
Relating Data-Parallelism and (And-)
Parallelism in Logic Programs*

M a n u e l V. H e r m e n e g i l d o a n d M a n u e l Carro

Universidad Po|it~cnica de Madrid
Facultad de [nforms

28660 Boadilla del Monte
Madrid - - Spain

{herme, mcaxro }~f i .upm. es

Abstract. Much work has been done in the areas of and-parallelism
and data-parallelism in Logic Programs. Both types of parallelism offer
advantages and disadvantages: traditional (and-) parallel models offer
generality, whereas data-parallelism techniques offer increased perfor-
mance for a restricted class of programs. The thesis of this paper is that
these two forms of parallelism axe not fundamentally different and that
relating them opens the possibility of obtaining the advantages of both
within the same system. Some relevant issues axe discussed and solutions
proposed. The discussion is illustrated through visualizations of actual
parallel executions implementing the ideas proposed.

1 I n t r o d u c t i o n

The term data-parallelism is generally used to refer to a parallel semantics for
(definite) iteration in a programming language such that all iterations axe per-
formed simultaneously, synchronizing before any event that directly or indirectly
involves communication among iterations. It is often also allowed that the re-
sults of the iterations be combined by reduction with an associative operator. In
this context a definite iteration is an iteration where the number of repetitions
is known before the iteration is initiated.

Data-parallelism has been exploited in many languages, including C* [28],
Data Parallel C [12], *LISP [27], etc. Recently, much progress has been reported
in the application of concepts from data-paxallelism to logic programming, both
from the theoretical and practical points of view, including the design of pro-
gramming constructs and the development of many implementation techniques
[29, 3, 4].

On the other hand, much progress has also been made (and continues to
be made) in the exploitation of parallelism in logic programs based on control-
derived notions such as and-parallelism and or-paxallelism [6, 10, 18, 19, 1, 17,
26]. It appears interesting to explore, even if only informally, the relation between
these two at first sight different approaches to the exploitation of parallelism in
logic programs. This informal exploration is one of the purposes of this paper,
the other being to explore the intimately related issue of fast task startup.

The authors have been partially supported by ESPRIT project 6707 ParForce

28

1.1 Data-Paral le l ism and And-Paral le l i sm

It is generally accepted that data-parallelism is a restricted form of and-para-
Uelism: ~ the threads being parallelized in data-parallelism are usually the iter-
ations of a recursion, a type of parallelism which is obviously also supported in
and-parallel systems. All and-parallel systems impose certain restrictions on the
goals or threads which can be executed in parallel (such as independence and/or
determinacy, applied at different granularity levels [15, 21, 7, 16]) which are gen-
erally the min ima l ones needed in order to ensure vital desired properties such
as correctness of results or "no-slowdown", i.e. that parallel execution be guar-
anteed to take no more time than sequential execution. Data-parallel programs
have to meet the same restrictions from this point of view. This is generally
referred to as the "safeness" conditions in the context of data-parallelism.

However, one central idea in data-parallelism is to impose additional restric-
tions to the parallelism allowed, in order to make possible further optimizations
in some important cases. These restrictions limit the amount of parallelism which
can be obtained with respect to a more general purpose and-parallel implementa-
tion. But, on the other hand, when the restrictions are met, many optimizations
can be performed with respect to an unoptimized general purpose and-parallel
model, in which the implementation perhaps has to deal with backtracking, syn-
chronization, dynamic scheduling, locking, etc. A number of implementations
have been built which are capable of exploiting such special cases in an efficient
way (e.g. [4]). Often, a a pr ior i knowledge of the sizes of the data structures be-
ing operated on is required (but this data is also obtained dynamically in other
cases).

In a way, one would like to have the best of both worlds: an implementation
capable of supporting general forms of and- (and also -or) parallelism, so that
speedups can be obtained in as many programs as possible, and at the same
time have the implementation be able to take advantage of the optimizations
possible in data-parallel computations when the conditions are met.

