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Abstract 

Many real world situations are currently being modelled as a set of cooperating intelligent agents. 

Trying to introduce learning into such a system requires dealing with the existence of multiple 

autonomous agents. The inherent distribution means that effective learning has to be based on a 

cooperative framework in which each agent contributes its part. In this paper we look at the issues in 

multi-agent machine learning and examine what effect the presence of multiple agents has on current 

learning methodologies. We describe a model for cooperative learning based on structured dialogue 
between the agents. MALE is an implementation of this model and we describe some results from it. 

Keywords Multiple Agents, Distributed Learning, Support Combination. 

1 Introduction 

Current Machine Learning (ML) research deals primarily with one single learning agent [Michalski 

et. al., 1983; Michalski et. al., 1986; Kodratoff, 1988]. However many real world problems are modelled 

better as a set of cooperating intelligent agents. In addition, even agents who axe not explicitly part of 

cooperative framework will, in many real world situations, have to deal with other agents in their 

operating environment. Recognising this situation, recent work in the field of Distributed Artificial 

Intelligence (DAI) [Huhns, 1987; Bond & Gasser, 1988; Gasser & Huhns, 1989] has examined the 

problems of coordination and cooperation associated with such multi-agent systems. The problem of 

learning when multiple agents are present, however, has not received much attention. 

Our primary objective in this paper is to look at multi-agent machine learning (MA-ML) by 

examining: 
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• the motivation for multiple agents in learning 

• the problems introduced by the presence of multiple agents 

• the effect on current methodologies 

• a framework and model for MA-ML based on structured dialogue between the agents 

In addition we have carded out some investigations with an implementation of the model called 

MALE (Multi-Agent Learning Environment) and some results from this are described. 

2 Attributes of Multi-Agent Systems 

We will start by looking at the various attributes of multi-agent learning systems such as the 

reasons for trying to construct such systems, the problems that occur and the specific issues that have to 

be tackled. 

2.1 The Motivation 

The reasons for modelling a system using multiple intelligent agents range from improvements in 

speed to autonomous agents providing a better 'fit' to the problem [Bond & Gasser, 1988]. At the very 

least therefore, the existence of such systems and the requirement of having learning within them 

motivates the study of MA-ML. More positively however multiple agents may bring the following 

benefits to the learning task itself : 

• S c a l a b i l i t y  : Individual agents in a system will have bounds on the resources available to them. Scaling 

up the learning task beyond a certain level will require the use of multiple agents and cooperation 

between these agents. 

• S p e e d  : Where it is possible to parallelise the learning process, the use of multiple agents may give 

advantages of speed and efficiency. However this has to be weighed against the overhead due to 

cooperation. 

• F a u l t  T o l e r a n c e  : Distributed systems in general provide a more graceful degradation in performance 

in the presence of failures. In addition the use of cross-checking of results between agents may provide 

more reliable results. 

• E n c a p s u l a t i o n  : A system of multiple agents allows the encapsulation of specific learning knowledge 

or expertise in particular agents. Such encapsulation gives advantages in development, management, 

• understandability and reliability. 

The increased availability of distributed platforms has allowed these rationales to be tested in 

distributed processing and increasing now in distributed AI. This work has led to the development of 

numerous methodologies some of which will be useful when building MA-ML systems. 
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2.2 The Problems 

The problems associated with multi-agent systems all arise from the fact that the existence of 

multiple agents implies a distribution of information. Where the solution of a particular problem requires 

the availability of all such information (or as much as possible), effective ways of overcoming the 

distribution are required. Learning is one such problem where this distribution has important 

consequences. 

Other than the learning algorithm, the main factor in deciding the quality of what an agent learns is 

the quality of the data on which the learning is based. For a learning agent, distribution of this data 

implies two possible problems: 

Completion : Consider a situation where the distribution is based on a partitioning of information into 

parts which are distinct but coupled. If.an agent has access to data only from one part and what has to 

be learned requires knowledge from other parts then this agent is unable to learn as its local data is 

incomplete. We shall call this the completion problem. An example of this would occur in a distributed 

manufacturing system in which individual agents are assigned the construction of distinct sub-parts 

and the learning task consists of finding attributes of sub-solutions that make a good overall 

component. Since these parts have interrelationships between them, the learning process of individual 

agents is constrained by the information held by other agents. 

