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A b s t r a c t  

There are two main issues to consider in an inductive learning system. These are 1) its 

search through the hypothesis space and 2) the amount of provided information for the system 

to work. In this paper we use a constrained relative least-general-generalisation (RLGG) 

algorithm as method of generaUsation to organise the search space and an automatic example 

generator to reduce the user's intervention and guide the learning process. Some initial results 

to learn a restricted form of Horn clause concepts in chess are presented. The main limitations 

of the learning system and the example generator are pointed out and conclusions and future 

research directions indicated. 

Keywords: LGG, experimentation, chess, Horn clause 

1 I n t r o d u c t i o n  

Suppose we want a system to learn the definition of the concept of a piece threatening another piece 

in chess, neither of which is a king. We provide the system with a description of a position where 

a piece is threatening another one, but we do not tell the system what concept we want to learn or 

which arguments are involved in the new concept. 

The  position of Figure 1 can be completely described by a three-pla~e predicate (contents/3) 

stating the position of each piece in the board. 

contents(black,king,square(I,8)). 

contents(black,rook,square(4,4)). 

contents(white,king,square(i,1)).  

contents(white,pawn,square(4,7)). 

The  system uses the above description with its current background knowledge to recognise a 

set of "features" and construct a possible definition. If the background vocabulary of the system 

consists of: 
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Figure 1: Example Position 

contents(Side, Piece,Place). 

sliding_piece(Piece). 

straight_slide(Piece). 

all_but__K(Piece). 

other_side(Sidel,Side2). 

legal_move(Side,Piece,Place,NewPlace). 

Describes the position of each piece. 

Piece is a rook, bishop or queen. 

Piece is a rook or queen. 

Piece is anything but king. 

Side1 is the other side of Side2 

Piece of Side in Place can move 

to NewPlace. 

Then the system produces the following highly specialised definition for that particular example: 

concept (black,king,square(1,8),black,rook,square(4,4), 

white,king,square(1,1),white,pawn,square(4,7)) ~-- 

contents ( black ,king ,square( 1,8 )), 

. . °  

other_side(black,white), 

other.side(white,black), 

alLbut..K(pawn), 

all_but_K(rook), 

straight_slide(rook), 

sliding_piece(rook), 

legal_move(hlack,king,square(1,8),square(2,8)), 

° . ,  

legal.move( black,rook,square(4,4),square(1,4)), 

° . .  

legal_rnove(white, king,square( 1,1 ),square(2,1 )), 

, ° .  

legal_move(white, pawn,square( 4,7),square( 4,8 )). 
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The system then follows an experimentation process by automatically generating positive and nega- 

tive examples (validated by the user) from which other features are deduced and similar definitions 

constructed. Following a generalisation process between definitions~ eventually, the system recog- 

nises that the two kings are irrelevant to the concept and arrives to the following definition: 

concept(A,B,square(C,D),E,F,square(G,H)) ~-- 

contents(A,B,square(C,D)), 

contents(E,F,square(G,H)), 

other_side(E,A), 

other_side(A,E), 

all_but_K(B), 

all_but_K(F), 

legal.move(A,B,square(C,D),square(G,H)). 

We have built a system which arrives to the same definition after generating 21 positive and 11 

negative examples. It has been able to learn a more general definition of threat, forks, possible 

attacks and possible checks in chess. It learns concepts expressed in a subset of Horn clauses after 

generating a small number of examples. 

Section 2 describes the generalisation method based on an RLGG algorithm. Section 3 discusses 

the automatic example generator method based on "perturbations". The learning algorithm is 

summarised in Section 4 and some examples in chess are presented in Section 5. Finally, Section 6, 

summarises and suggests future research directions. 

2 C o n s t r a i n e d  R L G G  

2 . 1  I n t r o d u c t i o n  

Due to the requirements of searching a large hypothesis space, systems that induce first-order 

predicates have been of limited success since they have been forced to constrain their search space 

in such a way that  only simple concepts can be learned. More recently, a model of generalisation 

based on relative least-general-generalisation (RLGG) [Plotkin, 1971a] has been used successfully 

to learn new concepts using a Horn clause framework ([Muggleton & Cao, 1990]). 1 

Plotkin [Plotkin, 1971b, Plotkin, 1969] describes how to construct the least general generalisation 

(LGG) of two clauses in terms of O-subsumption. Clause C1 is more general than clause C2 if C1 

O-subsumes C2 (i.e., Cla C C2 for some substitution a). The least general generalisation of two 

clauses is a generalisation which is less general than any other generalisation. The LGG of two 

1Muggleton [Muggleton, 1990] provides a unified framework for his Inverse Resolution method 
[Muggleton & Buntine, 1988] and Plotkin's RLGG. 
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clauses C~ and Cz is defined as: {l : la e C~ and h e C2 and l = LGG(I~,h)}. The LGG of 

two terms or literals is defined for two terms or hterals with the same predicate name and sign 

(compatible). The algorithm proceeds as follows: If L1 and L~ are compatible, then find terms tl 

and t2 that have the same place in L1 and L2 such that  tl # t2 and both tl and t2 either begin with 

different function letters or at least one of them is a variable. If there is no such pair tl,t2, then 

finish. Else replace tt and t~ by a new variable V and, whenever tl  and t2 appear in L1 and L2 in 

the same place, replace them by V. 

