
Learning Features by Experimentation in Chess

Eduardo Morales
The Turing Institute, 36 North Hanover St., Glasgow G1 2AD

Emaih eduardo@turing.ac.uk

A b s t r a c t

There are two main issues to consider in an inductive learning system. These are 1) its

search through the hypothesis space and 2) the amount of provided information for the system

to work. In this paper we use a constrained relative least-general-generalisation (RLGG)

algorithm as method of generaUsation to organise the search space and an automatic example

generator to reduce the user's intervention and guide the learning process. Some initial results

to learn a restricted form of Horn clause concepts in chess are presented. The main limitations

of the learning system and the example generator are pointed out and conclusions and future

research directions indicated.

Keywords: LGG, experimentation, chess, Horn clause

1 I n t r o d u c t i o n

Suppose we want a system to learn the definition of the concept of a piece threatening another piece

in chess, neither of which is a king. We provide the system with a description of a position where

a piece is threatening another one, but we do not tell the system what concept we want to learn or

which arguments are involved in the new concept.

The position of Figure 1 can be completely described by a three-pla~e predicate (contents/3)

stating the position of each piece in the board.

contents(black,king,square(I,8)).

contents(black,rook,square(4,4)).

contents(white,king,square(i,1)).

contents(white,pawn,square(4,7)).

The system uses the above description with its current background knowledge to recognise a

set of "features" and construct a possible definition. If the background vocabulary of the system

consists of:

495

Figure 1: Example Position

contents(Side, Piece,Place).

sliding_piece(Piece).

straight_slide(Piece).

all_but__K(Piece).

other_side(Sidel,Side2).

legal_move(Side,Piece,Place,NewPlace).

Describes the position of each piece.

Piece is a rook, bishop or queen.

Piece is a rook or queen.

Piece is anything but king.

Side1 is the other side of Side2

Piece of Side in Place can move

to NewPlace.

Then the system produces the following highly specialised definition for that particular example:

concept (black,king,square(1,8),black,rook,square(4,4),

white,king,square(1,1),white,pawn,square(4,7)) ~--

contents (black ,king ,square(1,8)),

. . °

other_side(black,white),

other.side(white,black),

alLbut..K(pawn),

all_but_K(rook),

straight_slide(rook),

sliding_piece(rook),

legal_move(hlack,king,square(1,8),square(2,8)),

° . ,

legal.move(black,rook,square(4,4),square(1,4)),

° . .

legal_rnove(white, king,square(1,1),square(2,1)),

, ° .

legal_move(white, pawn,square(4,7),square(4,8)).

496

The system then follows an experimentation process by automatically generating positive and nega-

tive examples (validated by the user) from which other features are deduced and similar definitions

constructed. Following a generalisation process between definitions~ eventually, the system recog-

nises that the two kings are irrelevant to the concept and arrives to the following definition:

concept(A,B,square(C,D),E,F,square(G,H)) ~--

contents(A,B,square(C,D)),

contents(E,F,square(G,H)),

other_side(E,A),

other_side(A,E),

all_but_K(B),

all_but_K(F),

legal.move(A,B,square(C,D),square(G,H)).

We have built a system which arrives to the same definition after generating 21 positive and 11

negative examples. It has been able to learn a more general definition of threat, forks, possible

attacks and possible checks in chess. It learns concepts expressed in a subset of Horn clauses after

generating a small number of examples.

Section 2 describes the generalisation method based on an RLGG algorithm. Section 3 discusses

the automatic example generator method based on "perturbations". The learning algorithm is

summarised in Section 4 and some examples in chess are presented in Section 5. Finally, Section 6,

summarises and suggests future research directions.

2 C o n s t r a i n e d R L G G

2 . 1 I n t r o d u c t i o n

Due to the requirements of searching a large hypothesis space, systems that induce first-order

predicates have been of limited success since they have been forced to constrain their search space

in such a way that only simple concepts can be learned. More recently, a model of generalisation

based on relative least-general-generalisation (RLGG) [Plotkin, 1971a] has been used successfully

to learn new concepts using a Horn clause framework ([Muggleton & Cao, 1990]). 1

Plotkin [Plotkin, 1971b, Plotkin, 1969] describes how to construct the least general generalisation

(LGG) of two clauses in terms of O-subsumption. Clause C1 is more general than clause C2 if C1

O-subsumes C2 (i.e., Cla C C2 for some substitution a). The least general generalisation of two

clauses is a generalisation which is less general than any other generalisation. The LGG of two

1Muggleton [Muggleton, 1990] provides a unified framework for his Inverse Resolution method
[Muggleton & Buntine, 1988] and Plotkin's RLGG.

497

clauses C~ and Cz is defined as: {l : la e C~ and h e C2 and l = LGG(I~,h)}. The LGG of

two terms or literals is defined for two terms or hterals with the same predicate name and sign

(compatible). The algorithm proceeds as follows: If L1 and L~ are compatible, then find terms tl

and t2 that have the same place in L1 and L2 such that tl # t2 and both tl and t2 either begin with

different function letters or at least one of them is a variable. If there is no such pair tl,t2, then

finish. Else replace tt and t~ by a new variable V and, whenever tl and t2 appear in L1 and L2 in

the same place, replace them by V.