1.2 Compi le - t ime and R u n - t i m e Techniques

In order to achieve the above mentioned goal of a "best of both worlds" sys-
tem, there are two classes of techniques which have to studied. The first class
is related to detecting when the particular properties to be used to perform the
optimizations hold; this problem is common to both control- and data-parallel
systems, and equally difficult in both. The solution of allowing the programmer
~o explicitly declare such properties or use special constructs (such as "parallel
map," "bounded quantifications" [2], etc.) which have built-in syntactic restric-
tions may help, but it is also true that this solution can be applied indistinctly in
both of the approaches under consideration. Thus, we will not deal herein with
how the special cases are detected.

The second class of techniques are those related to the actual optimizations
realized in the runtime machinery to exploit the special cases. Admitting that
data-parallelism constitutes a special case of and-parallelism, one would in prin-
ciple expect the abstract machine used in data-parallelism to be a "pared down"

1 Note, however, that data-parallelism can also be exploited as or parallelism [24].

29

version of the more general machine. We believe that this is in general the case,
but it is also true that the data-parallel machines also bring some new and inter-
esting techniques related to, for example, optimizations in memory management.

However, it should be noted that if the particular case is identified, the same
optimizations can also be done in general-purpose abstract machines supporting
and-parallelism (such as, for example, the RAP-WAM [14], the DAS-WAM [26]
or the Andorra-I engine [25]), and without losing the capability of handling the
general case, as shown in [23, 22].

On the other hand, a number of optimizations, generally related to the "Re-
form Compilation" done in Reform Prolog [20], are more fundamental. We find
these optimizations particularly interesting because they bring attention upon
a very important issue regarding the performance of and-parallel systems: that
of the speed in the creation and joining of tasks. We will essentially devote the
rest of the paper to this issue, because of the special interest of this subject, and
given that, as pointed out before, the other intervening issues have already been
addressed to some extent in the literature. 2

2 The Task Startup and Synchronization T ime Problems

The problem in hand can be illustrated with the following simple program:

vproc (El, []) .
vproc ([HIT] , 12~tlTR]) : -

process_element (H,HE),
vproc (T,TR).

which relates all the elements of two lists. Throughout the discussion we will
assume that the vproc/2 predicate is going to be used in the "forwards" way,
i.e. a ground list of values and a free variable will be supplied as arguments (in
that order), expecting as result a ground list. We use as process_element /o a
small-grained numerical operation, which serves to illustrate the issue:

process_element(H,HE):- HE is ((((H * 2) / 5) ' 2)+ (((H * 6) / 2) ' 3)) / 2 .

2.1 The Naive Approach

This program can be naively parallelized as follows using "control-parallelism"
(we will use throughout ~z-Prolog [14] syntax, where the "~" operator represents
a potentially parallel conjunction):

vp roc (D , []) .
vproc ([HIT] , [1~1~]) : -

process element (H,HR) ~ vproc (T,TR).

2 Improving the performance of parallel systems in the presence of fine-grained com-
putations can also be addressed by performing "granularity control" [9, 11, 31]. This
issue can be treated orthogonally to the techniques discussed in this paper.

30

This will allow the parallel execution of all iterations. Note that the paralleliza-
tion is safe, since all iterations are independent. The program can be parallelized
using "data-parallelism" in a similar way.

However, it is interesting to study how the tasks are started due to the textual
ordering of the goals. In a system like &-Prolog, using one of the the standard
schedulers (which we will assume throughout the examples), the agent running
the call to vproc/2 would create a process corresponding to the recursion, fie.
vproc(T,TR), make it available on its goal stack, and then take on the execu-
tion of process_element (a,Htt). Another agent might pick the created process,
creating in turn another process for the recursion and taking on a new iteration
of process_element (H,HR), and so on. In the end, parallel processes are cre-
ated for each iteration. However, the approach, or, at least, the naive program
presented, also has some drawbacks.

t
I
!

