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Abstract 

In this paper we-will illustrate the results of a machine learning application concerning drug 

design. Dynamic bias management, in this context, will be presented as a critical mechanism to deal 

with complex problems in which good representations are unavailable even to human experts. A 

number of domain-dependent and domain-independent operators which allow automatic bias 

adjustment will be discussed with the mechanisms used to decide when and how to vary bias. Finally, 

we will summarize the results that a system named FLEMING adopting these techniques has obtained 

on the domain of the inhibitors of the thermolysin enzyme. 

Keywords: bias management, constructive learning, learning from discovery, computer-aided 

molecular design. 

Introduction 

A fascinating aspect of machine learning techniques is their use to discover knowledge 

unavailable even to human experts. We will describe a system named FLEMING that discovers 

explanatory theories from a set of experimental observations concerning compounds synthesized during 

the drug design process. Therefore, our investigation falls into the category of the task-oriented studies; 

even so the need to deal with a real-world problem suggested a number of theoretically-oriented 

considerations. This paper is intended to be a report on our experience in applying machine learning 

techniques to a complex problem. 

Firstly, we will briefly outline the learning problem; the limits o£ the approaches traditionally 

adopted to face this problem will be also illustrated. Then, we will sketch the general methodology used 

to deal with the learning task previously described. The remainder of the paper will concentrate on 

FLEMING's approach to dynamic bias management. We will illustrate, as regards our application, 

where the need for automatic bias adjustment comes from and the solutions adopted to decide when 

and how to vary bias. Specifically, dynamic bias management will be presented as a necessity in 

real-world problems which typically exhibit a large number of distinct disjuncts (see Rendell & Cho, 

1990). Finally, a summary of FLEMING's results on the system of the inhibitors of the thermolysin 

enzyme will be presented and discussed. 
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The domain problem 

The study of the correlations between pharmacological activity and molecular structure is a 

central issue in the drug design process. Such a study is based on the concept that a biological (or 

pharmacological) effect caused by a given molecule (drug) is a function of structural or electronic 

properties of that molecule. Conventional approaches to the Structure-Activity Relationship (SAR) 

problem make use of statistical techniques in order to relate the activity of the compound to 

substructures and/or properties used to describe the compound itself (see, for instance, Martin, 1978). 

The great difficulty in all the SAR studies is the selection of the molecular descriptors as their number 

is very large. Such a choice introduces a strong bias on the results of  the analysis insofar as it abstracts 

secondary objects to be the "real" objects from which the learning system generalizes. The bias comes 

from an assumption behind this choice which says that no considerations useful to capture the target 

concept have been omitted from the language used to represent the instances. 

Klopman's CASE program is presented as an attempt to overcome such difficulty (see Klopman, 

1984). CASE is capable of  manipulating a molecular structure in order to generate all the fragments 

that can be formed by breaking the molecule. In this way, the selection of the descriptors would not 

be constrained by the prejudices of the investigators. Once the fragments have been collected, they are 

analyzed statistically to discover those fragments relevant to the activity of the compounds. CASE, 

however, suffers from other drawbacks common to most of the SAR studies. Firstly, the functional 

dependence existing betweeen the experimental observations and the pharmacological activity of the 

compound is assumed to be the sum of independent contributions of the most relevant 

activating/deactivating fragments automatically selected by the program. Yet, context cannot be 

ignored when talking about molecular structures since the relevance of the compound fragments is 

heavily dependent on the r'elative positions in the compound itself. Moreover, the properties 

characterizing the fragments play a fundamental role in determining the binding between compound 

and receptor. In this sense, statistical frequency does not appear a meaningful approximation of the 

relevancy of the fragments. Indeed, medicinal chemists while visually analyzing a set of compounds 

for determining their structure-activity relationship do not constrain the investigation at the 

identification of a number of fragments deemed to be invariant in the active compounds. Instead, they 

attempt to build a theoretical model suitable to explain the nature of the binding between active 

compounds and biological receptor. A set of  notions that actually make the basic knowledge of a 

medicinal chemist about molecules and their properties such as, for instance, hydrophobicity, polarity, 

hydrogen bonding, etc. play an important role during the explanation process. Our attempt was to 

devise a computational tool which could support medicinal chemists to reduce the complexity of the 

problem without suffering from the drawbacks of the more traditional approaches. 