Plotkin [Plotkin, 1971a, Plotkin, 1971b] also introduces a notion of LGG relative to some back-

ground knowledge KS. Given KS, two examples el and e~ for which KS ~/el and KS I-/e2. C is the

LGG of el and e2 relative to KS whenever C is the least general clause for which KS ^ C b el A e2.

We can construct C by replacing KS with a set of ground atoms al A as A . . . , representing a model

of KS (see also [Buntine, 1988, Muggleton & Cao, 1990]), and taking the LGG (as described above)

of two clauses C1 and C~ defined as:

C'~ = (~ v ~ v . . .) v e~

C2 = (~ v ~ v . . .) v e2

2.2 C o n s t r a i n t s on the B a c k g r o u n d K n o w l e d g e

In general, if el and e2 are unit clauses and only a finite number of ground atoms (constructed

with symbols in KS, el and e2) are logical consequences of KS, then the LGG of el and e2 relative

to KS exists. A key issue in RLGG is how to choose adequate constraints to produce a finite set

of "relevant" atoms derived from/C. Buntine [Buntine, 1988] suggests using a finite subset of the

least Herbrand model of KS. Muggleton and Feng [Muggleton & Cao, 1990] substitute KS by an

h-easy model constructed from a restricted form of Horn clauses. Rather than generating and

storing a large number of relevant atoms, we use a restricted form of Horn clauses, supported by a

variable-typed logic, from which only a finite number of ground atoms can be derived. 2

2 . 3 K n o w l e d g e R e p r e s e n t a t i o n

Our final research direction aims to use a learning strategy in conjunction with a planning system

to deal with reactive environments such as chess [Morales, 1990]. We assume that the planning

skills of a chess player are linked to the number of "features" he/she can recognise from a chess

position and that their skills can improve when learning to recognise new features. With this aim

in mind, our research is oriented towards learning new feature definitions from existln~ ones. The

learning algorithm relies on an oracle which provides an initial example description aud classifies

2Our clauses are more restricted than Muggleton and Feng's [Muggleton & Cao, 1990].

498

the examples generated by the perturbation algorithm (described in Section 3). Depending on

the initial background knowledge and on the particular example description, the system is able to

derive (recognise) more or less atoms (features). We propose to start with some basic background

knowledge and incrementally extend the domain knowledge by learning "simple" concepts first.

Unlike other systems, the relevant arguments of the target concept do not need to be pre-defined.

We define a feature as an atom which is true for the current board position description. A board

position or example description is specified by a set of ground unit clauses. A feature definition is a

restricted Horn clause which takes the example description to test for particular features. A feature

definition has the following format:

H *-- D1, D2, ..., D~, F1, F~, ..., F~.

where Dis are "input" predicates used to describe positions and F~s are "feature" predicates which

are either provided as background knowledge or learned by the system. We define as input predicates

those which are used to describe the current example but which depend on at most one piece. In the

example of Section 1, all the predicates except legal_=ove are input predicates. Feature predicates

are dependent on the position of other pieces or provided as background knowledge. For example,

legal moves, checks, check mates, . . . , etc.

This format instantiates the arguments required by the clause with arguments of the current

example description constraining the possible instantiations of the head and producing only relevant

atoms to the current example.

For example, the following feature definition is used to recognise checks in chess. The input

predicates are contents/3 and other_side/2 and the feature predicate is piece_raove/4.

in_check(Side,KP lace,OPiece,OPlace) ~--

contents(Side, king,KPlace),

contents (0 Side, OPiece,OPlace),

other_side(Side,O Side),

piece.znove(O Side, O Piece,O Place,KP l~:ce).

The example description is included to the theory and a set of relevant atoms are derived from

the feature definitions (representing a model). These atoms constitute a feasible body of the new

concept definition. Since we do not specify exactly which arguments are involved in the concept

definition, a "tentative" head is constructed with the arguments used in the "input" predicates. This

initial clause is gradually generalised using an LGG algorithm between this clause and similar clauses

constructed from other example descriptions generated by the perturbation algorithm (Appendix

1 has a complete sequence of gradual generalisations produced when learning a special case of the

concept of fork in chess).

499

Given a new example description (ground input predicates),

and a set of feature definitions (representing the domain theory)

Add the description to the domain theory and

Construct a new clause

The body being the set of atoms derived from the feature definitions

with the input predicates

The head constructed with the arguments used in the input predicates

Make an LGG between this clause and the current concept clause

the resulting clause being of the form H ~ D1, D2, ..., D, , F1, F2, ..., F,.

where Dis are input predicates

Remove the arguments in the head that do not appear in any F/

Remove any literal with a variable argument which do not appear in any

other place of the concept definition

Table 1: Generalisation Algorithm

Once a generalisation is produced, the system tries to reduce the number of arguments involved

in the head of the new concept by keeping only those which appear in a literal (different than the

input predicates) in the new concept definition. New compatible heads are constructed taking into

account the current concept head.