Fig. 1. List operation (10 el./1 proc.) Fig. 2. List operation, giving away recur-
sion (10 el./8 proc,)

In order to illustrate this, we perform the experiment of running the previ-
ous program with the goal "vproc (Y, R)', where V has been instantiated to the
list of integers from 1 to 10, and R is a free variable. This program (as well as
the others) is run in &-Prolog on a Sequent Symmetry shared memory multi-
processor and instructed to generate trace files, which can be visualized using
VisAndOr [5]. In VisAndOr graphs, time goes from top to bottom. Vertical solid
lines denote actual execution, whereas vertical dashed lines represent waits due
to scheduling or dependencies, and horizontal dashed lines represent forks and
joins.

Figure 1 represents the execution of the benchmark in one processor, and
serves as scale reference. The result of running the benchmark in 8 processors
is depicted in Figure 2. As can be seen, the initial task forks into two. One is
performed locally whereas the other one, corresponding to the recursion, is taken
by another agent and split again into two. In the end, the process is inverted to
perform the joins. A certain amount of speedup is obtained; this can be observed

31

by comparing its length to Figure 1. However, the speedup obtained is quite small
for a program such as this with obvious parallelism. This low speedup is in part
due to the small granularity of the parallel tasks, and also to the slow generation
of the tasks which results from giving out the recursion.

2.2 Keep ing the Recurs ion Local

One simple transformation can greatly alleviate the problem mentioned above - -
reversing the order of the goals in the parallel conjunction, to keep the recursive
goal local, and not even push it on to the goal stack:

v?roc(D, []) .
vproc ([HIT], ['~ITR]) :-

vproc (T,TR) & process_element.(H,HR).

Fig. 3. List operation, keeping recursion (10 el./8 proc.)

The result of running this program is depicted in Figure 3, which uses the
same scale as Figures 1 and 2. The first process keeps the recursion local and
thus creates the tasks much faster, resulting in substantially more speedup. This
transformation is normally done by the &-Prolog parallelizing compiler, unless
the user explicitly annotates the goal for parallel execution by hand.

In applications which show much larger granularity than this example, task
creation speed is not a problem. On the other hand, in numerical applications
(such as those targeted in data-parallelism) the speed of the process creating the
tasks will become a bottleneck, and speeding up tasks creation can greatly impact
the performance of systems where the number of processes/threads cannot be
statically determined and their creation is triggered at runtime.

2.3 The "Data-Paral le l" Approach

At this point it is interesting to return to the data-parallel approach and, in
particular, to Reform Prolog. Assuming that the recursion has already been

32

identified as suitable for this technique, this system converts the list into a vector,
noting the length on the way, and then creates the tasks associated with each
element in a tight, low level loop. The following program allows us to both
illustrate this process without resorting to low level instructions and measure
inside &-Prolog the benefit that this type of task creation can bring:

vproc([H1,H2,H3,H4,H5,H6,H7,HS,H9,H10], [R1,R2,R3,R4,1~5,R6,R7,R8,R9,R10]):-
process element(H1,R1)
process_element(H2,R2) k

process_element(HlO,RlO).

i

i

I

i

i

Fig. 4. List operation, keeping recursion Fig. 5. List operation, flattened for 10 el-
(10 el./8 proc.) ements (10 el./8 proc.)

Figure 4 represents the same execution as Figure 3, but at a slightly enlarged
scale; this scale will be retained throughout the rest of the paper, to allow easy
comparisons among different pictures.

The execution of the "data-parallel" program is depicted in Figure 5, which
uses the same scale as Figure 4. The clear improvement is due to the much
faster task creation and joining and also to having only one synchronization
structure for all tasks. Note, however, that the creation of the first task is slightly
delayed due to the need for unifying the whole list before creating any tasks and
for setting up the tasks themselves. This small delay is compensated by the
faster task creation, but can eventually be a bottleneck for very large vectors.
Eventually, in a big computation with a large enough number of processors, the
head unification will tend to dominate the whole computation (c.f. Amdahl's
law). In this case, unification parallelism can be worthwhile [3].

In our quest for merging the techniques of the data-parallel and and-parallel
approaches, one obvious solution would be to incorporate the techniques of the
Reform Prolog engine into the PWAM abstract machine for the cases when it is

33

applicable. On the other hand, it is also interesting to study how far one can go
with no modifications (or minimal modifications) to the machinery.