Learning methodology 

FLEMING's  input is a database of compounds and their inhibitory activity as reported in 

Figure I. Specifically, molecules are formalized in terms of a set of  atoms and their connectivity. The 

atoms are characterized as atom types, i.e. there is an attempt to define their electronic state. 
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Ki Values of Inhibltors of Thermolysin 

No. Compoundt Ki (pM) 

1 Z-NHNH-CS-NHNH2 6700 
2 Z-Agly-Leu-NHNH2 380 
3 Z-Gly-Leu-NHNH2 1100 
4 Ac.Ala-Aphe-Leu-N HNH2 6500 
5 Ao.Ala-Ala-Aels-Leu-NHNH2 7900 
6 L-Leu-NHOH 190 
7 Z-L-Leu-NHOH 1 0 
8 Z-Gly-L-Leu-NH2 21000 
9 Z-Gly-L-Leu-NHOH 1 3 
10 Z-Gly-L-Leu-N(CH3)OIt 2230 
1 1 Z-Gly-L-Leu-NHOCH3 No Inhib. 
1 2 Z-Agly-L-Leu-NHOH 27 
1 3 Z-Giy-Gly-HHOH 040 
1 4 Z-Gly.Gly-L-Leu-NHOH 39 
15 HONH-Bzm-OEI 2 0 
1 6 HONH-Bzm-L-Ala-Gly-NH2 0.66 
1 7 HONH-Bzm-L-Ala-Gly-OH 0.65 
18 HONH-Ibm-L-Ala-Gly-NH2 0.48 
1 9 HONH.MaI-L-Ala-Giy-NH2 1100 
20 HO-Bzm-L-A2a-GIy-NH2 420 
21 CHO-HOLeu-L-Ala-Gly-NH2 3.8 
22 Ac-HOLeu-L-Ala-Gly-NH2 3400 
23 P-NH-Et No Inhlb. 
24 P-Leu-NH2 1.3 
25 P-Phe-OH 73 
26 P-Ale-Ale-OH 88 
27 P-Ile-Ala-OH 0.36 
28 P-Lsu-Phe-OH 0.019 
29 Z-Phe-Gly-NH2 350 
30 Z-Phe-Gly 4500 
3 1 Phe-Giy-NH2 10900 
32 Phe-Gly 10300 
33 Z-Lsu-Gly-NH2 3070 
34 Z-Leu-Gly 4030 
35 Leu-Gly-NH2 8300 

t Z, benzyloxycarbonyl; Agly, -NHNHCO-; Asia, -NHN(CH3); 
Aphe, -NHN(CH2CsHs)CO-; P, phosphoryl group (HO)2PO-; 
Bznl, benzylmalonyl -COCH(CH2C6Hs)CO-; Ibm, 
Isobulylmalonyl -COCH(CH2CH(CH3)2}CO-; Mal, malonyl; Ac, 
Acetyf; El, sibyl. 

Figure 1. TIlE SET OF COMPOUNDS. TIlE ACI'IVITY IS EXPRESSED IN TERMS OF Kt VALUES 

DETERMINED BY DIXON PLOTS. 