Confidence : A well known problem when using induction is that the resulting hypothesis cannot be 

completely validated. However the confidence in a particular hypothesis increases as we obtain more 

and more data that is correctly explained by the hypothesis. Distribution of this data may therefore 

mean that an agent is unable to reach a level of confidence in its hypothesis sufficient to allow it to 

make use of it even though such data exists in the system. This we shall call the confidence problem. 

These problems necessitate that we develop some means of cooperation between the agents in the 

system. 

2.3 The Issues 

We can quickly discount the possibility of simply collecting the source information of the multiple 

agents at one special point and using available methods of learning as one solution to the distribution. 

Other than the sheer volume of data, we would loose all the advantages that we previously outlined. What 

is required is a more cooperative framework where the participating agents perform local processing as 

far as possible and cooperate when necessary. Such an approach means the following issues must be 

handled: 

Recognising when to cooperate : One may adopt the approach that the agents always cooperate. This 

will be necessary when the agents do not have knowledge of the specific abilities of the other agents. 

Rather what exists in the system is implicit knowledge that there are other agents and that these agents 
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are potentially useful. Where agents are aware of the other agents' abilities, more focused cooperation 

may be possible. The goal of such cooperation is always to overcome the completion and/or 

confidence problems. 

• How to cooperate : Cooperation based on communication requires the use of some interaction 

language, a protocol for structuring the use of this language and associated semantics to allow the 

agents to make sense of the interaction. In complex systems such a language may hide representational 

differences between the agents and require agents to find a translation mechanism for expressing 

hypotheses in a common form. This is necessary to allow other agents to evaluate these hypotheses. 

The cooperation scheme also needs a mechanism for integrating the learning of the participating 

agents. 

• Dealing with conflict : Having autonomous intelligent agents introduces the possibilities of conflict in 

the views of these agents. This requires having methods for recoguising and resolving conflict. 

In general we have to revise the prevalent procedure for a learning agent from a (get data ~ form 

best generalisation) to one of (get data ~ form best generalisation ~ confer with other agents ~ revise 

hypothesis). 

3 T h e  Effect  on  C u r r e n t  Methodolog ies  

We can now look at the existing paradigms in ML [Miehalski, 1987] and see what affect the 

presence of multiple agents has, viewing the changes necessary on both the algorithmic and structural 

level. 

Learning by being told 

The presence of multiple agents may be reflected as an extension to one or both parts of the 

teacher/learner scenario in learning-by-being-told i.e multiple teachers and/or multiple learners. The 

multiple learners case poses no new problems. The one-to-one interaction is simply extended to a one-to- 

many interaction. Additional problems may however occur for the teaching agent if it is biasing its 

teaching based on knowledge of the learning agent. In this case the existence of multiple learners meatis 

that the teaching agent has to maintain multiple contexts. 

The multiple teachers scenario requires additional capabilities on the part of the learning agent. The 

main problems arise when there is a conflict between the knowledge received from two teachers. Since 

the assumption in this form of learning is that the teacher's knowledge is correct, conflict has to be 

attributed to contextual differences. However if the assumption of correcmess is relaxed then some 

framework for conflict resolution has to exist between the teaching agents. 
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Learning by Deduction 

In analytical or explanation-based learning [Mitchell et. al, 1986] the presence of multiple agents 

becomes significant when, as in many real-world domains, the domain knowledge is distributed amongst 

more than one agent. In such a situation the first step in the learning process, that of constructing a logical 

proof of why an instance is an example of a concept, may not be within the means of a single agent. What 

is required is a process of distributed search. [Kitamura & Okumoto, 1990] present a method that they 

call diffused inference in which each agent performs local search as far as possible and solicits help from 

the other agents when necessary. The subsequent step of generalisation may also require the use of more 

than one agent. 

One useful attribute of the use of multiple agents in EBL is that one may be able to specify different 

operationality criteria for the different agents. As is quite often the case, an abstract domain theory is 

useful to different agents in different ways. Consider for example a domain theory describing the 

operation of a vehicle. The operationality criteria for this theory will be different for an agent that wishes 

to use it for learning how the vehicle functions from one who wishes to use it for diagnosis of faults. 