Even if we produce a finite set of atoms to construct a clause, the RLGG algorithm can generate

clauses with a large number of hterals. The length of the clauses is constrained by deleting all the

literals whose variable arguments do not appear on any other place in the concept definition (see

Table 1).

The constrained RLGG algorithm has been able to learn concept like forks and attacks in chess.

The knowledge representation syntax, which follows our intuitive definition of a feature in chess,

can produce only a finite set of relevant atoms for an example description.

3 P e r t u r b a t i o n M e t h o d

3 . 1 I n t r o d u c t i o n

One key issue to consider is the information on which the system relies for its "correct" behaviour.

In some cases, the learning process is highly dependent on the user's intervention. This is more

noticeable in an incremental learning system, where the user often has to be careful in selecting

the examples or training instances to ensure that the system will succeed on its learning task

500

(e.g. [Winston, 1977, Sammut ~z Banerji, 1986]). This dependency or hidden knowledge, requires

a good understanding of the system's internal characteristics and severely questions the system's

learning capabilities. Experimentation (or active instance selection) has been employed in sev-

eral machine learning systems [Feng, 1990, Carbonell & Gil, 1987, Dietterich & Buchanan, 1983,

Lennt, 1976, Porter & Kibler, 1986] to reduce this dependency and guide the learning process.

There are several strategies that can be adopted to generate an example. Ruff and Dietterich

[Ruff & Dietterich, 1989] argue that there is no essential difference between an example generator

that uses a "clever" (although computationally expensive) strategy to divide the hypothesis space

and a simple example generator that randomly selects examples. As we construct clauses from

positive examples only, a random strategy is of very little use, especially when the target concept

covers a small part of the example space, as it can generate a huge number of negative examples

before.generating a positive, slowing down the learning process. Another alternative is to provide a

hierarchy of concepts and generate new examples from instances of concepts higher or at the same

level of the hierarchy [Porter & Kibler, 1986, Lenat, 1976]. While applicable in some domains,

some others domains are not so easily structured and alternative methods must be employed. Feng

[Feng, 1990] provides the theoretical basis for choosing a new example based on information theory.

His next-best-verification algorithm chooses the next example which is the best to verify a hypothesis

based on information content. In practice, he requires a set of heuristics to define a sequential

number for the examples (the best example being the one which follows in the sequence), which in

general is not easy to do as several "sequences" along different "dimensions" can exist.

3 . 2 A F r a m e w o r k f o r D e s c r i b i n g t h e E x a m p l e S p a c e

In an automatic example generator, the space of examples depends on the number of arguments

required to describe an instance of the target concept and on the size of their domains. If an example

can be described by instantiating N arguments, we can have 2 N - 1 different perturbation classes

distributed in N perturbation levels. Each perturbation level represents the number of arguments to

change at the same time to generate a new example and each perturbation class shows the particular

arguments to change, representing a class of instances. For example, if we can describe an instance of

the concept of threat between two pieces with four arguments, e.g., threat(P1,L1,P2,L2) (meaning

that piece P1 in place L1 threatens piece P2 in position L2), we can structure the perturbation

space in four levels (see Figure 2).

At each perturbation class, we can generate Di × D i × . . . x D,~ examples, where each Dk is a

particular argument domain at that level. For instance, the perturbation class [Ll,P2] represents

the class of examples that can be generated by changing the position of the attacking piece and the

piece which is being threatened. In the example of Section 1, the attacking piece (rook) can be in

60 different legal positions and the piece being attacked can be changed for knight, bishop, rook or

501

4 PI,LI,P2,L2

3 P1,L1,P2 P1,L1,L2 P1,P2,L2 L1,P2,L2

2 P1,L1 P1,P2 P1,L2 LI,P2 L1,L2 P2,L2

1 P1 LI P2 L2

Figure 2: Pertubation Space

queen. Clearly the example space grows exponentially with the number of arguments involved.

We can apply several domain constraints to reduce this space. In particular, not all the per-

turbations generate legal examples. For instance, the first (last) rank can be eliminated from the

domain of the positions of the white (black) pawns, we can use the knowledge that two and only

two kings (one on each side) must be at any position to constrain the domains on the possible values

for the pieces and avoid changing sides on one king without changing in the other, . . . , etc. We

can choose a particular order in which to traverse this space. Like changing all the arguments that

involve the sides of the pieces first (this corresponds to a particular perturbation class). Similarly,

in other domains like the 8-puzzle, we can constrain the perturbation space to perturbation classes

that involve only "swapping" tiles. Despite these constraints, the example space can still be huge

(e.g'., in chess, two kings alone can be in 3612 different legal positions, which corresponds to a

perturbation class at level 2).