We will now briefly outline the operation of  the system. It mirrors the strategy actually used by 

the medicinal chemist during the drug design process. Yet, because of  the "cognitive overload" 

problem, the medicinal chemist is forced to reason locally while the nature of  the problem would 

require spanning over a large number of  variables. At the very beginning, the program identifies a set 

of  active/inactive pairs deemed to be useful to make the learning process effective. Specifically, the 
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system looks for compound pairs which, on the one hand, maximize the difference in activity, A (K), 

and, on the other, minimize the difference in structure, A (S). Usually such a set is quite large because 

the medicinal chemist proceeds step-by-step via small modifications to the previously experimented 

compounds. Although methods for quantifying differences in structure exist, at the present time two 

molecules are regarded as structurally similar whenever they have at most one difference in terms of 

residues. 

Once the pairs which appear to be more informative have been defined, each compound in each 

pair is matched against the other in order to generate the fragments supposed to be responsible for the 

A(K) . We will refer to the fragment appearing in the active compound ci as Required (REQ~) and the 

fragment in the inactive compound c s as Forbidden (FORj,). One problem, here, was the definition of  

the level of  abstraction more appropriate for detailing such a fragment. FLEMING automatically 

makes the choice of the level of representation considered to be more adequate. Whenever the 

difference between the compounds in each pair is made of  only one residue (as it is by definition), the 

system will attempt at reformulating such a difference in terms of  functional groups. Yet, the 

reformulation step will be accomplished only when satisfied the condition that the functional groups 

which actually make the difference also make a connected region. The same holds as concerns the 

functional group level. In this case, when the difference is expressed in terms of  at most one functional 

group, the system will reformulate such a difference in terms of atom types on the condition quoted 

above. The description of the molecules, then, is appropriately shifted so as to allow REQ~j and FORj~ 

being encoded explicitly in the representation of  the compounds c~ and cj. What we get is an 

abstraction space deductively derived from the domain knowledge in which a number of  clues useful to 

speed up the learning task have been marked inside the compound which they come from after being 

opportunely reformulated. This process can be regarded as a form of constructive induction in which 

domain-dependent knowledge is used to derive a "useful" instance representation suitable to facilitate 

the inductive task (see Flann & Dietterich, 1986; see also Drastal, Czako & Raatz, 1989). Specifically, 

because by assumption the active/inactive molecules of each pair differ at most for one fragment, we 

think of  REQs as the fragments necessary to the activity of  the compound while FORs must be 

considered as "forbidden" insofar as they involve a decrease in the activity. 

FLEMING's  learning strategy will be illustrated as follows, l.et C be the set of  compounds. At  the 

beginning of  each iteration, a K number of  compounds c, deemed to be useful for improving the 

current model PMODEL is selected from C . The system will evaluate a compound as useful when 

sufficiently similar to PMODEL, so as to reduce the ambiguities of  matching, and when including a 

number of  REQs and FORs, so as to maximize the information content. Whenever c, is a maximally 

active compound, FI.F.MING generalizes on the compound as a whole. In this case, FLEMING will 

consider all the substructures which the molecule is made of  as noise-immune and, therefore, equally 

relevant to the inhibitory activity. Otherwise FLEMING will take into account only the REQs and 

the FORs included in c,. Specifically, the system will generalize PMODEL whenever encountering 

REQs and specialize whenever encountering FORs. A quality function is used to evaluate each of  the 

new models. FLEMING will accord its preference to those models that minimize the predictive error. 

In other words, tile system will prefer the models that predict, for each compound ci, an activity value 

~, as close as possible to the real one at. The new models so generated are merged into a K-limited 

OPEN list of current partial models and only the best K models are maintained for further expansions. 
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Selec t ing  the  mos t  appropria te  bias 

Mitchell defined bias as any information for controlling the complexity of  the learning problem 

that can be considered as "extra-evidential" in the sense that it does not come from the objects or 

events to be described by the target concept (see Mitchell, 1980; see also Utgoff, 1986 and Rendell, 

Seshu & Tcheng, 1987). The satisfactory performance that researchers get from learning programs are 

often due to the bias previously "hard-coded" in the program. What they do, then, is to test the 

program and eventually shiR the bias "by hand" to move to a better bias. This methodology allows 

inductive systems to control the combinatorial explosion of  hypotheses; yet, in this way, the learning 

task is reduced to find a "trick" for discarding inconsistent hypotheses as instances are examined. 