The last program studied is an unfolding of the original recursion. Note that
such unfoldings can always be performed at compile-time, provided that the
depth of the recursion is known. In fact, knowing recursion bounds may actually
be frequent in traditional data-parallel applications (and is often the case when
parallelizing bounded quantifications [2]). On the other hand it is not really the
case in general and thus some other solution must be explored.

2.4 A More Dynamic Unfolding

If the depth of the recursion is not known at compile time the previous scheme
cannot be used. But instead of resorting directly to the naive approach, we can
try to perform a more flexible task startup. The program below is an attempt
at making the unfolding more dynamic, while still staying within the source-to-
source program transformation approach:

vproc ([H1 ,H2,H3,H4 IT],
[RI,tt2,R3,R41TR]) :- !,

vproc (T, TR) k
process_element (H1,R1) k
process_element (H2,E2) k
process_element (H3, E3) k
process_element (H4, R4).

vproc([~HI,H2,H31T], [RI,R2,R31TR]) :- !,
vproc (T, TR) k
process_element(HI,El) k
process_element (H2, I~) k
process_element (H3, R3).

vproc(riil,H21T], [R1,R21TR]) : - !,
vproc (T,TR) k
process_element(H1 ,R1) k
process_element (H2 ,R2).

vproc([HIT], [R ITR]) :- !,
vproc (T,TR) k
process_element (H, R).

~ r o c (O , []).

The results are shown in Figure 6, which has the same scale as Figures 4
and 5. A group of four tasks is created; one of these tasks creates, in turn,
another group of four. The two remaining tasks are created inside the latter
group. The speed is not quite as good as when the 10 tasks are created at the
same time, but the results are dose. This "flattening" approach has been studied
formally by Millroth a, which has given sufficient conditions for performing these
transformations for particular cases such as linear recursion.

There are still two problems with this approach, however. The first one is
how to chose the "reformant level", i.e. the maximum degree of unfolding used,
which with this technique is fixed at compile-time. In the previous example the
unfolding was stopped at level 4, but the ideal unfolding level depends both
on the number of processors and the size of lists. The other problem, which
was pointed out before, is the fact that the initial matching of the list (or the
conversion to a vector) is a sequential step which can become a bottleneck for
large data sets. A solution is to increase the task creation speed (for example,
using low level instructions) but this has a limit, and it will also eventually
become a bottleneck. Another solution is to use from the start, and instead of

3 And has been used in &-Prolog compilation informally (see e.g. [30] and some of the
standard &-Prolog benchmarks, in h t t p : / / ~ m , c l ip . alia. f i . upm. es).

34

Fig. 6. List operation with fixed list fiat- Fig. 7. List operation with flexible list
tening (10 e|./8 proc.) flattening (10 el./8 proc.)

lists, more parallel data structures, such as vectors (we will return to this in
Section 3).

Fig. 8, "Skip" operation, 10 elements in 4

2.5 D y n a m i c Unfo ld ing in Pa ra l l e l

We now propose a different solution which tries to address at the same time the
two problems above. The transformation has two objectives: speeding up the
creation of tasks by performing it in parallel, and allowing a form of "flexible
flattening". The basic idea, applied to lists, is depicted in Figure 8. Instead of
performing a unification of a fixed length as encoded at compile-time, a builtin,
sk ip /4 , is used which will allow performing unifications of different lengths.

The predicate sk ip (L, N, LS, NS) relates a list L and an "unfolding increment"
N with a suffix LS of L which is placed at most at N positions from the starting of
L. NS contains the actual number of elements in LS, in case that N is less than the
length of L (in which case LS = []). Several calls to skip(L,N,LS,NS) using the
output list LS as input list L in each call will return pointers to equally-spaced

35

suffixes of L, until no sufficient elements remain. Figure 8 depicts the pointers
returned by sk ip(L,N,LS,NS) to a 10 elements list, with an "unfolding level"
N = 4. This builtin can be defined in Prolog as follows (but can, of course, be
implemented more efficiently at a low level):

skip(L,N,LS,NS) :- skip(L,N,LS,NS,0).

skip(LS,O,LS,NS,NS) :- !.
skip([],_, [3,NS,NS).
skip ([_ I Ls] ,N,LRs,Ns0,Ns) : -

N1 i s N-I,
Nsl is Ns+l,
skip (Ls, NI, I~s, Ns 0, Ns 1).