Such differences may be effectively captured in a multi-agent scenario. 

Learning by Analogy 

Analogical learning transfers well between single and multi-agent systems. The process of 

recognising a similarity between two problems at some abstract level is the same inter-agent as it is intra- 

agent. Derivational analogy is more problematic as derivations are local to an agent. 

Learning by Induction 

In the presence of multiple agents, the inductive learning suffers from the two problems of 

completeness and confidence that we described earlier. These problems occur in learning-from-examples 

where due to the examples being distributed each agent can only form a partial hypothesis and in 

learning-from-observation where different agents may form different concepts due to different foci of 

attention. 

4 A Cooperative Framework for M A - M L  

From the large space of problems in multi-agent learning we have concentrated our attention on the 

problem of learning by induction in peer group agents. Using models of human peer group learning as a 

basis, a framework for cooperative learning is proposed. An analyses of how the compositional structure 

of multi-agent systems affects the role of cooperation in learning has been reported by us in [Sian, 1990a] 

and the use of this cooperative framework to get adaptation in Distributed AI systems is reported in [Sian, 

1990b]. Here we will give details of the model itself and how the model can be used to get group 
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induction. Results from an implementation of the model are also shown. Our model consists of the 

following components: 

• Agents that learn from their experience 

• An interaction board for negotiation between agents 

• An interaction language for talking about hypotheses 

• An integration function for combining the opinions of the agents 

In the model each agent f'n-st learns locally. When an agent has constructed a hypothesis in which it 

has reasonable confidence (a parameter to the system) it proposes it to the other agents via the interaction 

board. Other agents use their own experience to evaluate the hypothesis and may make changes to it. The 

net confidence value of each such hypothesis is used to select the one that should be accepted by the 

agents. The following sections give details of this process and the components of the model. 

We make the following two assumptions: 

• The cooperation paradigm is one of consensus with agents accepting the hypotheses that have the 

greatest support. 

• The hypothesis representation and generation is the same in all agents. 

4.1 The Learning Agent 

Agents in our model consist of the following parts: 

Performance component : This is the part that is responsible for carrying out whatever problem solving 

activity the agent is assigned within a multi-agent system. This component will contain domain 

knowledge and expertise about the agent's task. A significant attribute of this knowledge is that it is 

necessarily non-monotonic so that the learning sub-system can add or modify information contained 

within it. Such changes are monitored by a simple belief maintenance component. 

Learning 
Sub-system 

~ _ _ ~  Experience F 
Store 

~ - - - ~  Performance ~-- 
Component 

Experience 
Instances 

II~ Problem-solving 
activties 

Fig I: Agent Structure 

Experience store : During its problem-solving activities the agent receives information about the 

events and state of the external environment. This forms the source data for the learning system. The 

learning may be restricted to certain issues by filtering this data so that only data regarding that which 
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has to be learnt arrives in the experience store. The store is organised as a hierarchy in which the 

instances form the lowest level and successively higher levels contain generalisations that classify 

these instances at the first level and classify lower level generaiisations at successive levels. 

Maintenance of the hierarchy is controlled by the learning algorithm. 

~ i '* {HI,G3O 

A B C D E F 

Fig 2: Experience Store Hierarchy 

Learning sub-system : This has three primary tasks; learning by induction on the data in the experience 

store, maintaining the store and interaction with the board for cooperative learning. The learning 

algorithm is incremental and is described in detail in the next section. The experience store is the 

'workspace' of the algorithm and the learning process makes changes in this hierarchy. Additional 

maintenance of the store essentially consists of removing instances that are covered by a concept 

description which has been agreed and in which the agent has sufficient confidence. A full-memory 

model is impractical in most domains. Interaction using the board is the process by which the agents 

cooperate with the other agents to get the other agents' opinions about hypotheses that the proposer has 

learnt locally. This serves to both modify a hypothesis based on another agent's experience and 

increase confidence in it based on concurrence from the other agents. 

Note that there is no direct connection between the experience store and the performance component. The 

data in the experience store must be processed by the learning sub-system before being made available to 

the performance component. 