The use of a highly restricted hypothesis space is a very common method for focussing the 

search on the set of  preferred hypotheses. This kind of  bias has been named "restriction-type bias" (see 

Russell & Grosof, 1989). The most common way to control the dimensions of  the hypothesis space is 

to restrict the object description to an abstraction of  the complete observation (instance-language 

bias). Such an approach is successful when the objects are described in a form suitable to capture the 

target concept, but when the most appropriate language to describe the objects is not known a priori, 

then learning can be impossible using selective methods. 

Our problem falls into this class. As we have seen above, all the traditional SAR methods 

presuppose some knowledge of the chemical or electronic properties that make the binding between 

molecule and receptor feasible. In other words, what these approaches presuppose is the very answer 

to the problem at hand. FLEM1NG's approach is to start the search from a restricted hypothesis space 

and eventually to shift to a less restricted one (see also Utgoff, 1986). The nature of  the problem itself 

suggested this approach. As RendeU and Cho have stressed, real-world problems and, especially, 

complex problems in which even human experts lack understanding typically exhibit a very large 

number of  distinct disjuncts (see Rendell & Cho, 1990). In our case, the low-level descriptors used to 

represent the compounds are not sufficient to derive the explanatory model we look for. What we need 

is a more theoretically-oriented language exploiting higher-level regularities suitable to compact the 

problem (i.e. suitable to produce class membership functions having at most few disjuncts). A number 

of  operators which result in the introduction of  new descriptors will accomplish the mapping between 

the problem definition in the initial space and its definition in an abstraction space more appropriate 

for capturing the target concept. 

Shift of bias is closely related to constructive induction. Specifically, when we apply a set of  

operators to one or more existing descriptors to generate new descriptors intended for use in describing 

the target concept, we also shift the concept-language bias. One problem we faced was to identify 

exactly when and how to shift bias. 

FLEMING makes use of  three constructive operators. We distinguish: 

• Domain-dependent operators: 

- R-operators: Allow the introduction of  multiple levels of  abstraction; specifically they take the 

form:  

Rj: S, --, G({S,~ . . . . .  S , ,} ,{A,~,  . . . ,  A,~,}) 
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where S, is a generic fragment and G is the graph defined by the set of  nodes (St,} and the set 

of  arcs {A,} such that  each S~, is a substructure of  S,. The R-operators work selectively via the 

identification of  compound subunits. Thus, the same molecule can be formalized as a hierarchy 

of  representations that  proceeds from a very detailed formalization of  the compound to a 

coarse one as illustrated in Figure 2. 

r----> 

BENZ ! 

METILN : 

METLN 

I 
KETONE! 

. . . . .  . . . . .  

OMAMIN 

ZETA 

GLY 

GLY 

OMAMIN 

Figure 2. THE [IIERARCIlICAL REPRESENTATION OF TIlE COMPOUNDS 

Specifically, atomic entities, as we have just said above, are used to represent the compound at 

the lower level; in the following one, the molecule is represented in terms of  larger fragments 

named functional groups (for instance, a carboxil group); at  the next level up, the compound is 

described in terms of residues (taken in a broad sense, for example, an  amino acid in a 

peptide); finally it is always possible to represent the molecule as a whole with some properties 

associated with the compound such as, for instance, the molecular weight. 

I-operators: Allow switching from the observation language used to describe the compounds to 

a more theoretically-oriented language of  chemical properties associated with the hierarchy of  

molecular substructures S,; l-operators have been formalized as follows: 

ll: St - '  P t l , / ' , 2  . . . . .  P ~  
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Thus, the system, for instance, is told that a hydroxyl group is a hydrophobic group with the 

property of  being electron donor. Some of these properties such as, for instance, volumes and 

partial charges are computed via a set of  domain-dependent procedures. 