We now return to our original program and make use of the proposed builtin
(note tha t the "flattening parameter" N can be now chosen dynamically). The
entry point is vproc_opt /3 :

vproc_opt ([] , [] ,0).
vproc_opt (L,LR,N) :-

N>O,
skip (L,N,LS,NS),
skip (LR, NS, LRS, NS) ,
vproc_opt (LS,LRS,NS)
vproc_opt_n(NS ,L ,LR).

vproc_opt_n (0) .
vproc_opt_n(N, [LILs], [LRILRs]) : -

N > 0 ,
N1 is N-l,
vproc_opt_n(N1 ,Ls,LRs) k
proces s_element (L, Lit).

We have included the s k i p / 4 predicate as a C builtin in the &-Prolog system
and run the above program. The result is shown in Figure 7. The relatively large
delays are due to the traversal of the list made by sk ip /4 . Note, however, how
the tasks are created in groups of four corresponding to the dynamically selected
increment, which can now be made arbitrarily large.

It is worth noting that , in this case, the predicate s k i p / 4 not only returns
pointers to sublists of a given list, but is also able to construct a new list filled
with free variables. This allows spawning parallel processes, each one of them
working in separate segments of a list. This, in some sense, mimics the so-called
poslist and neglist identified in the Reform Compilation at run-t ime.

If we want the splitting of the list to be used afterwards (for example, because
it is needed in some further similar processing), we can construct a list containing
pointers to suffixes of a given list, or, under a more logical point of view, a list
describing sublists of the initial list by means of difference lists. Figure 9 depicts
this situation, and Figure 10 shows the result of an execution where the input and
output lists have been pre-processed using this technique. This list preprocessing
does not appear in Figure 10, as an example of the ~euse of a previously traversed
list.

2.6 P e r f o r m a n c e E v a l u a t i o n

In order to assess the relative performance of the various techniques discussed,
we have run the examples on a larger (240 element) list. The execution times are
presented in Table 1. The column Relative Speedup refers to the speedup with
respect to the parallel execution on one processor, and the column Absolute

36

Fig. 9. "Skiplist" operation, 10 elements in 4

M e t h o d
Sequential

T i m e (ms)

Keeping recursion
Skipping (8)
Skipping (30)

127
Parallel, 1 processor 153
Giving away recursion 134

41
30

Pre--built skipping list (8)
Pre-built skipping list (30)
Reform Compilation (8)
Data Parallel

28.5
28

26.5
27
26

Relat ive Speedup Absolute Speedup
1

1 0.83
1.14 0.94
3.73 3.09
5.1 4.23
5.36 4.45
5.4 4.53
5.77 4.79
5.6 4.7
5.88 4.88

Table 1. Times and speedups for different list access, 8 processors.

Speedup measures the execution speed with respect to the sequential execution.
The numbers between parentheses to the right of some benchmark names rep-
resent the skipping factor chosen.

The speedups suggested by Figures 4 to 9 may not correspond with those
in the table - - the length of the benchmark and the skip/unfolding increment
chosen in the two cases is different, and so is the distribution of the tasks.
Processing larger lists can take more advantage from the proposed techniques,
because the relative overhead from traversing the list is comparatively less, and
tasks with larger granularity can be distributed among the processes.

Overheads associated with scheduling, preparing tasks for parallel execution,
etc. make the parallel execution in one processor be slower than the sequential
execution. This difference is more acute in very small grained benchmarks, as
the one we are dealing with.

It can also be noted how a pre--built skipping list with a properly chosen
increment beats the reformed program. Of course a reformed program with the
same unfolding level would, in principle, at least equal the program with the pre L
built list. But the point is tha t the reformed program was statically transformed,
whereas the skiplist version can change dynamically, and be useful in cases where
the same data is used several times in the same program.