Plotkin [Plotkin, 1971a, Plotkin, 1971b] also introduces a notion of LGG relative to some back- 

ground knowledge KS. Given KS, two examples el and e~ for which KS ~/el  and KS I-/e2. C is the 

LGG of el and e2 relative to KS whenever C is the least general clause for which KS ^ C  b el A e2. 

We can construct C by replacing KS with a set of ground atoms al A as A . . . ,  representing a model 

of KS (see also [Buntine, 1988, Muggleton & Cao, 1990]), and taking the LGG (as described above) 

of two clauses C1 and C~ defined as: 

C'~ = ( ~ v ~ v  . . . )  v e~ 

C2 = ( ~ v ~ v . . . )  v e2 

2.2 C o n s t r a i n t s  on  the  B a c k g r o u n d  K n o w l e d g e  

In general, if el and e2 are unit clauses and only a finite number of ground atoms (constructed 

with symbols in KS, el and e2) are logical consequences of KS, then the LGG of el and e2 relative 

to KS exists. A key issue in RLGG is how to choose adequate constraints to produce a finite set 

of "relevant" atoms derived from/C. Buntine [Buntine, 1988] suggests using a finite subset of the 

least Herbrand model of KS. Muggleton and Feng [Muggleton & Cao, 1990] substitute KS by an 

h-easy model constructed from a restricted form of Horn clauses. Rather than generating and 

storing a large number of relevant atoms, we use a restricted form of Horn clauses, supported by a 

variable-typed logic, from which only a finite number of ground atoms can be derived. 2 

2 . 3  K n o w l e d g e  R e p r e s e n t a t i o n  

Our final research direction aims to use a learning strategy in conjunction with a planning system 

to deal with reactive environments such as chess [Morales, 1990]. We assume that the planning 

skills of a chess player are linked to the number of "features" he/she can recognise from a chess 

position and that  their skills can improve when learning to recognise new features. With this aim 

in mind, our research is oriented towards learning new feature definitions from existln~ ones. The 

learning algorithm relies on an oracle which provides an initial example description aud classifies 

2Our clauses are more restricted than Muggleton and Feng's [Muggleton & Cao, 1990]. 
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the examples generated by the perturbation algorithm (described in Section 3). Depending on 

the initial background knowledge and on the particular example description, the system is able to 

derive (recognise) more or less atoms (features). We propose to start with some basic background 

knowledge and incrementally extend the domain knowledge by learning "simple" concepts first. 

Unlike other systems, the relevant arguments of the target concept do not need to be pre-defined. 

We define a feature as an atom which is true for the current board position description. A board 

position or example description is specified by a set of ground unit clauses. A feature definition is a 

restricted Horn clause which takes the example description to test for particular features. A feature 

definition has the following format: 

H *-- D1, D2, ..., D~, F1, F~, ..., F~. 

where Dis are "input" predicates used to describe positions and F~s are "feature" predicates which 

are either provided as background knowledge or learned by the system. We define as input predicates 

those which are used to describe the current example but which depend on at most one piece. In the 

example of Section 1, all the predicates except legal_=ove are input predicates. Feature predicates 

are dependent on the position of other pieces or provided as background knowledge. For example, 

legal moves, checks, check mates, . . . ,  etc. 

This format instantiates the arguments required by the clause with arguments of the current 

example description constraining the possible instantiations of the head and producing only relevant 

atoms to the current example. 

For example, the following feature definition is used to recognise checks in chess. The input 

predicates are contents/3 and other_side/2 and the feature predicate is piece_raove/4. 

in_check(Side,KP lace,OPiece,OPlace) ~-- 

contents( Side, king,KPlace), 

contents (0 Side, OPiece,OPlace), 

other_side(Side,O Side), 

piece.znove(O Side, O Piece,O Place,KP l~:ce). 

The example description is included to the theory and a set of relevant atoms are derived from 

the feature definitions (representing a model). These atoms constitute a feasible body of the new 

concept definition. Since we do not specify exactly which arguments are involved in the concept 

definition, a "tentative" head is constructed with the arguments used in the "input" predicates. This 

initial clause is gradually generalised using an LGG algorithm between this clause and similar clauses 

constructed from other example descriptions generated by the perturbation algorithm (Appendix 

1 has a complete sequence of gradual generalisations produced when learning a special case of the 

concept of fork in chess). 
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Given a new example description (ground input predicates), 

and a set of feature definitions (representing the domain theory) 

Add the description to the domain theory and 

Construct a new clause 

The body being the set of atoms derived from the feature definitions 

with the input predicates 

The head constructed with the arguments used in the input predicates 

Make an LGG between this clause and the current concept clause 

the resulting clause being of the form H ~ D1, D2, ..., D, ,  F1, F2, ..., F,. 

where Dis are input predicates 

Remove the arguments in the head that do not appear in any F/ 

Remove any literal with a variable argument which do not appear in any 

other place of the concept definition 

Table 1: Generalisation Algorithm 

Once a generalisation is produced, the system tries to reduce the number of arguments involved 

in the head of the new concept by keeping only those which appear in a literal (different than the 

input predicates) in the new concept definition. New compatible heads are constructed taking into 

account the current concept head. 