3 . 3 A P e r t u r b a t i o n A l g o r i t h m

Our example generation strategy is guided by the current concept definition, starting the perturba-

tion process at the lower levels of the previously described structure and moving gradually upwards

trying to reduce the arguments and their domains in the process. The perturbation classes are

generated dynamically, i.e., we do not produce a new perturbation class unless required. After ex-

ploring a perturbation class (this is described below), only its immediate perturbation classes above

are generated. Similarly, if an argument is eliminated from the head of the concept definition (as

described in Section 2) or when its domain is reduced to the empty list, all the perturbation classes

where the argument appears are removed from the perturbation space.

For example, following the hypothetical concept of a threat with 4 arguments, the perturbation

space will initially consist of 4 perturbation classes:

[[Pl], [if3, [P23, [L223

502

As soon as we finish exploring the possible places of the attacking piece [Pl] , the new perturbation

space becomes:

[[L1], [P22, [L232, [[P1,L13, [P1,P2], [P1,L2]]

Similarly, after exploring the possible attacking pieces [P1], we have:

[l'P23, [L2"13, I'[P1,L1], [P1,P2], [P1,L2], I 'Ll,P2], [L1,L2]].

If the attacked piece "P2" is removed from the head of the concept or if its domain becomes empty,

then the new perturbation space becomes:

[[L222, [[P1,L1], [P1,L2], [L1,L2]]

Recognising irrelevant arguments is important since they represent significant cuts in the search

space. 3

The perturbation algorithm picks the first perturbation class and generates new examples by

picking new values from the domains of the arguments involved. If no new values can be generated

(i.e., it has finished exploring a perturbation class), it changes the perturbation space (as described

above), otherwise it checks which literals (features) from the concept definition fail with the new

values. After selecting new values, if none of the literals fail, it considers those values as irrelevant

and removes them from the domain. If at least one literal fails, it constructs a new example with

the new values. When a negative example is generated, the system tries to construct an example

that will succeed on an least one of the literals that failed on that example. Whenever an argument

is eliminated from the head of the concept definition or if its domain becomes empty, it is removed

from the perturbation space. The perturbation process ends when there are no more perturbation

classes left (see Table 2).

Following the example given in Section 1, at the first level of perturbation, a new example can be

generated by replacing the attacked piece (pawn) with a knight. This perturbation fails the literal:

legal_move(white, knight,square(4,7),square(4,8)) and a new clause is constructed. However, if the

attacker (rook) is replaced with a knight, generating a negative example, then the system will try

to construct an example that will succeed on at least one of the failed features (e.g., replacing the

attacker with a queen).

The perturbation method has been used to guide the learning process of the RLGG algorithm

described in Section 2. In general, this strategy will converge faster to a concept definition than a

random example generator, especially in concepts where a small number of positive examples exist

in a large example space. It has a clear termination criterion to stop the generation of examples

and produces a smaller set of examples because it can reduce the example space during the learning

process.

3An argument which is removed from the perturbation space is not necessarily removed from the definition.

503

DO UNTIL all the perturbation classes has been explored

or stopped by the user

IF a new definition is constructed

THEN pick the first perturbation class and try to generate an

example that will fail on at least one of its literals

IF a negative example is generated

THEN see which literals failed with that example and try to

generate an example which that succeed on at least one

of them

IF we cannot generate a new example that will fail

(or succeed) on any literal,

THEN generate the next perturbation classes and continue

END DO

Table 2: Perturbation Algorithm

4 The Learning Algorithm

We can now summarise the learning method using the description of the previous two sections.

Initially, the system is provided with some background knowledge, the domain values of the ar-

guments involved to describe an example, and a description of a "typical" example of the target

concept. The system first constructs an initial concept definition and an initial perturbation level.

The system then calls the example generator method to create new examples (see Section 3). Each

time a positive example is created the system uses the constrained RLGG algorithm (see Section 2)

to create a new concept definition. The example generator tries to fail on at least one of the concept

literals by changing (perturbing) the arguments involved in the current perturbation class. If the

perturbation method generates a negative example, then the system analyses which literals failed

on that example and tries to construct a new example that will succeed on at least one of them.

If the system cannot generate a new example (i.e., a new generalisation of the current definition

will require producing an example that involves changing different arguments), then it changes the

perturbation space and continues. The process ends when there are no more levels left, or when the

user decides to terminate it.

Each new definition is checked against the current negative examples (the user is also asked

for confirmation). This is to avoid over-generalisations, which can occur when learning disjunctive

definitions. If a definition covers a negative example, then it is rejected and the example is stored.

When the perturbation process finishes, the final definition is checked against the stored examples,

504

Given an initial example description

Construct an initial clause (as described in Section 2) and

an initial perturbation level (as described in Section 3)

DO UNTIL no more perturbation levels or stopped by the user

CALL PERTURBATION-METHOD to generate a new example

IF the example is positive

THEN CALL RLGG

IF the new definition covers a negative example

(or if it is rejected by the user)

THEN reject the definition and store that example

END DO

Check the final definition with the stored examples

IF some examples are not covered,

THEN start again

ELSE add the new definition to the background knowledge

and finish

Table 3: Learning Algorithm

those which cannot succeed are tried again and the whole process is repeated. In this way the

systems is able to learn disjunctive concepts although each clause is learned separately (see Table

3).