37

- - I !

Fig. 10. List operation with prebuilt list Fig. 11. Vector operation, constant time
(10 el./8 proc.) access arrays (10 el./8 proc.)

3 U s i n g C o n s t a n t T i m e A c c e s s A r r a y s

Finally, and for the sake of argument, we propose a simple-minded approach
to the original problem using standard Prolog terms, i.e., the real "arrays" in
Prolog. The use of this technique is limited by the fact that term arity is limited
in many Prolog implementations, but this could be easily cured. The "vector"
version of vproc/3 receives a vector represented using a structure (which can
have been either created directly or from a list) and its length. The access to
each element is done in constant time using arg/3.

vproc(O).
vproc (_,V,VR) :-

I>O, I1 is I-1,
vproc(I1,V,VR) ~ process_element_vec(I,V,VR).

The execution of this program is presented in Figure l l , where we are us-
ing a simple minded loop which creates tasks recursively. The same techniques
illustrated in previous examples can be applied to this "real array" version: it is
easy now to modify the above program in order to create the tasks in groups of
N, but now without having to previously traverse the data structure, as was the
case when using the skip builtin.

The result appears in Figure 12. It may seem that there is no performance
improvement, but is due to the fact that the execution depicted is very small,
and the added overhead of calculating the "splitting point" becomes a sizeable
part of the whole execution. In Table 2 larger arrays and skipping factors were
chosen, achieving better speedups than the simple parallel scheme. Since no real
traversal is needed using this representation, the amount of items skipped can
be dynamically adjusted with no extra cost.

A more even load distribution than that obtained with the simple recursion
scheme can be achieved using a binary split. This is equivalent to dynamically

38

M e t h o d
Sequential
Parallel, 1 process.or
Keeping recursion
Binary startup
Skipping (8)
Skipping (30)

Time (ms) Relat ive Speedup Absolute Speedup
149 1
174 1 0.85
45 3.8 3.31
38 4.5 3.92

31.2 5.57 4.77
29.5 5.89 5.05

Table 2. Times and speedups for vector accesses

choosing the splitting step to be half the length of the sub-vector assigned to the
task. Figure 13 depicts an execution following this scheme. As in Figure 12, the
comparatively large overhead associated with the determination of the splitting
point makes this execution appear larger than that corresponding to the simple
recursive case. But again, Table 2 reflects that for large enough executions, its
performance can be placed between the simple recursion scheme and a carefully
chosen skipping scheme.

I

]l
t

l
Fig. 12. Vector operation, constant time Fig. 13. Constant time access arrays, bi-
access arrays, skipping, 10 ek/8 proc. nary startup, 10 el./8 proc.

Some conclusions can be drawn from Tables 1 and 2. First, the s t ructure-
based programs are slightly slower than their list-based counterparts. This is
understandable in that using structures as arrays involves an explicit index han-
dling that is less efficient (or, rather, tha t has been less optimized) than in the
case of lists. But the fact that accessing any element in a structure is, in princi-
ple, a constant-t ime operation, allows a comparatively efficient implementation
of the dynamic skip strategy. This is apparent in that the speedups attained with
the arrays version of the skipping technique are bet ter than those corresponding
to the list-based programs. The absolute speed is less, which can be at tr ibuted
to the fact that the version of &-Prolog used has the a r g / 3 builtin written in

39

C, with the associated overhead of calling and returning from a C function. This
could be improved making arg/3 (or a similar primitive) a faster, WAM-level
instruction. Again, if we want (or have to) use lists, a low-level vec to r i ze /2
builtin could be fast enough to translate a list into a structure and still save time
with respect to a list-based implementation processing the resulting structure
in a divide-and-conquer fashion.

Finally, following on on this idea, we would like to point out that it is pos-
sible to build a quite general purpose "FORTRAN-like" constant access array
library without ever departing from standard Prolog or, eliminating the use of
"se ta rg" , even from "clean" Prolog. The solution we propose in [13] is related
to the standard "logarithmic access time" extensible array library written by
D.H.D.Warren. In this case, we obtain constant (rather than logarithmic) access
time, with the drawback that arrays are, at least in principle, fixed size.

