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A b s t r a c t  

Experimentation has an important role in determining the capacities and restrictions of machine 

learning (ML) systems. In this paper we present the definition of some sensitivity and evaluation 

criteria which can be used to perform an evaluation of learning systems. Moreover, in order to 

overcome some of the limitations of real data sets, we introduce the specification of a parametrable 

generator of artificial learning sets which allows us to make easily complete experiments to discover 

some empirical rules of behavior for ML algorithms. Finally, we give some results obtained with 

different algorithms, showing that artificial data bases approach is an interesting direction to explore. 

Keywords : Evaluation of Machine Learning Algorithms, Sensitivity Criteria, Evaluation Criteria, 
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1 I n t r o d u c t i o n  

In Machine Learning and more generally in Artificial Intelligence domains, it is very difficult to 

completely evaluate a system through previous theoretical reasoning (Kibler, Langley 1988 ; Rendell 

1989 ; Bisson, Laublet 1989&1990). This drawback comes mainly from the large utilization of 

heuristics in AI, the behavior of which is difficult to predict. Thus, information such as the actual 

complexity of an algorithm, is rarely provided by the authors and when it is, it often concerns the best 

and worst cases only. Nevertheless, the knowledge of its complexity is fundamental for those who 

1 This work is partially supported by CEC through the ESPRIT-2 contract MLT 2154 
("Machine Learning Toolbox") and also by MRT through PRC-IA. 
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want to use a system. On the other hand, some concepts such as the quality of learning, are subjective 

and very hard to define. In this context, the main goal of  experimentation is to point out some 

relations between behaviors of learning systems and the conditions under which they occur. 

In order to experiment we must set the characteristics of  the output data (evaluation criteria) that 

we would like to measure and what are the relevant variables for these measures (sensitivity criteria). 

In this way, we determine a measure space that is characterized by the set of  pairs [criterion (i), 

variable (j)]. However, for a given learning system, only a subset of these measures are feasible : for 

instance, the tests evaluating the bias influence or the degree of  incrementality (Martin 1989), are 

feasible only if the system has these features. Moreover, according to the learning techniques and the 

goals of  the system (diagnostic, problem solving .... ), the criteria change : in this way, for planning 

problems, the problem solving time is an important criterion that allows one to quantify the efficiency 

of the learned knowledge, however, this criterion is not very significant for classification problems. 

In practice, it is useless to work out all the theoretically feasible tests, because this would cost 

too much time or would not be relevant when considering the purpose of the evaluation. So, the 

experimenter must decide the most useful tests in respect to this evaluation purpose. This paper is 

organized in three parts. In the first one, we detail how to execute an experimental study of 

learning systems by relating some of the sensitivity and evaluation criteria. In the second one, in order 

to establish correlations between the two types of criteria and to bring some answers to the limitations 

of  real data sets, an artificial data base generator is proposed and its specifications are given. Finally, 

we show some results obtained with five different systems belonging to the supervised learning 

approach : CN2 (Boswell 1990 a), NewID (Boswell 1990 b), NewBOOLE (Bonelli 1990), LVQ 

(Mc-Dermott 1989) and MLP (Rumelhart 1986). We want to emphasize that the current work was 

partially done as part of  the EEC ESPRIT contract "Machine Learning Toolbox". It has been 

integrated in the work package 7, whose goal is to develop an evaluation methodology of ML 

algorithms. The reader could find more details in the Deliverable 7.2 (MLT 1990) of this project. 

2 Sensitivity criteria 

The most important problem in inducing suitable knowledge is the problem of defining a 

"good" set of  attributes and a "good" set of examples to represent a problem to be learned. The ML 

algorithms are sensitive to various characteristics of the information provided as input and they do not 

have the same behavior ; for example, some are more or less noise resistant, or more or less sensitive 

to the input order of  the examples. The description and the choice of examples for a domain problem 

is of  very great importance for the user of  a ML algorithm. The sensitivity criteria correspond to the 

parameters on which depend the quality of the learned knowledge. 
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Information quantity : One of the main experimentations is concerned with the study of 

observable relations between the performance measures and the information quantity. On the one 

hand, they are relatively easy to achieve, if we limit ourselves to syntactic criteria. On the other hand, 

they are particularly informative about the main properties and limitations of the learning system. The 

size o f  the training set can be defined by several parameters such as the number of examples or 

descriptors, the number of concepts to learn or the quantity of available background knowledge ... 