Even if we produce a finite set of atoms to construct a clause, the RLGG algorithm can generate 

clauses with a large number of hterals. The length of the clauses is constrained by deleting all the 

literals whose variable arguments do not appear on any other place in the concept definition (see 

Table 1). 

The constrained RLGG algorithm has been able to learn concept like forks and attacks in chess. 

The knowledge representation syntax, which follows our intuitive definition of a feature in chess, 

can produce only a finite set of relevant atoms for an example description. 

3 P e r t u r b a t i o n  M e t h o d  

3 . 1  I n t r o d u c t i o n  

One key issue to consider is the information on which the system relies for its "correct" behaviour. 

In some cases, the learning process is highly dependent on the user's intervention. This is more 

noticeable in an incremental learning system, where the user often has to be careful in selecting 

the examples or training instances to ensure that the system will succeed on its learning task 
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(e.g. [Winston, 1977, Sammut ~z Banerji, 1986]). This dependency or hidden knowledge, requires 

a good understanding of the system's internal characteristics and severely questions the system's 

learning capabilities. Experimentation (or active instance selection) has been employed in sev- 

eral machine learning systems [Feng, 1990, Carbonell & Gil, 1987, Dietterich & Buchanan, 1983, 

Lennt, 1976, Porter & Kibler, 1986] to reduce this dependency and guide the learning process. 

There are several strategies that can be adopted to generate an example. Ruff and Dietterich 

[Ruff & Dietterich, 1989] argue that there is no essential difference between an example generator 

that uses a "clever" (although computationally expensive) strategy to divide the hypothesis space 

and a simple example generator that randomly selects examples. As we construct clauses from 

positive examples only, a random strategy is of very little use, especially when the target concept 

covers a small part  of the example space, as it can generate a huge number of negative examples 

before.generating a positive, slowing down the learning process. Another alternative is to provide a 

hierarchy of concepts and generate new examples from instances of concepts higher or at the same 

level of the hierarchy [Porter & Kibler, 1986, Lenat, 1976]. While applicable in some domains, 

some others domains are not so easily structured and alternative methods must be employed. Feng 

[Feng, 1990] provides the theoretical basis for choosing a new example based on information theory. 

His next-best-verification algorithm chooses the next example which is the best to verify a hypothesis 

based on information content. In practice, he requires a set of heuristics to define a sequential 

number for the examples (the best example being the one which follows in the sequence), which in 

general is not easy to do as several "sequences" along different "dimensions" can exist. 

3 . 2  A F r a m e w o r k  f o r  D e s c r i b i n g  t h e  E x a m p l e  S p a c e  

In an automatic example generator, the space of examples depends on the number of arguments 

required to describe an instance of the target concept and on the size of their domains. If an example 

can be described by instantiating N arguments, we can have 2 N - 1 different perturbation classes 

distributed in N perturbation levels. Each perturbation level represents the number of arguments to 

change at the same time to generate a new example and each perturbation class shows the particular 

arguments to change, representing a class of instances. For example, if we can describe an instance of 

the concept of threat between two pieces with four arguments, e.g., threat(P1,L1,P2,L2) (meaning 

that piece P1 in place L1 threatens piece P2 in position L2), we can structure the perturbation 

space in four levels (see Figure 2). 

At each perturbation class, we can generate Di × D i × . . .  x D,~ examples, where each Dk is a 

particular argument domain at that  level. For instance, the perturbation class [Ll,P2] represents 

the class of examples that can be generated by changing the position of the attacking piece and the 

piece which is being threatened. In the example of Section 1, the attacking piece (rook) can be in 

60 different legal positions and the piece being attacked can be changed for knight, bishop, rook or 
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4 PI,LI,P2,L2 

3 P1,L1,P2 P1,L1,L2 P1,P2,L2 L1,P2,L2 

2 P1,L1 P1,P2 P1,L2 LI,P2 L1,L2 P2,L2 

1 P1 LI P2 L2 

Figure 2: Pertubation Space 

queen. Clearly the example space grows exponentially with the number of arguments involved. 