4 Conc lus ions

We have argued that data-parallelism and and-parallelism are not fundamen-
tally different and that by relating them in fact the advantages of both can be
obtained within the same system. We have also argued that the difference lies in
two main issues: memory management and fast task startup and management.
Having pointed to recent progress in memory management techniques in and-
parallelism we have concentrated on the issue of fast task startup, discussed the
relevant issues and proposed a number of solutions, illustrating the point made
through visualizations of actual parallel executions implementing the ideas pro-
posed. In summary, we argue that both approaches can be easily reconciled,
resulting in more powerful systems which can bring the performance benefits of
data-parallelism with the generality of traditional and-parallel systems.

Our work has concentrated on speeding up task creation and distribution in a
type of symbolic or numerical computations that are traditionally characterized
by structural recursion over lists or arrays. We have shown some transformation
techniques relying on a dynamic load distribution that can improve the speedups
obtained in a parallel execution. However, the overhead associated with this
dynamic distribution is large in the case of lists; better speedups can be obtained
using data structures with constant access time, in which arbitrarily splitting the
data does not impose any additional overhead.

There are other kinds of computations where the iteration is performed over
a numerical parameter. While not directly characterizable as "data-parallelism"
this type of iteration can also benefit from fast task startup techniques. This
very interesting issue has been recently and independently discussed by Debray
[8], and shown to also achieve significant speedups for that class of problems.

The techniques discussed in this paper probably cannot always match the
performance of a native data-parallel system. But it is also true that, in prin-
ciple, low level mechanisms can be designed which fit seamlessly within the
machinery of a more general parallel system. In particular, entries in goal stacks

la &-Prolog can be modified to include pointers to the data the goals have to
work with, thus tightly encoding both the thread to be executed and the relevant
data. The resulting system should be able to achieve both maximum speedup
for data-parallel cases while at the same time supports general and-parallelism.

40

Acknowledgments

We would like to thank Jonas Barklund, Johan Bevemyr, and Hs Millroth
for discussions regarding Reform Prolog and Bounded Quantifications, as well
as Saumya Debray, Enrico Pontelli, a~d Gopal Gupta for interesting discussions
regarding this work.

References

1. K.A.M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor-
mance. In 1990 North American Conference on Logic Programming, pages 757-
776. MIT Press, October 1990.

2. Henrik Arro, Jonas Barklund, and Johan Bevemyr. Parallel bounded quantifica-
tion-preliminary results. ACM SIGPLAN No~ices, 28:117-124, 1993.

3. Jonas Barklund. Parallel Unification. Phi) thesis, Comp. Sci. Dept., Uppsala
Univ., Uppsala, 1990.

4. J. Bevemyr, T. Lindgren, and H. Millroth. Reform Prolog: the language and its
implementation. In Proc. lOth Intl. Conf. Logic Programming, Cambridge, Mass.,
1993. MIT Press.

5. M. Carro, L. G6mez, and M. Hermenegildo. Some Paradigms for Visualizing Par-
allel Execution of Logic Programs. In 1993 International Conference on Logic
Programming, pages 184-201. MIT Press, June 1993.

6. J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Pro-
grams. PhD thesis, The University of California At Irvine, 1983. Technical Report
204.

7. M. Garc~a de la Banda, M. Hermenegildo, and K. Marriott. Independence in Con-
straint Logic Programs. In 1993 International Logic Programming Symposium,
pages 130-146. MIT Press, Cambridge, MA, October 1993.

8. S. Debray and M. Jain. A Simple Program Transformation for Parallelism. In
1994 International Symposium on Logic Programming, pages 305-319. MIT Press,
November 1994.

9. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in
Logic Programs. In Proc. of the 1990 ACM Conf. on Programming Language
Design and Implementation, pages 174-188. ACM Press, June 1990.