Problem complexity : In addition to the quantitative variables just described, we would like to 

define more qualitative criteria such as the difficulty of the problem that the learned knowledge must 

help to solve. These criteria are more domain dependent. For instance, in the case of  concept 

recognition, the complexity can be measured by the number of conjunctions and disjunctions in the 

recognition functions (Rendell 1989). The presence of noise is another complexifying factor. 

Moreover, if the studied system types the descriptors or the data, it will be relevant to evaluate the 

learning results according to the types manipulated in the training data (nominal, ordered, ...). 

Relevance of descriptors : In complex domains, the determination of  the relevant descriptors is 

a very difficult problem (Cannat 1988). Thereby, the expression of  knowledge can not be 

immediately suitable and there are often a lot of  irrelevant descriptors in the initial training set. The 

system's capacity to learn in such an environment must be evaluated. We distinguish this variable 

from those about noise : here, all the needed information to learn are present and undamaged. 

Information order : The use of pruning heuristics can modify the result of learning according to 

the input order of information within the training set. The study of its influence provides some 

information about the learning stability. These tests are different from those about the incrementality : 

the measure of stability is defined as soon as a learning step uses several set of data simultaneously. A 

low stability is awkward : the reliability of  learned knowledge becomes questionable. Moreover in 

this case, it is probable that the learning process is very noise sensitive because a lack of  stability 

reveals that the system does not use the data globally but incrementally when it builds its hypothesis. 

Noise influence : These tests aim at measuring the noise sensitivity of the studied learning 

system. Indeed, in the real world domains, the noise is very difficult to erase because it is often linked 

to the acquisition process : for instance, the uncertainty on the measure instruments. There can be 

multiple sources for noisy data in a learning set (Manago, Kodratoff 1987) such as the uncertainty or 

imprecision of the valuation of the descriptors or a miss-classification of  some examples. 

lncrementality degree : These tests are very close to those effected to evaluate the stability of 

learning ; however, the conclusions are different. With an incremental system, we can accept that the 
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order of information in the training set has some consequences for the quality of  learning. During 

these measures it is also interesting to quantify the problem of forgetting. With this aim in view, we 

shall verify if  the problems solved by the learned knowledge at time (t) are always solved at (t+l). 

Learning bias and heuristics : When the system provides the possibility of  changing the 

learning strategies (heuristics or bias), the experimenter must test their influences on the results of the 

learning process. During these measures, some empirical relations between the domain characteristics 

and the parameter values could be profitably established. 

3 Evaluation criteria 

Evaluation criteria were elaborated in order to exploit the notion of having a "good" result for a 

ML algorithm. In fact, "good" means that a result succeeds in a selection of tests of performance. 

Generally, the criteria which are most frequently used for evaluating ML algorithms involve the study 

of learning efficiency, since the main interest of  a learning system is to build up a knowledge base 

able to effect accurate prediction. Nevertheless, the other criteria are also important : for instance, the 

understandability to a human user of  "what is learned" is often crucial in order to improve the 

learning set ; similarly, the constraints of time can restrain the application domains. We can classify 

the learning evaluation criteria into five major categories which are : 

Cost of the learning set : Learning can be an expensive process, particularly to constitute the 

training set. Therefore, it is very important to evaluate the cost of  this preliminary phase. 

Independently of  specific domain costs (medical tests for instance), this cost is obtained by measuring 

the amount of  data required for learning (number of examples . . . .  ), as well as by evaluating the 

required quality of  these data (no noise, domain theory needed, ...). In the case of learning apprentice 

systems, the cost also takes into account the number and the relevance of questions asked. 

Time and memory constraints : The measures of learning rapidity allow us to evaluate 

empirically the actual complexity of algorithms as a function of different parameters : the amount of 

data, the used heuristics . . . .  In practice, with this information, users will avoid making use of 

systems that are O(number of  examples 3) on very large training sets. In the case of  systems that 

learn by successive refinements, connectionist systems for example, this criterion and the previous 

will also depend on the time and the number of  observations required to obtain a specified accuracy 

level of the learned knowledge. In EBL we will measure the time to generalize a specific problem's 

solution (Shavlik 1989). The memory measure is less important. Nevertheless, the quantity of 

memory used during the learning phase indicates the usable computers for these learning techniques. 

Moreover, this criterion is related to the efficiency of the learning. 
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Effectiveness of the learned knowledge : When the purpose of learning is to obtain knowledge 

usable for classification or diagnosis, the main feasible measure concerns the predictive accuracy. 