We can apply several domain constraints to reduce this space. In particular, not all the per- 

turbations generate legal examples. For instance, the first (last) rank can be eliminated from the 

domain of the positions of the white (black) pawns, we can use the knowledge that two and only 

two kings (one on each side) must be at any position to constrain the domains on the possible values 

for the pieces and avoid changing sides on one king without changing in the other, . . . ,  etc. We 

can choose a particular order in which to traverse this space. Like changing all the arguments that 

involve the sides of the pieces first (this corresponds to a particular perturbation class). Similarly, 

in other domains like the 8-puzzle, we can constrain the perturbation space to perturbation classes 

that involve only "swapping" tiles. Despite these constraints, the example space can still be huge 

(e.g'., in chess, two kings alone can be in 3612 different legal positions, which corresponds to a 

perturbation class at level 2). 

3 . 3  A P e r t u r b a t i o n  A l g o r i t h m  

Our example generation strategy is guided by the current concept definition, starting the perturba- 

tion process at the lower levels of the previously described structure and moving gradually upwards 

trying to reduce the arguments and their domains in the process. The perturbation classes are 

generated dynamically, i.e., we do not produce a new perturbation class unless required. After ex- 

ploring a perturbation class (this is described below), only its immediate perturbation classes above 

are generated. Similarly, if an argument is eliminated from the head of the concept definition (as 

described in Section 2) or when its domain is reduced to the empty list, all the perturbation classes 

where the argument appears are removed from the perturbation space. 

For example, following the hypothetical concept of a threat with 4 arguments, the perturbation 

space will initially consist of 4 perturbation classes: 

[[Pl], [if3, [P23, [L223 
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As soon as we finish exploring the possible places of the attacking piece [Pl] ,  the new perturbation 

space becomes: 

[[L1], [P22, [L232, [[P1,L13, [P1,P2], [P1,L2]] 

Similarly, after exploring the possible attacking pieces [P1], we have: 

[l'P23, [L2"13, I'[P1,L1], [P1,P2],  [P1,L2], I 'Ll,P2], [L1,L2]]. 

If the attacked piece "P2" is removed from the head of the concept or if its domain becomes empty, 

then the new perturbation space becomes: 

[[L222, [[P1,L1], [P1,L2], [L1,L2]] 

Recognising irrelevant arguments is important since they represent significant cuts in the search 

space. 3 

The perturbation algorithm picks the first perturbation class and generates new examples by 

picking new values from the domains of the arguments involved. If no new values can be generated 

(i.e., it has finished exploring a perturbation class), it changes the perturbation space (as described 

above), otherwise it checks which literals (features) from the concept definition fail with the new 

values. After selecting new values, if none of the literals fail, it considers those values as irrelevant 

and removes them from the domain. If at least one literal fails, it constructs a new example with 

the new values. When a negative example is generated, the system tries to construct an example 

that will succeed on an least one of the literals that failed on that example. Whenever an argument 

is eliminated from the head of the concept definition or if its domain becomes empty, it is removed 

from the perturbation space. The perturbation process ends when there are no more perturbation 

classes left (see Table 2). 

Following the example given in Section 1, at the first level of perturbation, a new example can be 

generated by replacing the attacked piece (pawn) with a knight. This perturbation fails the literal: 

legal_move(white, knight,square(4,7),square(4,8)) and a new clause is constructed. However, if the 

attacker (rook) is replaced with a knight, generating a negative example, then the system will try 

to construct an example that will succeed on at least one of the failed features (e.g., replacing the 

attacker with a queen). 

The perturbation method has been used to guide the learning process of the RLGG algorithm 

described in Section 2. In general, this strategy will converge faster to a concept definition than a 

random example generator, especially in concepts where a small number of positive examples exist 

in a large example space. It has a clear termination criterion to stop the generation of examples 

and produces a smaller set of examples because it can reduce the example space during the learning 

process. 

3An argument which is removed from the perturbation space is not necessarily removed from the definition. 
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DO UNTIL all the perturbation classes has been explored 

or stopped by the user 

IF a new definition is constructed 

THEN pick the first perturbation class and try to generate an 

example that will fail on at least one of its literals 

IF a negative example is generated 

THEN see which literals failed with that example and try to 

generate an example which that succeed on at least one 

of them 

IF we cannot generate a new example that will fail 

(or succeed) on any literal, 

THEN generate the next perturbation classes and continue 

END DO 

Table 2: Perturbation Algorithm 

4 The Learning Algorithm 

We can now summarise the learning method using the description of the previous two sections. 

Initially, the system is provided with some background knowledge, the domain values of the ar- 

guments involved to describe an example, and a description of a "typical" example of the target 

concept. The system first constructs an initial concept definition and an initial perturbation level. 

The system then calls the example generator method to create new examples (see Section 3). Each 

time a positive example is created the system uses the constrained RLGG algorithm (see Section 2) 

to create a new concept definition. The example generator tries to fail on at least one of the concept 

literals by changing (perturbing) the arguments involved in the current perturbation class. If the 

perturbation method generates a negative example, then the system analyses which literals failed 

on that example and tries to construct a new example that will succeed on at least one of them. 

