. For any execution of a parallel ATHAPASCAN program, a process started with
the same initial conditions will emit the same first request or the same result,
if it does not emit any request.

2. For any execution of a parallel ATHAPASCAN program, a process started
with the same initial conditions and whose previously emit ted requests were
identical and returned the same results, will emit the same following request
or result, if it does not emit any more request. Here the difference is that
the process interacts wi th its environment. However its interactions remain
the same through all its computat ions.

For the purpose of the equivalence demonstration, let us define a vector clock
[7] for ATHAPASCAN.

D e f i n i t i o n 6 . A vector clock for ATnAPASCAN is defined as a vector whose
dimension is the number of Entry Points used by an ATHAPASCAN program
execution and updated for each Entry Point in the following way:

1. The i th component of the vector clock of an Entry Point is incremented each
vp,i is handled on the Entry Point, tha t is a new t ime an incoming request cth

process is created and started:

YCi[i] := YCi[i] + 1 = th

2. The vector clock VCi of EPi is piggy-backed to each message sent by a
process of EPi , be it a request or a result message.

3. The vector clock VCi of EPi is updated on receipt of each message by the
Entry Point: if the message is a request, it is when star t ing a new process,
just before incrementing the i th component of the vector clock (see above);
otherwise, if the message is a response, the incrementation takes place when
the message is passed to the requesting process. Updat ing performs the fol-
lowing operation:

vc~ : = sup(VCi, vc~ ,)

sup being a component-wise m a x i m u m operation.

174

We now use this vector clock to define a partial order on the messages emit-
ted during a computation. Let n be the number of Entry Points during both
computations. Let mi and mj be two messages emitted from Entry Points EP~
and EPj during the computat ion of an ATHAPASCAN program and VCi and VCj
the values of the vector clocks piggy-backed to mi and mj.

D e f i n i t i o n 7. The partial order between messages induced by the ATHAPASCAN
vector clock will be denoted -<vc:

mi "<vc mj ~:~ VCi -< VCj

with

VC~ -< VCj r VC~ [k] _< VCj [k], Vk e [1, n]

~ v c is a partial order since non causally linked messages cannot be ordered.
Several requests emitted by the same process p may hold the same vector clock.
However they can be ordered by using the indice o of the request emission ePo to
extend the order -<vc.

Theorem 8. Let X = (H, E, M) be an ATHAPASCAN program execution. Let X ~
be an execution of the same program under the assumptions defined above (see
beginning of section 4.1).

For X ' to be equivalent to X, it is sufficient to map all requests of X r using
M.

Proof: The proof is done by contradiction. Let us assume there exists at least
one message of X ' without corresponding identical message in X. If there exist
several messages of this kind, there exists a set of smallest messages, under the
"<vc relation. Let rl j be one of the messages of this set, the jth message emitted
by process i. Two possible cases may arise:

1 . Either j = 1, which means that r~ is the first request emitted by process
i, or the answer emitted by process i if it does not emit any request. Again
two possible cases:

(a) Either i = 1, r~ 1 is the first request emitted during the ATttAPASCAN
program execution. The program was started with the same input pa-
rameters in X and X ~ and therefore the sequential computations before
the first request emissions should be identical in X and X ' (consequence
of lemma 5). Therefore requests r~ and r~ 1 are identical.

(b) Or r~ 1 is the first request emitted during the computat ion of process i or
the answer of process i, if it does not emit any request. Since process i:

- was created as a consequence of the same request in both executions
X and X' , this request being lower than r~ 1 in the order "<vc,

- was started under the same initial conditions because the mapping
M defined by execution X is used during execution X ' .

- did not receive any other external input before emitting r~ 1,

175

it will perform the same sequential computation between its initialization
and the cmission of r~ 1 (consequence of lemma 5). Therefore r~ 1, emitted
during X' is identical to r I emitted during X.