Most empirical research on induction has focused on improving this criterion that measures the 

capability of the system to match a new situation with the learned expertise (Quinlan 1986). For 

planning problems, the quality of a solution will be evaluated by the number and the cost of 

operations used in the solutions of the problems. In the case of EBL, as the quality of  learning is very 

time gain dependant, we have to take into account the memory used and the processing time. As a 

matter of fact, the learned knowledge can let the system resolve some problems that were too 

"expensive" to solve before learning. During the use of the test set, the predictive systems can provide 

three kinds of  answers : right prediction, wrong prediction or no answer. Generally, the authors are 

just interested by the correct predictions, nevertheless, the study of the two other kinds of  answers is 

also relevant and they must not be mixed. For example, in the ease of  wrong predictions, it would be 

useful for the experimenter to know the "distance" existing between the different concepts to identify 

in order to evaluate the "severity" of  an erroneous answer. 

Efficiency of the learned knowledge : The time required to solve a problem, corresponds to the 

indexation quality of  learned knowledge (rules ...). In others terms, it reflects the structure of  the 

knowledge base. Most analytical work has focused on efficiency. In fact, for planning systems and 

especially for EBL, the time is the most important measure because the purpose of  learning is to 

accelerate problem solving. Another measure will be the number of  searched nodes (Minton 1985). In 

decision tree systems, the indexing quality can be roughly linked to some syntactical criteria such as 

the height, the breadth and the number of  nodes in the produced trees. 

Intelligibility of results : One of the main advantages of symbolic learning systems consists in 

that the learnt knowledge is in a readable form. This property helps the system users to understand the 

results, and also to find and to rapidly correct mistaken or missing information in the training set. The 

intelligibility of  the learned knowledge may be appreciated syntactically and semantically. The number 

of  disjunctions and conjunctions may be a measure of the intelligibility. For decision trees, the smaller 

and more well balanced the tree produced, the more it will be readable and understandable. Another 

measure, attempting to consider the semantics of  the results, is based on the type of  analysis a human 

expert does when he looks at the induced knowledge base. The more an expert can identify 

prototypical situations, the more the knowledge is understandable. 
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4 T h e  a r t i f i c i a l  d a t a  b a s e  g e n e r a t o r  

4.1 Introduction 

The problem to solve for the experimenter is to choose the data sets that wilt be used for the 

experiments. A great number of different data sets are currently available in the published literature 

such as : soja diseases, iris features, thyroid cancer symptoms, lymphography ... These bases are 

useful for the designers to compare homogeneously the learning systems, however, this kind of 

approach presents four drawbacks that we are going to explain below. 

Availability of the data base for experiment : In order to experiment, we must find data sets 

simultaneously available, usable by the system and, above all, carefully acquired. They must, for 

instance, contain enough examples or a domain theory. However, at the beginning of an experimental 

phase, it can be difficult to know exactly the type and amount of information needed. Moreover, in 

order to be significant, an experimentation must use several data sets taken from different domains. 

Translation of the data into the studied system representation • Generally, the syntax of the 

found data is different from that used by the studied system, so a translation phase is needed. 

However, there are two problems : firstly, the translation is time consuming ; secondly when the 

translation is done by a non-expert of the domain, some information of  the initial base can be 

damaged because the syntactic level and the semantic one are often linked. 

Difficulties in the modification of the data in the course of experimentation : Even if an expert is 

available, it is not so easy to modify real data sets. Therefore, during the experimentation, it is not 

always possible to study a specific aspect of  the behavior of  the system unless a more adequate 

data set is available. On the other hand, the characteristics of  the examples are not often well 

known. For instance, the noise quantity and its localization are generally ignored. 

Difficulties in the correct evaluation of the learned knowledge : Usually, for evaluating the 

results of learning, as in data analysis, the researcher splits the experiment set in two parts : a training 

set for learning and a test set. However, by using the data sets from real domains, the evaluation can 

lack in precision without an expert (Ganaseia, Helft 1988). For instance, in medical domain, an 

expert system under-estimating the gravity of a disease in 20% of cases, is far more dangerous that 

another one over-estimating the disease in the same proportion ! 