Learning Algorithm 

The learning process consists of an incremental learning algorithm that constructs a generahsation 

hierarchy with successively lower levels being more specific. The lowest level consists of individual 

instances. Each generalisation has associated with it two values; in-confand out-conf. The value in-conf 

is a measure of how many instances the generalisation correctly covers and out-conf is a measure of how 
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many instances argue agmnstthe generalisation (net-confis ~e difference between the two). The 

Mgorithm proceedsasfollows: 

For each new instance I 

If I is correctly explained by current knowledge 

Then increase confidence in this knowledge 

Else 

For all generalisations G in heirarchy that cover this instance 

Check( G,I ) 

For all instances not now covered 

Create new generalisation and insert in heirarchy 

If net-conf > threshold for any generalisation G 

Propose G on board 

Check( G,I ): 

If +ve instance 

Then increase in-conf of G 

If -ve instance 

Then If specialisation( G,I ) does 

Then increase out-conf of G 

not succeed 

The basic goal of the algorithm is to create a generalisation hierarchy with maximum net-conf 
values at each node. Each new instance is ftrst checked against what the agent already knows. This is to 

stop the agent from spending effort in learning previously agreed hypotheses. Instances that agree with 

these hypotheses simply increase their confidence. All other instances are added to the hierarchy. The 

first step is to check the current generalisations starting with the most specific. An instance correctly 

covered by one of these generalisation need not be checked against those at a higher level. If an instance 

is incorrectly covered then the we first try and specialise the generalisation so as to include as many as 

possible of the originally covered set but exclude the new instance. The speeialisation procedure uses 

both attributes of the instances and domain knowledge to change the generalisation. If no specialisation 

can be found then the out-eonf value of the generalisation is increased. Generalisations with a net-conf 

value too low are removed. At the end of this stage we may have a number of instances not covered by 

any generalisation. Where possible new generalisations are created to cover these instances and linked 

into the hierarchy. The preference when creating these generalisations is to find more generalised 

versions of existing ones in an incremental fashion to cover these instances. 

Additional changes to the hierarchy may occur as a result of the interaction with the other agents 

and we shall discuss these after looking at the the cooperative activity in the system. This algorithm has 

some similarity to the UNIMEM algorithm [Lebowitz, 1987] in that it also constructs a hierarchy of 

generalisations. However in the UNIMEM hierarchy each instance may only have one parent. Each 
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instance is unique and consists of  attribute-value pairs. UNIMEM attaches confidence values to each 

attribute rather then the generalisation as a whole. 

Hypothesis evaluation 

In addition to learning from its own environment, a cooperative framework requires agents to 

evaluate other agents' hypotheses with respect to their local data. This may consist in the first instance of 

agreement or disagreement with a hypothesis. However a more useful form is for the evaluating agent to 

itself propose ways of making the hypothesis more acceptable. This leads to a negotiation process that we 

will examine in the next section. Here we will look at how an agent evaluates a hypothesis proposed by 

another agent. 

The goal of  the evaluation as we have said is for the evaluating agent to check if the proposed 

hypothesis is consistent with its own data. From the evaluating agent's perspective it would prefer to do 

this as efficiently as possible.Trying to check a hypothesis against individual instances is prohibitive. 

Instead the agent can use the generalisation hierarchy to get much more effective evaluation. The result 

of this evalua6on can be one the following four cases. If P is the proposal then 

• Tota l ly  Cons is ten t  if  the agent has no data against P 

o Tota l ly  I n c o n s i s t e n t  i f  the agent has data against P and can find no way of  specialising P to exclude 

this data 

• Par t ia l ly  Cons is ten t  if  a specialisation of P is consistent with the agent's data 

• D i s jo in t  if the agent has no relevant data regarding P 

The result will decide what response an agent gives to a proposal. We will see this when looking at 

the operators available to an agent for talking about hypothesis. 