5 E x a m p l e s

We applied the previously described system to learn some concepts in chess. We provide the system

with the same background knowledge described in the introduction. The input predicates being for

each example, contents/3, straight_slide/l, sliding_piece/l, all_but_K/1 and other_side/2. Feature

predicates definitions to recognise legal moves, checks and check-mates were also given. We provided

a s well domain values for the arguments used in the input predicates (i.e., Side, Piece, Place),

domain(piece,[pawn,knight,bishop,rook,queen,kin~).

domain(side,[black,white]).

domain(place,[square(1,1),square(l,2),...,square(8,8)]).

and specification of which arguments have which domain.

505

This time, we decided to broaden the concept of a threat and accept as positive examples those

which include as well a king threatening a piece. Using the same description of the initial example

given in the introduction, the system produces the following definition (which follows our more

general definition) after generating 48 positive and 14 negative examples:

threat (A,B,square(C,D),E,F,square(G,H))

contents(A,B,square(C,D)),

contents(E,F,square(G,H)),

other_side(E,A),

other.side(A,E),

all_but.K(B),

all_but..K(F),

legal..move(A,B,square(C,D),square(G,H)).

threat(A,B,square(C,D),E,king,square(F,G))

contents(A,B,square(C,D)),

contents(E,king,square(F,G)),

other.side(E,A),

other.side(A,E),

an_but_K(B),
legal_move(E,king,square(F,G),square(C,D)).

The first clause is the same one given in the introduction and represents a threat between two

pieces. The second clause represents a threat between a king and a piece. The system can learn

in the same way a threat between a piece and a king (i.e., a check), but since the concept of

being in check was initially given as a feature definition the examples where a check occurred were

classified as negative instances. The total number of examples generated by the system compares

very favourable against an example space of approximately -m l0 s possible examples.

Similarly the learning algorithm produced the following definition of the concept of a fork after

learning the concept of threat and after generating 13 positive and 27 negative examples. This is

a restricted version of a fork in chess which occurs whenever a piece threatens another piece and

checks the king at the same time. Appendix 1 describes the learning sequence involved to learn

this concept showing only the positive examples generated by the system and all the intermediate

generalisations:

fork(A,king,square(B,C),A,D,square(E,F),G,S,square(I,J))

contents(A,king,squ~re(B,C)),

contents(A,D,square(E,F)),

506

contents(G,H,square(I,J)),

in_check(A,square(S,C),H,square(I,J)),

other_side(G,A),

other_side(A,G),

all_but_K(D),

all_but_K(H),

legalJnove(G,n,square(I,J),square(E,F)),

threat (G,H,square(I,J),A,D,square(E,F)).

Although not implemented, we can use the definition of threat to reduce this definition to:

fork(A ¢king,square(B,C),A,D,square(E,F),G,H,square(I,J)) *--

contents (A ,king, square(B, C)),

contents(A,D,square(E,F)),

contents(G,H,square(I,J)),
in_check(A,square(S,C),S,square(I,J)),

threat(G,H,square(I,J),A,D,square(E,F)).

Again the total number of generated examples is several orders of magnitude smaller than the

example space.

The learning algorithm as it stands has several limitations. In particular, it cannot deal with

exceptions or negation (i.e., it cannot learn things like "without feature") 4. It also cannot learn

recursive concepts. This is partly due to the example representation, although in principle we could

include previously generated heads into the list of relevant atoms to allow it to learn recursive

concepts (although they will have to be updated with changes in the current number of arguments).

6 C o n c l u s i o n s a n d F u t u r e R e s e a r c h D i r e c t i o n s

In an inductive learning system we need to consider the search through the hypothesis space and

the amount of information provided by the user. We have addressed both problems by using a

constrained RLGG algorithm as a model of generalisation coupled with an automatic example

generator to learn a restricted form of Horn clauses. The problem of selecting a relevant set of

atoms derived from the background knowledge for the RLGG algorithm has been solved by using a

restricted form of Horn clauses which follows closely to our intuitive notion of a feature definition

in domains like chess. We have also relaxed the example representation used in other systems by

describing each example with a list of features, rather than specifying which of the arguments are

relevant to the concept definition. We have reduced the user's intervention over the system for its

4Although negation is used in one of the concepts of the background knowledge

507

"correct" behaviour by presenting an automatic example generator which converges rapidly to the

concept definition. The examples space is structured dynamically, allows to include domain rules

if necessary to explore particular perturbations and is fairly independent of the learning algorithm.

Finally, we have demonstrated the feasibility of the approach with some initial results in chess.

We plan to continue this research by learning concepts which involve one or more moves, like in

discovery attacks.

Acknowledgements.

I would like to thank Tim Niblett, Steve Muggleton and Peter Clark for helpful comments in

the development of this work. This research was made possible by a grant from CONACYT

(M6xico).