To take into account these problems that restrict strongly the benefits of  real data sets, we 

propose the use of artificial data sets. This approach is not completely new (Quinlan 1988 ; Martin 

1989), but its use was limited mainly to randomly introducing noise into data. Our approach is more 
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general since we would like to simulate the many different learning domains in which a ML algorithm 

might be applied, by using a generator (Bisson, Laublet 1989&1990) that the user could tune with 

parameters. This method allows to bring some answers to the limitations of real data sets. Firstly, the 

availability of data is no longer a problem : the data sets are generated in case of need and these data 

sets are homogeneous and give reliable criteria of comparison. Secondly, the translation stage 

becomes very simplified : One translator is enough to transform the generator outputs into inputs of 

the learning system, instead of a specific translator for each real data set. Finally, it is easier to answer 

the question : "what happens if the application domain was different ?", by changing the values of 

parameters and therefore the modeling of the domain performed by the generator. Moreover in this 

approach, the interpretation of the results can be easily done by the experimenter himself. 

However, two questions become apparent. The first one concerns the validity of the evaluations 

obtained by this bias. The answer depends completely on the degree of realism of artificial data sets in 
comparison with the real data sets. In other terms, it depends on the fitness of the model of 

application domain. The second question obviously relates to the generator feasibility. 

4.2 Generation algorithm 

In this study, we have limited ourselves to the supervised learning approach. Algorithms within 

this learning paradigm cover a large number of current realizations. Broadly speaking, in this field, 

the learning problem is always the same : from a set of classified examples, the system must learn 

characteristic or discriminant functions that will be used to associate a class (or expertise), with each 

situation (or context) of the domain. All the recognition functions that were acquired in this way are 

elements of a knowledge base usable as a part of an expert-system. For generating the artificial data 

sets, the starting idea is that this inductive process could be inverted : 

Studied system Genera tor  

examples 4 examples 

induct ion ~l I gene ra t ion  

recognition functions of the concepts 

In the first stage, recognition functions of concepts are fixed by the experimenter himself or 

randomly produced by the generator whose parameters are tuned by the user. Then, this tool 

generates a set of examples from these recognition functions. The control parameters of the generator 

allow us to simulate an application domain and correspond logically to the previously seen sensitivity 
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parameters such as : the number and types of the descriptors, the number of  conjunctions and 

disjunctions in the class descriptions, the noise intensity and its localization .... 

Currently, we have implemented two versions of the generator, the first one is working in 

attribute value logic and the second one is a predicate logic version. For both systems, the generation 

process is divided into four steps. We are going to detail these steps : 

1) Creation of  a vocabulary : This stage consists of creating the descriptors used to describe the 

learning set (concepts, examples and domain theory) and for each of  them to associate a type and a set 

of  possible values. This process can be performed automatically by a random generator or manually ; 

when it is manual, the users chooses the name, the type and the domain of each descriptor. 

Ex : descriptors randomly produced by the generator : 

attl, att2, att3 .... (attribute value logic) 

P(?xl ,  ?x2), Q(?xl ) . . . .  (predicate logic) 

descriptors f ixed by the experimenter : 

height, hair ... .  

height (?xl, ?x2), hair (?xl, ?x2) .... 

2) Creation of  the recognition functions : When the descriptors are generated, with respect to 

the given parameters, the generator builds up the logical functions which characterize the set of  

generated concepts. The logical operators used are AND (A) and OR (V) and the recognition 

functions RFi are written under normal disjunctive form. In the current release, for a given attribute 

(or argument of predicate) the values are selected randomly following a uniform distribution law. 

Rei = V s = l . m  

with CTj = A k =  l..Nc (attk selk valk) (attribute value logic) 

or CTj = A k =  l. .Nc [not] Pk (V l,  v2 ..... Vn). (predicate logic) 

vi : variable or constant, Nc = number of  conjunctions, Nd = number of  disjunctions 

However, the main problem to solve during this stage, is that the generator must assume that 

two different functions RFI=VjCTj  and RF2=VkCTk could not be verified at the same time by 

conf'mning that : Vj, Vk, not (CTj ~ CTk) A not (C'I~ ~ CTj). Like in the previous stage, the 

experimenter can define himself his own recognition functions. The algorithm used for creating 

automatically a recognition function is divided into the following steps. 
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new conjunctive term created CTj 

3k, (CTk ~ CTj) V (CTj ~ CTk) 

CTj is rejected CTj is retained 
j:=j+ l 

j < = N d  

Create a new term CTj Stop the process 

Examples : RFi : (attl = vail1 A att4 = val42) V (art5 > va152) (attribute value logic) 

RFj : height (?xl, tall) A eyes (?xl, brown) (predicate logic) 

3) Generation of  the examrJles : For constructing an example, firstly, the generator randomly 

chooses one concept Ci, then it selects one conjunctive term CT in the recognition function of Ci. The 

example is built up around CT by adding some new terms to the conjunction. As during the 

elaboration of the recognition function, the system must take care that the new example belongs to one 

concept only ; the criteria to verify are the same as previous. 