If the system cannot generate a new example (i.e., a new generalisation of the current definition 

will require producing an example that involves changing different arguments), then it changes the 

perturbation space and continues. The process ends when there are no more levels left, or when the 

user decides to terminate it. 

Each new definition is checked against the current negative examples (the user is also asked 

for confirmation). This is to avoid over-generalisations, which can occur when learning disjunctive 

definitions. If a definition covers a negative example, then it is rejected and the example is stored. 

When the perturbation process finishes, the final definition is checked against the stored examples, 
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Given an initial example description 

Construct an initial clause (as described in Section 2) and 

an initial perturbation level (as described in Section 3) 

DO UNTIL no more perturbation levels or stopped by the user 

CALL PERTURBATION-METHOD to generate a new example 

IF the example is positive 

THEN CALL RLGG 

IF the new definition covers a negative example 

(or if it is rejected by the user) 

THEN reject the definition and store that example 

END DO 

Check the final definition with the stored examples 

IF some examples are not covered, 

THEN start again 

ELSE add the new definition to the background knowledge 

and finish 

Table 3: Learning Algorithm 

those which cannot succeed are tried again and the whole process is repeated. In this way the 

systems is able to learn disjunctive concepts although each clause is learned separately (see Table 

3). 

5 E x a m p l e s  

We applied the previously described system to learn some concepts in chess. We provide the system 

with the same background knowledge described in the introduction. The input predicates being for 

each example, contents/3, straight_slide/l, sliding_piece/l, all_but_K/1 and other_side/2. Feature 

predicates definitions to recognise legal moves, checks and check-mates were also given. We provided 

a s  well domain values for the arguments used in the input predicates (i.e., Side, Piece, Place), 

domain(piece,[pawn,knight,bishop,rook,queen,kin~). 

domain(side,[black,white]). 

domain(place,[square(1,1),square(l,2),...,square(8,8)]). 

and specification of which arguments have which domain. 
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This time, we decided to broaden the concept of a threat and accept as positive examples those 

which include as well a king threatening a piece. Using the same description of the initial example 

given in the introduction, the system produces the following definition (which follows our more 

general definition) after generating 48 positive and 14 negative examples: 

threat (A,B,square(C,D),E,F,square(G,H)) 

contents(A,B,square(C,D)), 

contents(E,F,square(G,H)), 

other_side(E,A), 

other.side(A,E), 

all_but.K(B), 

all_but..K(F), 

legal..move(A,B,square( C,D ),square(G,H)). 

threat(A,B,square(C,D),E,king,square(F,G)) 

contents(A,B,square(C,D)), 

contents(E,king,square(F,G)), 

other.side(E,A), 

other.side(A,E), 

an_but_K(B), 
legal_move(E,king,square(F,G),square(C,D)). 

The first clause is the same one given in the introduction and represents a threat between two 

pieces. The second clause represents a threat between a king and a piece. The system can learn 

in the same way a threat between a piece and a king (i.e., a check), but since the concept of 

being in check was initially given as a feature definition the examples where a check occurred were 

classified as negative instances. The total number of examples generated by the system compares 

very favourable against an example space of approximately -m l0 s possible examples. 

Similarly the learning algorithm produced the following definition of the concept of a fork after 

learning the concept of threat and after generating 13 positive and 27 negative examples. This is 

a restricted version of a fork in chess which occurs whenever a piece threatens another piece and 

checks the king at the same time. Appendix 1 describes the learning sequence involved to learn 

this concept showing only the positive examples generated by the system and all the intermediate 

generalisations: 

fork(A,king,square(B,C),A,D,square(E,F),G,S,square(I,J)) 

contents(A,king,squ~re(B,C)), 

contents(A,D,square(E,F)), 
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contents(G,H,square(I,J)), 

in_check(A,square(S,C),H,square(I,J)), 

other_side(G,A), 

other_side(A,G), 

all_but_K(D), 

all_but_K(H), 

legalJnove(G,n,square(I,J),square(E,F)), 

threat (G,H,square(I,J),A,D,square(E,F)). 

Although not implemented, we can use the definition of threat to reduce this definition to: 

fork(A ¢king,square(B,C),A,D,square(E,F),G,H,square(I,J)) *-- 

contents ( A ,king, square( B, C ) ), 

contents(A,D,square(E,F)), 

contents(G,H,square(I,J)), 
in_check(A,square(S,C),S,square(I,J)), 

threat(G,H,square(I,J),A,D,square(E,F)). 

Again the total number of generated examples is several orders of magnitude smaller than the 

example space. 

The learning algorithm as it stands has several limitations. In particular, it cannot deal with 

exceptions or negation (i.e., it cannot learn things like "without feature") 4. It also cannot learn 

recursive concepts. This is partly due to the example representation, although in principle we could 

include previously generated heads into the list of relevant atoms to allow it to learn recursive 

concepts (although they will have to be updated with changes in the current number of arguments). 