10. D. DeGroot. Restricted AND-Parallelism and Side-Effects. In International Sym-
posium on Logic Programming, pages 80-89. San Francisco, IEEE Computer Soci-
ety, August 1987.

11. P. Lrpez Garc/a, M. Hermenegildo, and S.K. Debray. Towards Granularity Based
Control of Parallelism in Logic Programs. In Proc. of First International Sympo-
sium on Parallel Symbolic Computation, PASCO'94, pages 133-144. World Scien-
tific Publishing Company, September 1994.

12. Philip J. Hatcher and Michael J. Quinn. Data-parallel Programming on MIMD
Computers. MIT Press, Cambridge, Mass., 1991.

13. M. Hermenegildo and M. Carro. A Note on Data-Parallelism and (And-Parallel)
Prolog. Technical report CLIP 6/94.0, School of Computer Science, Technical Uni-
versity of Madrid (UPM), Faeultad Inform~tica UPM, 28660-Boadilla del Monte,
Madrid-Spain, June 1995.

14. M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

15. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con=
ditions. Journal of Logic Programming, 22(1):1--45, 1995.

41

16. M. Hermenegildo and the CLIP group. Some Methodological Issues in the Design
of CIAO - A Generic, Parallel Concurrent Constraint System. In Principles and
Practice of Constraint Programming, LNCS 874, pages 123-133. Springer-Verlag,
May 1994.

17. L. Kale. Parallel Execution of Logic Programs: the REDUCE-OR Process Model.
In Fourth International Conference on Logic Programming, pages 616-632. Mel-
bourne, Australia, May 1987.

18. Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared
Memory Multiprocessor: A Summary of Results. In Fifth International Conference
and Symposium on Logic Programming, pages 1123-1141. MIT Press, August 1988.

19. E. Lusk el. al. The Aurora Or-Parallel Prolog System. New Generation Comput-
ing, 7(2,3), 1990.

20. Hhlcan Millroth. Reforming compilation of logic programs. In Vijay Saraswat and
Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium, pages 485-502, San Diego, USA, 1991. The MIT Press.

21. L. Naish. Parallelizing NU-Prolog. In Fifth International Conference and Sym-
posium on Logic Programming, pages 1546-1564. University of Washington, MIT
Press, August 1988.

22. E. Pontelli, O. Gupta, and M. Hermenegildo. &:ACE: A High-Performance Paral-
lel Prolog System. In International Parallel Processing Symposium. IEEE Com-
puter Society Technical Committee on Parallel Processing, IEEE Computer Soci-
ety, April 1995.

23. E. Pontelli, G. Gupta, D. Tang, M. Hermenegildo, and M. Carro. Efficient Imple-
mentation of And-parallel Prolog Systems. Technical Report CLIP4/95.0, T.U. of
Madrid (UPM), June 1995.

24. S. Prestwich. On parallelisation strategies for logic programs. In Springer-Verlag,
editor, Proceedings of the International Conference on Parallel Processing, number
854 in Lecture Notes in Computer Science, pages 289-300, 1994.

25. V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In 1991 International Conference on
Logic Programming, pages 825-839. MIT Press, June 1991.

26. K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Depen-
dent And-Parallel Scheme. In Proc. Joint Int'l. Conf. and Syrup. on Logic Prog.
MIT Press, 1992.

27. Thinking Machines Corp., Cambridge, Mass. The Essential *LISP Manual, 1986.
28. Thinking Machines Corp., Cambridge, Mass. C* Programming Guide, 1990.
29. Andrei Voronkov. Logic programming with bounded quantifiers. In Andrei

Voronkov, editor, Logic Programming--Proc. Second Russian Conf. on Logic Pro-
gramming, LNCS 592, Berlin, 1992. Springer-Ver]ag.

30. R. Warren and M. Hermenegildo. Experimenting with Prolog: An Overview. Tech-
nical Report 43, MCC, March 1987.

31. X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan.
Towards an Efficient Compile-Time Granularity Analysis Algorithm. In Proc. of
the 1992 International Conference on Fifth Generation Computer Systems, pages
809-816. Institute for New Generation Computer Technology (ICOT), June 1992.