2. Or j > 1. But prior to the emission of r~ j, process i:
- - was started under the same initial conditions because the mapping M

defined by execution X is used during execution X'.
- received the same inputs, in the same order as in execution X, since

' of X' with i ij otherwise there would be some message m~ m~ "~vc ri
without corresponding identicM message mi in X, which contradicts the
assumption above.

Because of lemma 5, it is not possible for r~ j to be different from the jth
request of process i in X and the assumption of the proof is contradictory.

The assumption done is proven false under any circumstances which demon-
strates by contradiction that every request from X ~ has a corresponding request
in X. A similar reasoning proves that it is impossible for a request of X not to
have its counterpart in X ~. 12

5 T i m e - o v e r h e a d m e a s u r e m e n t o f t r a c e r e c o r d i n g

A prototype ATHAPASCAN kernel was instrumented with the mechanism de-
scribed in this paper. The kernel is built on top of PVM and several thread
libraries available for different hardware architectures. The determinacy of reex-
ecutions was tested with a highly non-deterministic process-farm implementation
of the N-queens problem, by observing the order of solutions in the result list.

5.1 T ime-overhead m e a s u r e m e n t m e t h o d

Performance measurements were done using the ANDES (Algorithms aNd DE-
Scription) modeling language and synthetic programs generator (see figure 2)
[4] which was adapted to model and generate ATrlAPASCAN programs. A syn-
thetic parallel program is a real program whose resource consumption, proces-
sor, memory and communication, can be easily controlled. The main advantages
of synthetic programs are the possibility to generate them automatically and
the ease of changing parameters regulating the consumption of resources. Syn-
thetic programs can be used to measure the overhead of trace recording since
this overhead is the same for real or synthetic programs. Another advantage of
this method was the availability of a set of existing ANDES models. This is the
approach of the ALPES project (ALgorithms, Parallelism, and Evaluation of Sys-
tems), combining synthetic program generation tools with software monitoring
of parallel programs [11].

From a model of algorithm written in ANDES, it is possible to generate a wide
range of different synthetic programs with different structures. For example with
the Prolog-like search tree algorithm, it is possible to change the branching factor
of the nodes or the depth of the tree. In the experiments, only one structure was

176

algorithm model Andes
L

s~(~efic ~ l m p l e m ~ generator strategyJ

Fig. 2. Evaluation chain.

retained for each model of algorithm. The computation/communication ratio of
synthetic programs was adjusted by tuning the values of the parameters of the
program models. Experiments were performed by generating, for each model of
algorithm, a synthetic program for each of the selected ratios. Execution threads
defined in the models were mapped on the virtual processors executing the syn-
thetic programs using one of the greedy algorithms of the mapping toolbox of
the APACHE project [1]. From these mappings and the ANDES models of algo-
rithms, synthetic ATHAPASCAN programs were generated. Then the execution
times of all synthetic programs were measured, for all the selected ratios.

We restricted ourselves to program models having a deterministic behavior.
The behavior of a non-deterministic program can indeed be so different for each
of its executions that comparisons become impossible, as it was experienced with
the N-queens program where some executions recording traces executed faster
than unmonitored executions. For programs whose behavior is non-deterministic,
it is not possible to apply a statistical measurement method, based on the hy-
pothesis that observed executions have similar behaviors. The selected models
include the following structures of algorithms Divide and Parallelize (balanced
tree), Prolog-like Search Tree (unbalanced tree), Regular Iteration (same number
of forks in each step), Master-Slaves (variable number of forks in each step) and
Strassen's Matrix Product [10] (recursive numerical algorithm).

To measure the time overhead of the recording, the execution times of syn-
thetic programs were measured "with" and "without" the recording mode set.
For each benchmark, the desired precision was to make sure that, with a proba-
bility of 95%, the real mean execution time was enclosed within an interval of 3%
of the mean execution time centered around the estimated mean execution time.
The whole experiment represented 2400 different executions of ATHAPASCAN
programs. Each overhead was computed as the ratio of the difference of mean

177

execution time "with" recording mode set and mean execution time "without"
recording mode set, divided by the mean execution time "without" recording
mode set. The division between two results known with a precision of 95% each
reduced the precision of the overheads to a certitude of 90%. Synthetic programs
were executed by a prototype of the ATHAPASCAN kernel running on a 32 nodes
IBM SP1 entirely dedicated to the measurements.