Both the R-operators and the l-operators make the prior knowledge used by the system for guiding 

the inductive process. 

Domain-independent operators: 

- U-operators: Such operators are defined as boolean combinations of  other terms previously 

defined in the system; thus, for instance, FLEMING makes use of  the following operator: 

vt: s~= a({s~k}{Alj}) U sw= 6({S~k}{Awl}) -~ Sz--a({Slk} LI (S.,},{a~ 1} U {A.j}) 

Thus, the fragment R~ is a new descriptor previously unknown to the system resulting from the 

application of the operator Ut to Ft and/72 (see Figure 3). Rt will also inherit the properties 

common to Ft and F2. 

, ; >  

Figure 3. AN APPLICATION OF THE U-OPERATOR: (FI.F2) = > RI 

Rendell has identified four aspects considered to be inherent to the constructive induction problem (see 

Matheus & RendeU, 1989; see also Wrobel, 1988): 

!. detection of  when construction is required; 

2. selection of  the constructive operators; 

3. generalization of  the new descriptors; 

4. evaluation of the new features so derived. 

1. Detection: Detection, in our approach, is triggered via a set of  evaluation functions. Because of  

their nature, these functions introduce a meta-reasoning mode dedicated to control the adequacy of  

the representational level. Specifically, constructive induction is performed either in a 

demand-driven fashion whenever the model building process faces an impasse as when the system 
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does not appear successful in finding a matching between c. and PMODEL or in a tentative way as 

when FLEMING applies the R-operators in the attempt at finding the level of  abstraction more 

adequate for detailing REQs and FORs. 

2. Selection: our system makes use of a two-step approach to select the useful constructors: 

• firstly F L E M I N G  uses the domain knowledge as a set of  heuristics for focussing on the class 

of  useful operators; 

• then it completes the selection process with the selection of  the appropriate operator by using 

information in the data set. 

We are now ready to discuss one of  the detection mechanisms used by FLEMING and the 

selection procedure adopted to choose the most appropriate constructor among the set of 

candidate operators. The function used in this example is triggered as a latter resource to 

overcome an impasse whenever the R-operators have been already exhaustively applied to the 

description of  the compound (the attempt, here, is at finding a match between an cu and PMODEL 

). We call G. the graph used to represent c. and G. the graph representing PMODEL where 

(7. = ({S.},{A.}) and G. = ({S.},{A.}). Then let us define P,, = {p,j .... ,p,.} as the set of  properties 

appended to the i -th node Sk, of  Gk by the application of  the l-operators. Moreover, let 

MA TCIt(Gk.G,) be the function matching the graph Gk onto the graph G,. MA TCH(G.,G.) produces 

as output a set of  pairs (S.,, S.j). Then, the evaluation function can be stated as follows: 

E&: V(S.~,S~j) ~ (S.,~Sml) ^ (J ' . tN  t ' . . j )=~  --' Ut(S.t,~) 

in which the condition-part asserts that whenever a pair of  fragments S.,~S.j do not also match in 

terms of  properties, the set of  the U-operators must be selected. Now F L E M I N G  must select the 

fragment x more useful to construct the new descriptor when joined with S~. The construction of 

the new descriptor should finally allow the generalization between c~ and PMODEL. Specifically, 

FLEMING will prefer those descriptors and, therefore, those operators that maximize the number 

o f  common properties between (Su.x) and the corresponding fragment (S.j,y). A simple 

inspection of  the data at hand will finally produce the selection of  the appropriate operator. 

3. Generalization: The application of  the standard selective methods such as dropping condition, 

turning constants into variables, closing interval, etc., allows the generalization of  the new 

descriptors (Michalski, 1983). Yet, constructive induction, in our case, is successful only insofar as 

FLEMING encodes domain knowledge which works as selection bias. FLEMING,  actually, 

utilizes domain heuristics to prune the space of the U-operators (the boolean operators) to a 

candidate set far more tractable. Such heuristics, specifically, will narrow the search to those 

operators which generate new descriptors consisting of  adjacent fragments. 