4.2 Interaction Board and Language 

The interaction board is a multi-level shared structured which the agents use to communicate. Peer 

agents are connected to one level. Higher levels are necessary to cope with hierarchical organisations in 

multi-agent systems. Agents at one level are able to influence the interaction at lower-levels. The 

structural similarity to a blackboard architecture [Erman et. al., 1980] is obvious. The role of our agents is 

not however to opportunisticly transform a problem but to express an evaluated opinion as regards 

proposed hypotheses. Such a centralised structure is appropriate in peer groups as it is not known a pr ior i  

which agent will be of  benefit. 

The interaction language consists of  a set of operators for hypotheses. These operators allow agents 

to introduce/remove hypotheses, express the results of  local evaluation and change the status of  

hypotheses based on the integration of the evaluations. 
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Fig 3: Shared Interaction Board Structure 

The following is the definition of the operators: 

• Introduction & Removal : 

PROPOSE( H,C ), ASSERT( H ), WITHDRAW( H ), ACCEPT( H ) 
• Evaluation : 

CONFIRM(H,C), DISAGREE( H,C ), MODIFY( H,H',C,S ), NOOPINION( H ) 
• Status modifiers : 

AGREED( H,T ) 

where H is the hypothesis in question 

H '  is a modified H 

C is the confidence value (range 0..I) 

T is the resultant confidence value (range 0..I) 

S is a similarity measure (range 0..I) 

As can be seen from the definitions, most of  these operators have an associated confidence value. 

This allows the agents to give a measure of how many instances the response is based on. A CONFIRM 

based on lots of  instances is obviously more powerful that one based on just a few. The resultant 

confidence value for H is given by the integration function described in the next section. The similarity 

measure S is a measure of  the number of  instances that motivate the specialisation of  H to H'. The 

mapping from the number of  instances to the confidence value is dependent on the context of the system. 

So, for example, i f  within a particular situation the existence of  5 instances indicates near certainty then 

this would map to a value close to 1. Other situations may need hundreds of  instances to approach this 

value. The exact numbers am less important then the mapping being consistent across agents. 
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The protocol that structures the use of this language consists of a set of rules that specify the order 

in which the operators must occur. Essentially once an agent proposes a hypothesis it waits for the other 

agents to respond. Each agent evaluates the proposal and returns a CONFIRM if it is totally consistent, 

DISAGREE if it is totally inconsistent, MODIFY if it is partially consistent and NOOPINION if it is 

disjoint relative to its data as defined in the previous section. These responses are combined using their 

associated confidence values and the integration function to give T. Any modified H (H') has to be 

reevaluated by the other agents. Once this process is complete, the version with the highest T value is 

agreed and the subsequent ACCEPT from the agent removes it from the board. The other versions are 

withdrawn by the proposers. If the highest T value is below a threshold then no hypothesis is accepted. 

4.3 The Integration Function 

In order to judge the relative merits of a hypothesis against other versions of that hypothesis we 

have to be able to give each hypothesis a net value based on the responses and their associated confidence 

values that it received from the participating agents. In general this can be a difficult problem since the 

confidence values represent a measure of belief on the part of the agent. Use of Bayesian functions is 

inappropriate as these values are certainly not probabilities. A confidence value of C in H does not imply 

a confidence value of 1-C in ~H. Similar problems resulting from trying to combine the belief values of 

two rules were encountered in the MYCIN project [Shortliffe & Buchanan, 1980]. The situation is even 

more difficult in our case as the more recent work on the Shafer-Dempster theory [Sharer, 1976] (which 

deals adequately for the MYCIN problems) requires knowing the complete set of possible hypotheses 

suggested by the evidence which is a condition that we cannot meet in our general situation. 

We have adopted an extension of the approach in [Stefanyuk 87] in which he presents an 

axiomatisation of a combination function and derives the function from these axioms. This work 

considers only confidence values in support of  a hypothesis and our extension has been to use 

Stefanyuk's Formula for the combination of confidence values of one kind (either in support-of or 

support-against), provide an axiomatisation of a combination function that handles both kinds of 

confidence values and finally to derive this function from these axioms. Let Xl and x2 be two confidence 

values of one kind, c(xl,x2) be a function that combines these values, an  and I]n be the total confidence 

for and against a hypothesis respectively and C(0tn,~n) be the function that gives the resultant confidence 

in the hypothesis. Then the following axiomatic definitions apply: 