R e f e r e n c e s

Buntine, W. (1988). Generalised subsumption an its applications to induction and redundancy.

Artificial Intelligence, (36):149-176.

Carbonell, F. and Gil, Y. (1987). Learning by experimentation. In Proceedings of the Fourth

International Workshop on Machine Learning, pages 256-265.

Dietterich, T. and Buchanan, B. (1983). The role of experimentation in theory formation. In

Proceedings of the Second International Workshop on Machine Learning, pages 147-155.

Feng, C. (1990). Learning by Experimentation. PhD thesis, Turing Institute - University of Strath-

clyde.

Lenat, D. B. (1976). AM: an artificial intelligence approach to discovery in mathematics as heuristic

search. PhD thesis, Stanford University, Artificial Intelligence Laboratory. AIM-286 or STAN-CS-

76-570.

Morales, E. (1990). Thesis proposal. (unpublished).

Muggleton, S. (1990). Inductive logic programming. In First International Workshop on Algorith-

mic Learning Theory (ALTgO), Tokyo, Japan.

Muggleton, S. and Buntine, W. (1988). Machine invention of first-order predicates by inverting

resolution. In Proceedings of the Fifth International Conference on Machine Learning, pages 339-

353. Kaufmann.

Muggleton, S. and Cao, F. (1990). Efficient induction of logic programs. In First International

Workshop on Algorithmic Learning Theory (AL TgO), Tokyo, Japan.

Plotkin, G. (1969). A note on inductive generalisation. In Machine Intelligence 5, pages 153-163.

Meltzer B. and Michie D. (Eds).

Plotkin, G. (1971a). Automatic Methods of Inductive Inference. PhD thesis, Edimburgh University.

508

Plotkin, G. (1971b). A further note on inductive generalisation. In Machine Intelligence 6, pages

101-124. Meltzer B. and Miehie D. (Eds).

Porter, B. and Kibler, D. (1986). Experimental goal regression. Machine Learning, (1):249 - 286.

Ruff, R. and Dietterich, T. (1989). What good are experiments? In Proc. of the Sixth International

Workshop on Machine Learning, pages 109-112, Conell Univ., Ithaca New York. Morgan Kaufmann.

Sammut, C. and Banerji, R. (1986). Learning concepts by asking questions. In Machine Learning:

An artificial intelligence approach (Vol 2). R. Michalski, J. Carbonell and T. Mitchell (eds).

Winston, P. (1977). Learning structural descriptions from examples. In The Psychology of computer

vision. Winston, P.H. (Ed), MacGraw-Hill.

509

Appendix 1 Tins is the sequence for learning a restricted
concept of fork. Only the positive examples generated by the per-
turbatlon method are shown.
I?- go.

N° N
N

tmp(A,king, square(3,4) ,A,queen,square(3,6),
B,king, square(6,7),B,l~dght ,square(1,5)) *--

contents(A,klng, square(3,4)),
cont ents(A ,queen,square(3,6)),
content s(B,klng,square(6,7)),
contents(B,knight ,square(1,5)),
in_check(A,square(3,4),knight,square(1,5)),
other.side(B,A),
other.side(A,B),
all.but .K(queen),
all.but _K(knlght),
diagonaLslide(queen),
stralght.slide(queen),
slldin g_piece(queen),
]egaLmove(A,klng,square(3,4) ,square(4,5)),
legal.~ove(A,king0square(3,4) ,square(2,5)),
legalanove(A,king,square(3,4) ,square(4,3)),
legaLmove(A,king,square(3,4) ,square(3,5)),
legal.move(A,king,squaxe(3,4) ,square(3,3)),
legaL.move(A,klng,square(3,4) ,square(4,4)),
legal..move(A,king, square(3,4),square(2,4)),
]egal..mo ve (B ,klng, squaxe (6, 7),square(7,8)),
legal..move(B,king,square(6,7),square(6,8)),
legal.move(B,king,square(6,7) ,square(7,7)),
legaLmove(B,king,square(6,7) ,square(5,7)),
legal..move(B,knight ,square(1,5) ,squwre(2,7)),
legal..move(B,knlght,square(1,5) ,square(2,3)),
legal.move(B,knight,sqtmre(1,5) ,square(3,6)),
threat (B,knight,square(1,5) ,A,queen, square(3,6)).

t mp(A,king,square(3,4),A,B,square(3,6),
C ,king,squaxe(6,7) ,C ,knight ,square(1,5))

eontente(C ,kn]ght#quare(1,5)),
contents(C ,klng,square(6,7)),
content s(A,B,square(3,6)),
contents(A,king,square(3,4)),

in.check(A,square(3,4) ,knlght ,square(1,5)),
other.side(A,C),
other.slde(C ,A),
all.but_K(knlght),
~.but.K(B),
legal..nlove(C,kni ght ,square(1,5) ,squa~(3,6)),
legal.move(C ,knight ,square(1,5),square(2,3)),
legaI..move(C,knight ,square(1,5),square(2,7)),
]egal_move(C,king,square(6, 7) ,square(5,7)),
legal.move(C ,king,square(6,7),square(7,7)),
legaLmove(C,klng,square(6,7),square(6,8)),
legal.xnove(C,klng,square(6,7),equare(7,8)),
legal_tnove(A,kJng,square(3,4) ,square(2,4)),
legM..rnove(A,klng,square(3,4) ,square(4,4)),
legal_move(A,king,square(3,4) ,square(3,3)),
legM_mo ve(A,king,square (3, 4),square(3,5)),
legal.move(A,king,square(3,4) ,square(4,3)),
]egaLmove(A,klng,square(3,4) ,square(2,5)),
legal.move(A ,Idng,square(3,4),square(4,5)),
threat (C,knight,square(1,5),A, B,square(3,6)).