Examples (the recognition functions RFi and RFj are the same as previously) : 

ei ~RFi : < class = Ci> 

attl = val11 A att2 = val22 A att3 = val31 A att4 = val42 A att5 = vals1 

ej ~RFj : <class = Cj> 

height (Paul, tall) A eyes (Paul, brown) A hair (John, dark) 

4) Generation of  a domain theory : Even if the construction of a domain theory is not needed in 

all cases, it will be interesting to perform for some other systems such as CHARADE (Ganascia 

1987) or KBG (Bisson 1991). In the current release, the generator is able to build up a domain 

theory in the form of a set of rules. The method used is very simple : we assume that the previously 

produced examples result from the virtual application (by forward chaining) of a domain theory on the 

initial examples ; this corresponds to the following scheme : 
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Initial examples Domain the o r y 

Forward e ~  

Generated examples 

Then the idea is to "reverse" this process ; the method for creating one rule is as follows. 

Firstly, the generator chooses randomly a term T appearing in one or several examples ; this one will 

constitute the conclusion of the rule. Secondly, the system randomly builds the premises T1, T2 .... 

of  this rule, taking notice of the two following constraints: 

1) The premises of the rule do not verify an existing recognition function. 

2) The premises of the rule do not subsume and are not subsumed by the premises of the 

previously generated rules. 

Next, when the rule is created, the examples containing the term T are rewritten by applying the 

rule in backward chaining. Finally, these rewritten examples and the rules constitute the initial set of 

examples and the domain theory. 

Ex : Example ei : attl = vall l A  art2 = val22 A att3 = val31 A att4 = va142 A att5 = val51 

Rule k : att7 <= val74 A att6 = val62 --+ att2 = va122 

The rewritten example ei : 

attl = va111 A att7 = va172 A att6 = va162 A att3 = va131 A att4 = va142 A att5 = val51 

Example ej : height (Paul tall) A eyes (Paul brown) A hair (Paul dark) 

Rule I : eyes (?xl, brown) --> hair (?xl, dark) 

The rewritten example ej : 

height (Paul, tall) A eyes (Paul, brown) 

4.3 Parameters of the generator 

For this first version of the generator, we have chosen a set of parameters mainly based on 

syntactic criteria described during the presentation of  the sensibility criteria in a previous section. 

However, in the future, it would be possible to increase their number and to introduce some more 

semantic criteria. The parameters of the attribute value logic version are the following : 

Number and type o f  descriptors : the generator provides five standard types to the users which 

are : nominal, ordered, taxonomy, integer and real. Here are the description, for the attribute value 
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generator, of the semantics of  each one and the list of  authorized selectors. The predicative logic 

version works similarly, indeed, each argument of each predicate is typed : 

Nominal : set of different values 

Ordered : set of  ordered values 

Taxonomy : tree of values 

Integer : interval of number 

Real • interval of number 

: = ,  < >  

• = < > ,  < ,  <----, > ,  > =  

: ----, < > ,  < ,  < = ,  > ,  >---- 

• = ,  < > ,  < ,  <=~ > ,  > =  

So, the user can specify the employed descriptors as following : 

attl nominal (red blue green) 

att2 ordered (small medium large) 

att3 taxonomy (shape (rectangle (square)) circle) 

att4 integer (0100) 

Number of classes : The user gives the number of  possible classes for the examples ; for each 

class, the generator creates a symbol and its recognition function. In the current version of  the 

generator, it is also possible to choose "by hand" the recognition function : in that case the system will 

just check there are no subsuming links between the different recognition functions. 

Number of conjunctions and disjunctions : these two parameters guide the generator to elaborate 

the recognition function of the different concepts• Both numbers are described as an interval setting 

the lowest and highest possible values. So, the user can say for example that the conjunctive (or 

disjunctive) parts of the recognition functions must have between two and four terms. 

Constraints on the variables : for the predicative logic version of the generator, there are two 

additional parameters, which control the generation of the variables into the predicates during the 

elaboration of the recognition functions (R.F). The first parameter gives the repartition percentage 

between the variables and the constants in the RF. The second parameter controls the number of 

occurrencse of each variable in the RF. It corresponds to the probability of creation of new variables. 

Number of examples : the number of  classified examples that the generator must build up. 