AI:  0 < xt < 1, 0 < x2 < 1, 0 < e(xi,x2) < 1, 0 < C(ff.n,13n) < 1 

A2: c(x,0) --" x 

A3: C(Xl,X2) = c(x2,xl) 

A4: C(0,[~n) = 0, C(ff-n,0) = an 

A5: As an ---> 1 then C(otn,I]n) ""> 1-13n, as 13n --'> 1 then C(an, l~) ---> 0 

A6: c(xl,x2) and C(¢xn,~) can be expanded as a power series in xt,x2 and cxn,~ respectively 

From these we derive the following functions ([Sian, 1990c] gives the rational for the axioms and the 

derivation): 
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c(Xl,X2) = xl + x 2 - x l  x2 ( Stefanyuk's Formula) 

C(an,Pn) = an- ~nl3n 

Within our interaction framework CONFIRM represents confidence in a hypothesis, DISAGREE 

confidence against the hypothesis, MODIFY partial confidence in the hypothesis (with the similarity 

measure determining the level of partiality and NOOPINIONs representing neither. The combination 

function is therefore defined as follows: 

Net-Val( H ) = To ta lConf idence ( suppor t ing ,H)  [ 1 - Total_Confidence( against,H ) ] 

Let Count( T ) give the number of responses of  type T. Then given n agents if: 

Count( CONFIRM ) = c, Count( DISAGREE ) = d, 

Count( MODIFY ) = m, Count( NOOPINION ) = p and 

u = c + d + m + p  

then 

where 

Total_Confidence(supporting,H) = Vc+m 

Total_Confidence( against,H ) = Vd 

Vx = Vx-I + Cx(1-Vx-1) 

V0 =0.  

in which 

Cx = Confidence of xth agent giving response. 

Consider an example with 4 responses; 2 confirms with values ci and c2,, 1 modify with value ml and 1 

disagree with value dl.  If  the similarity measure of  the modify response is st then the response can be 

considered a confirm e3 = mxsl. Then: 

Total_Confidence(supporting,H) = el + e2 + c3 - ClC2 - elc3 - e2e3 + Cl c2c3. 

Total_Confidence( against,H ) = dl 

Net-Val( H ) = = (cI + c2 + c3 - ClC2 - ClC3 - 62c3 + cl c2c3)(1---dl) 

4.4 An Example 

We can now tie all these parts together and illustrate the functioning of  the model with an example. 

We will consider a system with three agents operating in the domain of  commodities trading. Each agent 

is responsible for trading within a particular area. Each agent receives information on events that occur in 

the area and how the prices of  various commodities change with these events. The goal of the learning is 
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to create generalised descriptions of how prices fluctuate due to various classes of events. To aid the 

learning process agents have domain knowledge about these commodities available to them. First let us 

see how one agent learns locally. Given the following data agent 1 constructs the generalisation hierarchy 

shown below: 

I 1: Pri ce(Co f fee,Rising),Weather(Kenya,Frost) 
12: Price(Coffee,Rising),Weather(Kenya,Drought) 
13: Price(Tea,Rising),Weather(Kenya,Frost) 
14: Pri ce(Tea,Ri sing),Weather(Kenya,Drought) 

(E) Q 

where 

GI Price(Coffee,Rising) if Weather(Kenya,Adverse) 
G2: Price(Tea,Rising) if Weather(Kenya,Adverse) 
G3: Price(Crop,Rising) if Weather(Kenya,Adverse) 

The relationship between (coffee,tea) and crop and between (frost,drought) and adverse is part of a 

is-a hierarchy that forms part of the agent's domain knowledge. When a new instance 15 arrives the 

hierarchy changes as shown: 

15: Price(Cocoa,Steady),Weather(Kenya,F1 ood) 
G3': Price(Crop,Rising) if Weather(Kenya,Adverse),Affect, s(Adverse,Crop) 

Q 

G3 has had to be specialised since it incorrectly covered I5. This is achieved by finding an attribute 

that distinguishes I5 from as many as possible of the original set. The agent uses its domain knowledge to 

find that cocoa is unaffected by floods whereas the others are affected by frost and drought. 