5.2 T i m e - o v e r h e a d m e a s u r e m e n t resu l t s

Measurement results are summarized in figure 3 which displays the measured
recording overheads with their confidence ranges. The main outcome from these
measures is that recording overheads are lower than 5~, even for the improba-
ble cases where communication costs represent 10 times computation costs. No
algorithm seems pathological with respect to the time overhead of recording.

.= I

~

-1

-2

-3

-4
-1

........................... i

!

"Divide and Parallelize" "Prolog-like Search Tree" ~Regular Iteration" 'Tvlsster-Slaves" "Stra~en's Matrix Product"

.......................... t

i I I I
-0.5 0 0.5 1 1.5 logl0(computatio~communication)

Fig. 3. Preliminary results.

6 Conclusion

Cyclic debugging of inherently non deterministic parallel programs can be done
using the Instant Replay technique. This paper describes an adaptation of the

178

Instant Replay mechanism to a hierarchical, RPC-based programming model,
where parallel programs are executed by a potentially high number of light-
weight processes, grouped in virtual processors. This adaptat ion was optimized
by exploiting the characteristics of the programming model, resulting in an im-
portant reduction of the number of records necessary to replay programs deter-
ministically. The techniques described in the paper can be used for any RPC-
based parallel programming model such as applications structured according
to a Client-Server architecture. Similar techniques could be adapted to some
object-oriented parallel programming models.

A prototype implementation of the RPC-based ATHAPASCAN programming
model including record-replay techniques was done and tested. Systematic mea-
surements indicated that the costs of the recording - t ime overhead and volume
of recorded traces- remain very limited and that the recording mode can be
used as the normal ATHAPASCAN execution mode, enabling to capture unfre-
quent errors as soon as they occur and debug them using a cyclic method. The
implementation of the instant replay mechanism will serve as a basis for the
development of an ATHAPASCAN debugger which is currently being designed.

References

1. P. Bouvry, J. Chassin, and D. Trystram. Efficient solutions for mapping parallel
programs. In Proceedings of EuroPar'95. Springer-Verlag, August 1995.

2. M. Christaller. ATHAPASCAN-0A control parallelism approach on top of PVM. In
Proc PVM User's group meeting. University of Tennessee, Oak Ridge, 1994.

3. H. Jamrozik. Aide ~ la Mise au Point des Applications Parall~les et Rgparties d
base d'Objets Persistants. PhD thesis, Universit~ Joseph Fourier, Grenoble, 1993.

4. J. P. Kitajima and B. Plateau. Modelling parallel program behaviour in ALPES.
Information and Software Technology, 36(7):457-464, July 1994.

5. T.J. LeBlanc and J.M. Mellor-Crummey. Debugging Parallel Programs with In-
stant Replay. IEEE Transactions on Computers, C-36(4):471-481, 1987.

6. E. Leu and A. Schiper. Execution replay: a mechanism for integrating a visual-
ization tool with a symbolic debugger. In CONPAR 92 - VAPP V, volume 634 of
LNCS, September 1992.

7. F. Mattern. Virtual time and global states of distributed systems. In Proceedings
o] the Workshop on Parallel and Distributed Algorithms, Bonas, France, September
1988. North Holland.

8. J.M. Mellor-Crummey. Debugging and Analysis of Large-Scale Parallel Programs.
Technical Report 312, University of Rochester, September 1989.

9. B. Plateau. Prfisentation d'APACHE. Rapport APACHE 1, IMAG, Grenoble,
December 1994. Available at f t p . imag. f r : imag/APACIIE/RAPPORTS.

10. V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik, Band
13(Heft 4):354-356, 1969.

11. C. Tron et al. Performance Evaluation of Parallel Systems: the ALPES environment.
In Proceedings of ParCo93. Elsevier Science Publishers, 1993.