Generally, the set of examples is split in two parts, corresponding to the training set and the test set. 

Size of the examples : this parameter corresponds to the number of descriptors in the examples. 

This parameter is directly linked to the sensitivity criterion concerning the irrelevant information : 

indeed, when you increase the number of terms, you add some irrelevant parameters too. 
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Noise intensity : the user can introduce some noise into the examples. For instance, if the user 

sets this parameter to the value 10, he assumes that 10% of the generated examples are noisy. Here, 

the word "noise" has a very precise meaning : we say that an example is noisy when it can 

simultaneously belong to two different concepts. Several other types of noise remain to be 

implemented such as the attribute errors and the value errors. 

Unknown and Don't care values : the generator handles the "unknown" and "dont'care" values. 

They correspond to an existential (respectively universal) quantification of the concerned attribute 

(Boswell 1990 a&b)). The user can choose the name of the attributes which have these kind of values 

and also the percentage of unknown and dont'care values for each one. 

Number of rules and size of premises : the user fixes the number of rules that he wants in the 

domain theory and the size of the premises in the rules (number of terms). 

Learning bias 

Parameters : 

number of 
examples, sizc 
of the cxamplcs0 
numb~ a n d ~  
of dcEcriptors .... 

Artificial data Machine learning 
base generator rest set 

Domain theory 

f Evaluation 
[ o f  the induced 
~ knowledgc 

Working of the generator with a NIL system 

5 Application to some learning algorithms 

The goal of experimenting learning systems is to vary sensitivity parameters in order to 

determine the algorithm's behavior over a range of situations. We have tested our generator with five 

learning systems. All of them use the attribute value representation : 

Algorithms Authors 
CN2 Boswell 1990 a 

NewlD Boswell 1990 b 
NewBOOLE Bonelli 1990 

LVQ Mc Dermott 89 
MLP Rumelhart 1986 

Learning method 
Rule induction program based on the AQ algorithm 
ID3 program which can generate a pruning tree 
Genetic based learnin~ system 
Classifier based on the Euclidian distance 
Multi layer perceptron using back propagation 
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For all the experimentations, we have f'med the different parameters of  the generator in order to 

compare the five algorithms to the following values : 

- Number of  attributes 

- Number of  classes 

- Number of  conjunctions 

- Number of disjunctions 

- Size of the examples 

- Number of examples 

- No domain theory 

: 10 nominal attributes 

:3  

: [2 .. 4] 

:[1 ..2] 
:10  

: 200 (100 for learning and 100 for testing) 

Number of possible values (which the distribution is uniform) for each attribute: 

The recognition functions randomly set for each concept (class) are : 

Class C1 : att2 = va122 A att6 = va162 

Class C2 : art1 = vall  l A att4 = va l41A  att5 = va152 

Class C3 : (attlO = vall02 A atr4 = val43 A att6 = val63) V (an9 = val92) 

The measures that are consigned in the following table are the following : 

NR = number of induced rules %RP 

N = number of  nodes %WP 

L = number of  leaves %NP 

H = mean of  the way heights 

= % Right Prediction 

= % Wrong Prediction 

= % No Prediction 

5.1 Learned knowledge as a function of the size of the learning set 

These experiments aim at defining an empirical relation between the size of the learning set (for 

a given set of recognition functions) and the effectiveness and the size of  the learned knowledge. Two 

tests have been done, the first one is performed with noise free examples, and the second one in an 

environment in which 10% of  the attributes coding the class of the examples are noisy. 
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1) Results with 0% noise : 

r 

25 learning examples 
~12 NewlD NBOOL LVQ MLP 

NR 6 
N 17 
L 13 
H 2.58 
%RP 100 74 97 72 71 
%WP 0 13 3 28 29 
%NP 0 13 0 0 0 

50 learning examples 
CN2 NewID NBOOL LVQ MLP 

33 
27 

3.22 
LO0 94 100 76 86 
,0 0 0 24 14 
0 6 0 0 0 

75 learning examples 
~N2 NewlD NBOOL LVQ MLF 

38 
28 

3.32 
t00 95 100 78 93 
0 0 0 22 7 
0 5 0 0 0 

100 learning examples 
2N2 NewID NBOOL LVQ MI./ 

44 
32 
3.32 

100 95 100 78 97 
0 0 0 22 3 
0 5 0 0 0 

The obtained results seem reasonable. They show that the correct prediction depends logically 

on the size of  the learning set. We can remark that CN2 and NewBOOLE obtain comparable good 

results and that the results obtained by the back propagation based neural net MLP are better than 

those obtained by the classifier LVQ. 