~_~E °~-~--

t rap(A,ldng,square(3,4) ,A,B,square(3,6),
C,king,square(D,E) ,C,knlght,square(1,5)) +-

contents(A ,klng,sqnare(3,4)),
contents(A,B,square(3,6)),
contents(C ,klng, square(D,E)),
contents(C ,Imight,square(1,5)),
in_check(A,square(3,d),knight,square(1,5)),
other.side(C ,A),
other.slde(A,C),
all.]but .K(B),
all.but .K (knlght),
]egal..move~ A,ldng,square(3,4),square(2,5)),
legal.move, A,klng,square(3,4),square(4,3)),
legal.anovei A,klng,square(3,4),square(3,3)),
legal, move, A,king,square(3,4) ,square(4,4)),
legal_move, A,king,square(3,4),square(2,4)),
legal_move, C ,king,square(D,E) ,square(5,7)),
legal.move, C ,king,square(D,E) ,square(5,E)),
]egal_move~ C,]c~ght,square(1,5),square(2,7)),
legal_move, C,knight,square(1,5) ,square(2,3)),
legal_move, C,krdght ,square(1,5),square(3,6)),
threat (C,knl ght,square(1,5) ,A,B,square(3,6)).

tmp(A ,klng, sqnare(3,4),A,B,square(C,D),
E,klng,equare(F,G) ,E,knlght ,square(1,5)) ~-

content s(E,knight ,square(1,5)),
content s(E,klng,square(F ,G)),
cont ents(A,B,square(C,D)),
content s(A,klng, square(3,4)),
in_check(A,square(3,4) ,knight,square(I,5)),
other.slde(A,E),

othar Jide(E,A),
all.but ..K(Imi~ht),
an_but .K(B),
legal.move(E,knlght,square(1,5) ,square(C,D)),
legaL.move(E,knlght,square(1,5) ,square(3,6)),
legaL.move(E,knight,square(1,5),square(2,3)),
legaLmove(E,knight,square(1,5) ,square(2,7)),
legaL.move(E,klng,square(F,G) ,square(5,G)),
legal.move(E,klng,square(F,G),square(5,7)),
legaL.move(A,king,eqv~'e(3,4) ,square(2,4)),
leged..move(A,king,square(3,4) ,squ&re(4,4)),
legaLmove(A,king,square(3,4) ,square(3,3)),
legal.move(A,king,square(3,4),square(4,3)),
legal move(A,king,square(3,4) ,square(2,5)),
threat (g,knight ,square(1,5) ,A,B,square(C,D)).

t rap(A ,klng,square(B,C) ,A,D,square(E,F),
G ,king, square(H,I) ,G ,~might,square(1,5))

contents(A,king,square(B,C)),
contents(A,D,square(E,F)),
content s(O ,king,square(H,I)),
contents(O ,knight,square(1,5)),
in_check(A,square(B,C) ,knlght,square(1,5)),
other.side(O,A),
other..slde(A,G),
all..but _K (D),
aILbut _K (knight),
legaL.move(G,king,square(H,I),square(5,7)),
legal.move(G ,klng,square(H,I) ,square(5 ,I)),
legal_move(G ,knight ,square(1 ~5) ,square(2,3)),
legal..move(G ,knlght,squaxe(1,5) ,square(3,6}),
legal.move(O,knight ,square(1,5) ,square(E,F)),
threat (G,knight,square(1,5),A,D,square(E,F)).

trap(A,klng, square(B,C),A,D,square(E,F),
G ,klng, square(H,I) ,G ,knight,square(J ,5))

contents(G ,knlght,square(J ,5)),
contents(G,klng,square(H,I)),
content s(A ,D,square(E,F)),
con tent s(A,king,square(BsC)),
in.J:heck(A ,square(B,C) ,knight,square(J,5)),
other.side(A,G),
other.side(G ,A),
alLbut ..K(knlght),
all.but .K(D),
legaL.move(G,knight,square(J ,5),square(E,F)),
legal.move(G ,knight,square(J ,5) ,square(2,3)),
legaLmove(G ,king,square(H,I) ,square(5 ,I)),
legaL.move(G,klng,square(H,I) ,square(5,7)),
threat(G,knight,square(J,5),A,D,square(E,F)).