6 C o n c l u s i o n s  a n d  F u t u r e  R e s e a r c h  D i r e c t i o n s  

In an inductive learning system we need to consider the search through the hypothesis space and 

the amount of information provided by the user. We have addressed both problems by using a 

constrained RLGG algorithm as a model of generalisation coupled with an automatic example 

generator to learn a restricted form of Horn clauses. The problem of selecting a relevant set of 

atoms derived from the background knowledge for the RLGG algorithm has been solved by using a 

restricted form of Horn clauses which follows closely to our intuitive notion of a feature definition 

in domains like chess. We have also relaxed the example representation used in other systems by 

describing each example with a list of features, rather than specifying which of the arguments are 

relevant to the concept definition. We have reduced the user's intervention over the system for its 

4Although negation is used in one of the concepts of the background knowledge 
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"correct" behaviour by presenting an automatic example generator which converges rapidly to the 

concept definition. The examples space is structured dynamically, allows to include domain rules 

if necessary to explore particular perturbations and is fairly independent of the learning algorithm. 

Finally, we have demonstrated the feasibility of the approach with some initial results in chess. 

We plan to continue this research by learning concepts which involve one or more moves, like in 

discovery attacks. 
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Appendix 1 Tins is the sequence for learning a restricted 
concept of fork. Only the positive examples generated by the per- 
turbatlon method are shown. 
I?- go. 

N° N 
N 

tmp( A,king, square(3,4) ,A,queen,square( 3,6), 
B,king, square(6,7),B,l~dght ,square(1,5) ) *-- 

contents( A,klng, square(3,4) ), 
cont ents(A ,queen,square(3,6) ), 
content s(B,klng,square(6,7)), 
contents(B,knight ,square( 1,5)), 
in_check(A,square(3,4),knight,square( 1,5)), 
other.side(B,A), 
other.side(A,B), 
all.but .K(queen), 
all.but _K(knlght), 
diagonaLslide(queen), 
stralght.slide(queen), 
slldin g_piece(queen), 
]egaLmove(A,klng,square(3,4) ,square(4,5)), 
legal.~ove(A,king0square(3,4) ,square(2,5)), 
legalanove(A,king,square(3,4) ,square(4,3)), 
legaLmove(A,king,square(3,4) ,square( 3,5 ) ), 
legal.move(A,king,squaxe(3,4) ,square(3,3) ), 
legaL.move(A,klng,square(3,4) ,square(4,4) ), 
legal..move( A,king, square(3,4),square(2,4)), 
]egal..mo ve (B ,klng, squaxe (6, 7),square(7,8)), 
legal..move(B,king,square(6,7),square(6,8) ), 
legal.move(B,king,square(6,7) ,square(7,7) ), 
legaLmove( B,king,square(6,7) ,square(5,7) ), 
legal..move( B,knight ,square( 1,5) ,squwre(2,7)), 
legal..move( B,knlght,square(1,5) ,square(2,3) ), 
legal.move( B,knight,sqtmre(1,5) ,square(3,6)), 
threat ( B,knight,square(1,5) ,A,queen, square(3,6) ). 

t mp(A,king,square(3,4),A,B,square(3,6), 
C ,king,squaxe(6,7) ,C ,knight ,square(1,5) ) 

eontente(C ,kn]ght#quare(1,5)), 
contents(C ,klng,square(6,7)), 
content s(A,B,square(3,6) ), 
contents(A,king,square(3,4) ), 

in.check(A,square(3,4) ,knlght ,square(1,5)), 
other.side( A,C ), 
other.slde(C ,A), 
all.but_K(knlght), 
~.but.K(B), 
legal..nlove(C,kni ght ,square(1,5 ) ,squa~(3,6) ), 
legal.move(C ,knight ,square(1,5),square(2,3) ), 
legaI..move(C,knight ,square(1,5),square(2,7) ), 
]egal_move( C,king,square( 6, 7) ,square(5,7)), 
legal.move(C ,king,square(6,7),square(7,7)), 
legaLmove(C,klng,square(6,7),square(6,8) ), 
legal.xnove(C,klng,square(6,7),equare(7,8)), 
legal_tnove(A,kJng,square(3,4) ,square(2,4)), 
legM..rnove(A,klng,square(3,4) ,square(4,4)), 
legal_move(A,king,square(3,4) ,square(3,3) ), 
legM_mo ve( A,king,square (3, 4),square(3,5)), 
legal.move(A,king,square(3,4) ,square(4,3) ), 
]egaLmove(A,klng,square(3,4) ,square(2,5) ), 
legal.move( A ,Idng,square(3,4),square(4,5)), 
threat ( C,knight,square( 1,5 ),A, B,square(3,6) ). 