4. Evaluation: as other systems such as STAGGER (see Schlimmer, 1987) and CITRE (see Pagallo, 

1989), FLEMING is completly autonomous in the evaluation of  the quality of  new descriptors. 

This methodology must be contrasted with DUCE's  oracle-based approach in which the evaluation 

is delegated to the user (see Muggleton, 1987). In FLEMING's  case, the quality of the new 

descriptors is assessed with the results of  the generalization process itself. Yet, such an approach 
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results in an increase of  complexity for the system insofar as it also carries out an increase in the 

number of  models to be considered by the system. We are studying, at the moment, more powerful 

evaluation mechanisms to deal with this problem. 

Results and Discussion 

In order to test FLEMING's  performance we have chosen the system of the inhibitors of  the 

thermolysin enzyme for which 3D-structural information of the complex enzyme-inhibitor is available 

from the Brookhaven Protein Data Bank. Thermolysin is a thermostable metalloprotease involved in 

several important physiological processes and, like other metalloproteases, contains a zinc ion essential 

for activity. It is also known that thermolysin is very specific for hydrophobic aminoaeids. The data 

concerning the inhibitory activity of  a number of  thermolysin inhibitors were taken from literature and 

reported in Figure 1. The activity is expressed in terms of K~ values determined by Dixon plots (see, 

for further details, Bolis, Di Pace & Fabrocini, forthcoming). 

To start with, FLEMING reformulates the description of  the compounds so as to allow REQs 

and FORs being encoded explicitly. In this way, the instance space is trasformed into a more abstract 

space which exploits higher-order regularities in order to improve concept concentration. Thus, the pair 

(16)/(20) is selected from the compound database. Such a pair satisfies the similarity constraint we 

adopted, insofar as compound (16) differs from compound (20) only because of one fragment (i.e. the 

fragment named HONH). In other words, given the same context (i.e. * - BZM - L - ALA - GLY - 

NH2, where the star denotes the variable), then the substitution of  the HO fragment (20) with the 

HONIt  fragment (16) causes a major change in the activity of  the compound. At this point, 

FLBMING attempts to detail as much as possible such a difference. In this case, the system will finally 

generate as difference between compounds (16) and (20) the atom type n' (see Figure 4). 

O 0 

20 

Figure 4. A CASE OF REFORMULATION. "FILE STRUCTURAl,  DIFFERENCE EVIDENTIATED BY FLEMING 

BETWEEN COMPOUNDS 16 AND 20. 

A schematic representation of the explanatory model generated by FLEMING,  as concerns our 

problem, is illustrated in Figure 5 where the inhibitor is depicted as composed by a number of  

generalized fragments named as Ro...., R,. 
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H O 

I U 
CH / C  

13 

Cover ing:  16,17,18,21,27,28 Positive and neaatlve Instsnoes of the 
aenerallzed fraomenls 

R0 A: 21 ~; Volume _< 31 
B: Hydrophoblc l ly  : No RO:pos l t lve  
C: dlst (HB donor atom, CH) = 1,2,3 I:HONHCO (16,17,18) 
D: dlst ( l ib 8cceptor atom, CH) = 2,3 2: PO(OH)2NH (27,28) 
E: dlst (NjCH) : 1 or 2 bonds 3:CHONOH : 
F: dlst (O [atomtype oh],CH) : 3 bonds [excepUon to F: 

dlst (O,CH) : 2] (21 )  G: dlst (O [atomtype O'],CH) = 2 or 3 bonds 
H: dlst (furthest heavy atom,CH) -- $ negative 

1: HOCO : ~ (H) end -~ (F} (20 )  
R1 A: Hydrophoblci ty : Yes 2: CH3CONOH : ~ (A) and -~ (B) (22) 