510

trnp(A,king, square(B,C),A,D,square(E,F),
G ,king,square(H,I) ,G ,freight,square(J ,5)) *-

content s(A ,klng, square(B,C)),
contents(A ,D,square(E,F)),
contents(G ,king,sqv~re(H,I)),
content s(G ,knlght ,square(J,5)),
in_check(A ,square(B,C) ,knight,square(J,5)),
other.side(O,A),
other.side(A,G),
all_but.K(D),
an.but ..K(knight),
lega|..move(O ,king, square(H,]) ,square(5,7)),
legal.move(G,klng,square(H,I) ,square(5,I)),
legal.move(G ,knight,square(J ,5),square(2,3)),
legal_move(G ,knight,squane(J,5) ,square(E,F)),
threat(G ,knlght,square(J,5),A,D,square(E,F)).

t rnp(A,Id ng,square(B,C),A,D,square(E,F),
G ,klng, square(H,I),G ,knight ,square(J,5)) +-

contents(G ,knight,square(J,5)),
cont ents(G ,king,square(H,I)),
contents(A ,D,sqvare(E,F)),
contents(A ,king,square(B,C)),
in_check(A,square(B,C) ,knight,square(J ,5)),
other.side(A,G),
other_side(G,A),
a]]..but ..]~ (knight),
all_but I((D),
legaL.move(G,krd ght,square(J,5) ,square(E,F)),
legaI.move(G ,knlght,square(J,5) ,square(2,3)),
legalAnove(G ,king,square(H,I) ,square(5 ,I)),
legaLxnove(G ,king,square(H,I) ,square(5,7)),
threat (G ,knight,square(J,5),A,D,square(E,F)).

tmp(A,king, square(B,C) ,A,D,square(E,F),
G,klng, square(H,I),G,knlght,square(J,5)) +--

cont ents(A,klng, square(B,C)),
contents(A,D,square(E,F)),
contents((] ,king, square(H,I)),
contents(G ,lmlght,square(J ,5)),
in_check(A ,square(B,C) ,knight,square(J,5)),

511

other.slde(G,A),
other.side(A ,G),
all_but .]<(D),
alLbut .K (knight),
legal.move(G,king,square(H,I),square(5)7)),
legal.move(G)knight,square(J,5) ,square(2,3)),
legal.move(G ,kulght ,square(J,5) ,square(E,F)),
threat (G ,knight,square(.],5),A,D,square(E,F)).

N

N

tmp(A)king, square(B,C) ,A,D,square(E,F),
G ,king, square(H,I),G,knight ,square(J,K))

contents((] ,knight ,square(J,K)),
contents((] ,klng,squsre(H,I)),
content s(A, D,square(E,F)),
contents(A,]dng, square(B,C)),
in.check(A,square(B,C) ,knlght,square(J,K)),
other.side(A ,G),
other.~|de(G,A),
all_but ..K (knlght),
all_but J~(D),
legal.move((] ,knight,square(J,K) ,square(E,F)),
legal.move(G ,knlght ,square(J ,K) ,square(2,3)),
legal.rnove(G,king,square(H,I) ,square(5,7)),
threat (G ,knight,square(J,K) ,A,D,square(E,F)).

tmp(A ,klng,square(B,C)) A,D,square(E, F))
G ,knight,square(H)I))

cont ents(A)klng)square(B,C)),
cont ents(A,D,squ~re(E,F)),
contents(G ,knight,square(H,I)),
in.check(A,square(B,C) ,knight,square(H,I)),
other.~ide(G,A),
other.side(A,G),
alL.but_K(D),
a]l..but .J~ (knight),
legal_move(G ,knight ,square(H,I) ,square(2,3)),
legal.move((])knlght,square(H,I))square(E,F)),
threat((] ,knlght,square(H,I), A, D,square(E, F)).

t rap(A)k~ug,square(]3 ,C), A,D)square(E,F),
G ,knlght,square(H ,I)) ~--

contents(G ,knight ,square(H, 1)),
¢ontents(A ,D,square(E,F))l
contents(A ,klng,square(B,C)),
in.check(A,square(B,C) ,knight,sqtmre(H,I)),
other.slde(A,(]),
other_side(G ,A),
alLbut J~(knJght),
allJ~ut.K(D),
legal.move(G,knight,square(H,I),square(E,F)),
legal_move(G ,knlght,square(H,I) ,square(2,3)),
threat (G ,knight,square(H,I) ,A,D,square(E, F)).

trnp(A,klng, square(B,C) ,A,D,squ~e(E,F),
G,H,square(I,J)) ~--

cont ents(A ,klng,squa~e(B ,C)),
content s(A, D,square(E,F)),
contents(G,H,square(I,J)),
in.check(A,square(B,C) ,H,square(I, J)),
other.slde(G,A),
other.slde(A,G),
all.but.K(D),
al].but..K(H))
legal.move(G ,H,square(I,J) ,square(E,F)),
threat(G ,H,square(l,J) ,A,D,square(E,F)).

How would you like to call the concept? fork.
yes

I?-