2) Results with 10% noise : 

NR 

25 learning examples 
CN2 NewID NBOOL LVQ MI_$ 

50 learning examples 
2"N2 NewlD NBOOL LVQ MLP 

75 learning examples 
L-'N2 NewlD NBOOL LVQ MLP 

8 9 11 
IN 24 
IL 17 
H 2.75 

47 
36 
3.31 

~2 66 55 47 69 
[8 21 45 53 31 
0 13 0 0 0 

RP 21 20 50 44 67 
%WP 79 58 50 56 33 
goNP 0 22 0 0 0 

64 
48 

3.38 
~1 69 83 47 69 
9 16 17 53 31 
0 15 0 0 0 

100 learning examples 
CN2 NewID NBOOL LVQ MI./ 
12 

62 
47 
3.86 

95 82 88 59 78 
5 13 12 41 22 
0 5 0 0 0 

This table displays that learning in a noisy environment (error on the class information) makes 

the correct prediction of the different systems worse. In such an environment, CN2 and NewBOOLE 

also obtain the best results and we confirm that the correct prediction of  MLP (based on back 

propagation) is better than LVQ one. In other respects, in the case of NewlD we can improve the 

prediction capacity of the system by the use of a pruning algorithm. We obtain these results : 

1) Without pruning = an average of 57% of correct prediction. 

2) With pruning = an average of 62.7% of correct prediction. 

However, in a noisy environment, the size of the learned knowledge (number of rules in the 

case of CN2 and tree size for NewID) increases. Nevertheless, the use of  the pruning algorithm of 

NewID reduces considerably the size of this tree without damaging the correct prediction criterion. 
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5.2 Learning time as a function of the size of the learning set 

W e  have  also studied, the learning t ime of  CN2 and N e w I D  as a function of  the size of  the 

learning set (the three other  systems are too slow to be compared to the two previous ones and the 

stopping criteria are too different). The obtained results are the fol lowing : 

t ~ . 

6-  

4 -  

2- 

tlme-CN2(s) 

0 ! | | 

0 100 200 30 

learning.set 

We remark that NewID takes less time to learn then CN2. The curve shows also that both are 

usable with large learning sets. These results confirm that a induction algorithm based on producing 

rules is inherently more time consuming than a tree-induction algorithm (Elomaa 1989). 

5.3 Effect of the descriptor type on learning process 

CN2 and NewID both are able to treat real attributes, so we will now examine their effect on the 

learning process by varying the number  of  real descriptors f rom 2 to 8 (let us recall  that the total 

number of  descriptors is 10). We obtain the following results : 

2 real descriptors 
CN2 NewID 

H = mean of the way 
heights 
% right prediction 
% wronlg prediction 
% no prediction 

4 real descriptors 6 real descriptors 
CN2 NewID CN2 NewlD CN2 

numberof rules 5 7 7 8 
N =-number of nodes 17 36 44 80 
L -- number of leaves 13 25 30 60 

2.33 2.92 3.18 3.34 

96 97 88 79 87 68 73 64 
4 3 12 17 13 32 27 25 
0 0 0 4 0 0 0 11 

8 real descriptors 
NewID 

It appears that the two learning systems are sensitive to the proport ion of  numeric attributes 

present in the learning set. The number of  correct predictions of  the two algorithms decreases and the 
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size of  the induced knowledge (number of rules and number of  nodes) increases when the number of 

numeric descriptorsincreases. It is interesting to note that such an experiment would have been very 

diffieuk to make using real data sets. 

5 .4  E f f e c t  o f  U n k n o w n  a n d  D o n ' t  c a r e  v a l u e s  o n  l e a r n i n g  p r o c e s s  

CN2 and NewID provide the possibility of treating Unknown values which correspond to an 

existantially quantified variable, or Don't care values which correspond to a universally quantified 

variable. Then, we study their effect on the learning process by fixing the proportion of  Unknown 

values (respectively Don't care values) to 25 %. After several runs, we obtain the following results : 

'73111 | CN2 

The corrupted descriptor with don't care 
value do not belong to the recognition function. 

The corrupted descriptor with unknown 
value do not belong to the recognition function. 

The corrupted descriptor with don't care 
value belongs to the recognition function. 
The corrupted descriptor with unknown 

value belongs to the recognition function. 