~_~E °~-~-- 

t rap(A,ldng,square(3,4) ,A,B,square(3,6), 
C,king,square(D,E) ,C,knlght,square(1,5 ) ) +- 

contents(A ,klng,sqnare(3,4)), 
contents(A,B,square(3,6)), 
contents(C ,klng, square(D,E)), 
contents(C ,Imight,square(1,5) ), 
in_check(A,square(3,d),knight,square( 1,5)), 
other.side( C ,A), 
other.slde(A,C), 
all.]but .K(B), 
all.but .K (knlght), 
]egal..move~ A,ldng,square(3,4),square(2,5)), 
legal.move, A,klng,square(3,4),square(4,3)), 
legal.anovei A,klng,square(3,4),square(3,3) ), 
legal, move, A,king,square(3,4) ,square(4,4) ), 
legal_move, A,king,square(3,4),square(2,4) ), 
legal_move, C ,king,square(D,E) ,square(5,7)), 
legal.move, C ,king,square(D,E) ,square(5,E) ), 
]egal_move~ C,]c~ght,square( 1,5),square(2,7)), 
legal_move, C,knight,square( 1,5 ) ,square(2,3) ), 
legal_move, C,krdght ,square( 1,5),square(3,6) ), 
threat (C,knl ght,square( 1,5) ,A,B,square(3,6)). 

tmp(A ,klng, sqnare(3,4),A,B,square( C,D), 
E,klng,equare( F,G ) ,E,knlght ,square( 1,5 ) ) ~- 

content s(E,knight ,square( 1,5 ) ), 
content s(E,klng,square(F ,G ) ), 
cont ents(A,B,square(C,D) ), 
content s(A,klng, square(3,4) ), 
in_check(A,square(3,4) ,knight,square(I,5 ) ), 
other.slde(A,E), 



othar Jide(E,A), 
all.but ..K(Imi~ht), 
an_but .K(B), 
legal.move(E,knlght,square(1,5) ,square(C,D) ), 
legaL.move( E,knlght,square( 1,5) ,square(3,6)), 
legaL.move( E,knight,square( 1,5),square(2,3)), 
legaLmove( E,knight,square( 1,5) ,square(2,7)), 
legaL.move(E,klng,square(F,G) ,square( 5,G ) ), 
legal.move( E,klng,square( F,G ),square(5,7)), 
legaL.move( A,king,eqv~'e(3,4) ,square(2,4)), 
leged..move(A,king,square(3,4) ,squ&re(4,4)), 
legaLmove(A,king,square(3,4) ,square(3,3) ), 
legal.move(A,king,square(3,4),square(4,3)), 
legal move(A,king,square(3,4) ,square(2,5) ), 
threat ( g,knight ,square(1,5) ,A,B,square(C,D)). 

t rap( A ,klng,square(B,C) ,A,D,square(E,F), 
G ,king, square(H,I) ,G ,~might,square(1,5) ) 

contents( A,king,square(B,C)), 
contents( A,D,square(E,F) ), 
content s(O ,king,square(H,I) ), 
contents(O ,knight,square(1,5 ) ), 
in_check(A,square( B,C ) ,knlght,square( 1,5)), 
other.side(O,A), 
other..slde(A,G), 
all..but _K (D), 
aILbut _K (knight), 
legaL.move(G,king,square(H,I),square( 5,7)), 
legal.move(G ,klng,square(H,I) ,square( 5 ,I)), 
legal_move(G ,knight ,square( 1 ~5 ) ,square(2,3) ), 
legal..move(G ,knlght,squaxe( 1,5 ) ,square(3,6} ), 
legal.move(O,knight ,square( 1,5 ) ,square(E,F) ), 
threat (G,knight,square(1,5),A,D,square(E,F)). 

trap( A,klng, square( B,C),A,D,square(E,F), 
G ,klng, square(H,I) ,G ,knight,square( J ,5) ) 

contents(G ,knlght,square( J ,5)), 
contents(G,klng,square(H,I)), 
content s(A ,D,square(E,F) ), 
con tent s(A,king,square( BsC ) ), 
in.J:heck(A ,square( B,C ) ,knight,square( J,5 ) ), 
other.side(A,G), 
other.side(G ,A), 
alLbut ..K(knlght), 
all.but .K(D), 
legaL.move(G,knight,square( J ,5),square(E,F)), 
legal.move(G ,knight,square(J ,5) ,square(2,3) ), 
legaLmove(G ,king,square( H,I ) ,square(5 ,I)), 
legaL.move(G,klng,square(H,I) ,square(5,7) ), 
threat(G,knight,square(J,5),A,D,square(E,F) ). 
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trnp( A,king, square(B,C),A,D,square(E,F), 
G ,king,square(H,I) ,G ,freight,square( J ,5) ) *- 

content s( A ,klng, square(B,C)), 
contents(A ,D,square(E,F) ), 
contents(G ,king,sqv~re(H,I) ), 
content s(G ,knlght ,square( J,5 ) ), 
in_check(A ,square( B,C ) ,knight,square( J,5 ) ), 
other.side(O,A), 
other.side(A,G ), 
all_but.K(D), 
an.but ..K(knight), 
lega|..move(O ,king, square(H,]) ,square(5,7)), 
legal.move(G,klng,square(H,I) ,square( 5,I)), 
legal.move(G ,knight,square( J ,5),square(2,3)), 
legal_move(G ,knight,squane(J,5) ,square(E,F)), 
threat(G ,knlght,square( J,5 ),A,D,square(E,F) ). 