B: 34 < Volume ~; 60 
R1 : posit ive 

R2 A: Hydrophoblclty = Yes 1:CH2CH(CH3)2 (18, 21, 28) 
B: 13.6 < Volume 2: CH2Benz (16, 17, 27) 

R3 * negative 
1: H : ~ (A) and ~ (B) (19)  

H2 : posit ive 
1:CH3 (16, 17, 18, 27) 
2: CH2Benz (2 S) 

Lowest activity of s covered compound : 3.8 
Highest activity of an uncovered compound :420 

Figure 5. TIlE FINAL MODEL. Ra. Rt AND R2 ARE THE BINDING LOCATIONS DISCOVERED BY FLEMING 
DESCRIBED IN TERMS OF PROPERTIES (ON THE LEFT) AND FRAGMENT INSTANCES (ON THE 
RIGtFI'). 

The same figure illustrates their characterization where, for each R~ , a number  of  properties 

labelled with a capital letter and a number  of  positive and negative instances of  fragments that  the 

model is covering are associated to the fragment. The model covers six among the most active 

compounds of  Figure 1, namely no. 16, 17, 18, 21, 27 and 28. Wherever the inductive process did not  

lead to the definition of  a generalized fragment, such a fragment is reported in the model as it is; in our 

case the CH, N i l  and C = O  groups. Thus, in FLEMING' s  model, the fragment P~ is defined as 

hydrophylic, hydrogen bond donor and acceptor while the fragment R~ is described as hydrophobic 

with volume values between 34 and 60. Both fragments R0 and R~ are supposed to be essential for 

activity. Fragment R2 is also hydrophobie while fragment R~ does not  seem to be very relevant for any 

change of  activity of the compounds considered. 
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These results obtained via the machine learning techinques previously described are fully in 

accord with experimental observations made on the crystal structure of  thermolysin eomplexed with an 

hydroxamic acid inhibitor (see Holmes & Matthews, 1981). In this complex (see Figure 6), the group 

HONIICO (corresponding to the Ro) is making hydrogen bond interactions with the active site Zn and 

with residues ALA 13 and GLU 143. Furthermore, the benzyl group in the malonyl moiety 

corresponding to Rt is found in a hydrophobic pocket of the active site while the following ALA side 

chain corresponding to R2 is found in proximity of  LEU 202 and PHE 130 of  the enzyme. 

Ash 112 

/ 
/z;;,,, T' / / - -  ~ N " - - " c " 3  . - "~,~ , ~ \  
/ ~ - ~  /._ . . . -"  : -y  " ,  

/ /  x ' - - -x / -~°  . . . . . . . .  N "/^rg 20~ 

c...--/~.o .... ,. ~:~o.... 
O_ 0 ° ° ° "  " ~ ° ' ' "  ~a  

,-; 
Glu 143 

Figure 6. A SCIIEMATIC VIEW OF THE ACTIVE SITE. TIlE ACI'IVE SITE OF THERMOLYSIN WITH A 
FRAGMENT OF A 14YDROXAMIC ACID DERIVATIVE INIlIBITOR. 

ConcluMons 

We have presented a system named FLEMING that discovers explanatory theories from a set of  

experimental observations concerning drug compounds. Dynamic bias management has been presented 

as a critical mechanism to deal with complex structured objects such as molecules. In this case, the use 

of  low-level descriptors appears inadequate to capture the target concept while the adoption of  

high-level predicates introduces a too strong bias on the results of  the analysis. Because of  the close 

integration between bias management system and learning system, we could not easily apply standard 

induction algorithms, notably the AQ family (Michalski, 1983). FLEMING has been successfully 

applied to the domain of  the inhibitors of the thermolysin enzyme, where it automatically generated an 

explanatory model containing structural relations between generalized fragments described in terms of  

binding properties. In the next future we plan to test the FLEMING system on a number of  problems 

currently under study in pharmaceutical research laboratories. 
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