NewlD 
Without Unknown or Don't care values 98 83 

92.25 76.5 

96 81 

85 62.5 

94 74.25 

First, we remark that the effect of Don't care and Unknown values is logically more marked in 

the case of  a corrupted descriptor belonging to the recognition function. Secondly, we notice the 

difference between the results obtained with Don't care values and those obtained with Unknown 

values. The explanation is that, in the case of an Unknown value, the system splits the concerned 

example into a set of  examples, with weights distributed according to the value distribution at that 

node ; in the case of a Don't care value, it replaces the concerned example by as many examples as 

there are possible values, but the weight of each new example is the same as that of  the original (the 

concerned descriptor is transformed into an irrelevant one). So, in this way, we can consider that by 

introducing Don't care and Unknown values in the learning base, we have also introduced noise in 

this learning set, but the effect is less marked in the case of  Unknown values. 

5 .5  C o m p a r i s o n  w i t h  r e a l  w o r l d  d a t a  b a s e s  

Finally, in order to show that our approach is realistic, we have compared the results obtained 

with two medical data sets (lymphography and breast cancer) to the results obtained with two artificial 

data sets having the same syntactic characteristics than the real ones : 
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1) Lymphography : 18 descriptors (all of them are nominal), 4 classes and 109 examples. 

Time (s) 
NR 

Medical data set 
CN2 NewlD NBOOLE LVQ MLP 

17 2 

Artificial data set 
CN2 NewlD NBOOLE LVQ MLP 

15 2 
14 17 

numberofpremises 3 3 
N 78 72 
L 61 53 
H 4.27 3.54 

%RP 87 67 82 83 70 87 57 80 47 42 
%WP 13 26 18 17 30 13 28 20 53 58 
%NP 7 15 

The main difference between the two learning sets is that the distribution of the examples is 

different. This distribution is better in the artificial data set : both classes 1 (normal findings) and 4 

(malignant lymphoma) in the medical data set contain respectively only one pattern.This feature has an 

effect on the results obtained with the two neural nets MLP and LVQ which are not significant. For 

the other systems it is interesting to notice that both the structure of the learned knowledge (size of 

tree, number of rules) and the experimentation results are very similar between these two bases. 

2) Breast cancer : 10 descriptors, 2 classes and 269 examples. 

Time (s) 
NR 

Medical data set 
L"N2 NewlD NBOOLE LVQ MLP 
19 3 

Artificial data set 
CN2 NewlD NBOOLE LVQ MLP 
19 3 

32 31 
aumberofpremises 5 4 

N 177 152 
L 132 108 
H 6.03 4.08 

%RP !72.2 69.4 77 65.12 75 
27.8 25.1 23 34.88 25 

5.5 
%WP 
%NP 

75.5 70 82.5 75.5 63.9.' 
24.5 22.5 17.5 24.5 36.05 

7.5 

The distribution of the examples in this second medical base is more homogeneous. This is why 

we notice that the obtained results (both structure of the induced knowledge and predictive accuracy) 

are similar between the real world data set and the artificial one. 

6 Conclusion 

The aim of this paper has been to present an approach based on the use of a parametrable 

generator of learning sets to discover the effect of the learning environment on system performance. 

This generator resolves also some limitations of real data sets for such experiments and it represents a 
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useful tool for exploring capacities of ML algorithms using different learning methods (symbolic 

algorithms, genetic based algorithms and neural networks in this first contribution). 

In our study of the five previous learning algorithms, we have verified with our approach some 

known results like the effect of noise on concept learning. We have also pointed out some new more 

specific informations. For example, CN2 and NewlD are sensitive to the proportion of numeric 

attributes and that CN2 is more resistant to the unknown values than to the don't care ones. It is 

important to notice that the discovery of these results by using real data sets would have been more 

dif f icult .  Indeed, the types of the descriptors are fixed in a real data base and even if an expert is 

available, it is not so easy to modify them. So, the experimenter can not study the effect of the 

descriptor type on the behavior of the system unless more adequate data sets are available. 

At present time, we have restricted our study to inductive approaches such as classification and 

diagnosis. However, this generation method of learning sets is probably transposable to other 

approaches of machine learning, like learning by discovery for instance. We think that it will be 

desirable that a future version of our generator builds up "maquettes" of real domains in order to 

test ML systems with more parameters than in the present version. The next step of our work will 

consist in introducing some semantic parameters, such as vocabulary constraints to inhibit or 

authorize the creation of some conjunctive terms in the recognition functions. These semantic 

parameters will allow us to simulate real domains with more accuracy. 
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