t rnp( A,Id ng,square(B,C ),A,D,square(E,F), 
G ,klng, square( H,I),G ,knight ,square( J,5 ) ) +- 

contents(G ,knight,square(J,5)), 
cont ents(G ,king,square(H,I) ), 
contents(A ,D,sqvare(E,F)), 
contents(A ,king,square(B,C)), 
in_check( A,square( B,C ) ,knight,square( J ,5)), 
other.side(A,G ), 
other_side(G,A), 
a]]..but ..]~ (knight), 
all_but I((D), 
legaL.move( G,krd ght,square(J,5) ,square(E,F)), 
legaI.move(G ,knlght,square(J,5) ,square(2,3) ), 
legalAnove(G ,king,square(H,I) ,square( 5 ,I)), 
legaLxnove(G ,king,square(H,I) ,square(5,7) ), 
threat (G ,knight,square( J,5 ),A,D,square(E,F)). 

tmp(A,king, square(B,C) ,A,D,square(E,F), 
G,klng, square(H,I),G,knlght,square(J,5)) +-- 

cont ents(A,klng, square(B,C) ), 
contents(A,D,square(E,F)), 
contents((] ,king, square(H,I)), 
contents(G ,lmlght,square( J ,5)), 
in_check( A ,square(B,C) ,knight,square( J,5)), 
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other.slde(G,A), 
other.side( A ,G ), 
all_but .]<(D), 
alLbut .K (knight), 
legal.move(G,king,square( H,I),square(5)7) ), 
legal.move( G)knight,square(J,5) ,square( 2,3) ), 
legal.move(G ,kulght ,square(J,5) ,square(E,F)), 
threat (G ,knight,square(.],5),A,D,square(E,F) ). 

N 

N 

tmp(A)king, square(B,C) ,A,D,square(E,F), 
G ,king, square( H,I),G,knight ,square(J,K) ) 

contents((] ,knight ,square(J,K) ), 
contents((] ,klng,squsre(H,I) ), 
content s(A, D,square(E,F) ), 
contents(A,]dng, square(B,C)), 
in.check(A,square( B,C ) ,knlght,square(J,K) ), 
other.side( A ,G ), 
other.~|de(G,A), 
all_but ..K (knlght), 
all_but J~(D), 
legal.move((] ,knight,square(J,K) ,square(E,F)), 
legal.move(G ,knlght ,square( J ,K) ,square(2,3)), 
legal.rnove(G,king,square(H,I) ,square(5,7) ), 
threat (G ,knight,square(J,K) ,A,D,square(E,F)). 

tmp(A ,klng,square( B,C ) ) A,D,square( E, F) ) 
G ,knight,square(H)I) ) 

cont ents(A)klng)square( B,C ) ), 
cont ents(A,D,squ~re(E,F) ), 
contents(G ,knight,square(H,I) ), 
in.check( A,square( B,C ) ,knight,square(H,I) ), 
other.~ide(G,A), 
other.side(A,G ), 
alL.but_K(D), 
a]l..but .J~ (knight), 
legal_move( G ,knight ,square(H,I) ,square(2,3) ), 
legal.move((] )knlght,square(H,I))square(E,F)), 
threat((] ,knlght,square(H,I), A, D,square(E, F) ). 

t rap(A )k~ug,square(]3 ,C), A,D )square(E,F), 
G ,knlght,square(H ,I) ) ~-- 

contents(G ,knight ,square( H, 1) ), 
¢ontents(A ,D,square(E,F))l 
contents( A ,klng,square(B,C) ), 
in.check( A,square( B,C ) ,knight,sqtmre(H,I) ), 
other.slde(A,(]), 
other_side(G ,A), 
alLbut J~(knJght), 
allJ~ut.K(D), 
legal.move(G,knight,square(H,I),square(E,F)), 
legal_move(G ,knlght,square(H,I) ,square(2,3) ), 
threat ( G ,knight,square(H,I) ,A,D,square(E, F) ). 

trnp( A,klng, square(B,C) ,A,D,squ~e(E,F), 
G,H,square(I,J)) ~-- 

cont ents(A ,klng,squa~e( B ,C) ), 
content s(A, D,square(E,F) ), 
contents(G,H,square(I,J)), 
in.check( A,square( B,C ) ,H,square(I, J ) ), 
other.slde(G,A), 
other.slde(A,G ), 
all.but.K(D), 
al].but..K(H)) 
legal.move( G ,H,square(I,J) ,square(E,F) ), 
threat(G ,H,square( l,J ) ,A,D,square(E,F) ). 

How would you like to call the concept? fork. 
yes 

I?- 