Other agents use this same procedm to construct their own hierarchies based on the data they 

receive. Let us assume that Agent 3 has enough confidence in one of its generalisations to propose it on 

the board. The other agents will then use the evaluation procedure described previously to check this 
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proposal against their own experiences. Note that the objective of the interaction is to find the most 

specific version of the proposal that has the maximum support. Therefore agents not only indicate 

confirmation or disagreement with a proposal but also modifications that make it more consistent with 

their experiences. In this case the interaction proceeds as follows: 

Agent 3: 

Agent 2: 

Agent 1: 

Agent 1: 

Agent 3: 

Agent 3: 

Agent 2: 

PROPOSE( P1,0.7 ) [P1 = Price( Cocoa,Rising ) if Weather( Brazil,Adverse )] 

MODIFY( P1,P2,0.6,0.6 ) [P2 = Price( Cocoa,Rising ) if Weather( Country,Adverse )] 

MODIFY( P1,P3,0.8,0.63 ) [P3 = Price( Crop,Rising ) if Weather(Country,Adverse), 

MODIFY( P2,P3,0.8,0.63 ) 

CONFIRM( P2,0.7 ) 

CONFIRM( P3,0.7 ) 

MODIFY( P3,P4,0.6,0.54 ) [P4 = Price( Crop,Rising ) if 

Agent 1: CONFIRM( P4,0.8 ) 

Agent 3: CONFIRM( P4,0.7 ) 

Affects( Adverse,Crop )] 

Weather(Country,Adverse), 

Affects( Adverse,Crop ), 

Produces( Country,Crop )] 

[ Net-Val( P1 ) = 0.9556, Net-Val( P2 ) = 0.9556, Net-Val( P3 ) = 0.9724, Net-Val( P4 ) -- 0.976 ] 

Agent 2: AGREED( P4,0.976 ) 

Agent 3: WITHDRAW( P1 ), ACCEPT( P4 ) 

Agent 1: WITHDRAW( P3 ), ACCEPT( P4 ) 

Agent 2: WITHDRAW( P2 ) 

Agent 2 generalises P1 with regard to country. Agent I generalises with regard to crop but adds the 

specialisation of 'Affects' which its data has suggested. The same response is also appropriate for P2. The 

original proposer Agent 3 has no data against either and therefore confirms both with its original 

confidence value. The interesting response is Agent 2's MODIFY to P3. This is based on it having an 

instance in which the price of tea is unaffected by drought in its region. Since it only has a very small 

number of instances to back a modification its the difference between its similarity measure and proposal 

value is very low (0.06). However on evaluating P4 the other agents find it consistent with their data and 

its resultant net value is highest. Note that our main interest is in the relative values rather than the actual 

numbers. Studies in psychology show that such convergence to the correct hypothesis once it has been 

suggested by one agent also occurs in human group induction [Laughlin & Shippy, 1983]. The other 

proposals are withdrawn and P4 accepted (an agreed hypothesis such as P4 is automatically removed 

once it has been accepted by all the other agents). 

The net result of this cooperation is that agents are amalgamating their experience at a high level. 

Each agent is benefiting from the experience of the other agents. This results in hypotheses being 

corrected when necessary and further confirmed when possible. 
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4.5 Some experiments 

The above model has been implemented in a system called MALE (multi-agent learning 

environment) in PROLOG with agents as processes that interact with the interaction board via message 

passing. We have tested the model using examples from a commodities trading domain as the source 

data. This data contains various sorts of events such as changes in weather, changes in political situation, 

announcement of alternatives to some commodities, changes in economic conditions plus how these 

events were followed by changes to the prices of various commodities such as crops, metals and oil. The 

goal of the system is to get the maximum average performance from the agents where performance is 

measured by the ability to correcdy predict the price change given an event. 

We have tried to evaluate the performance based on a number of scenarios: 

1) Single agent receiving all the data compared to a multi-agent system with the data spread equally 

(both systems using the learning algorithm defined in the model) 

2) Multi-agent system with single agent learning only (no interaction) 

3) Multi-agent system no-learning 

4) The effect of varying the number of agents participating in the interaction 

5) Varying the spread of the data with some agents getting more data 

For this paper the significant test is the first (results of the others are more relevant to the design of 

multi-agent systems and are reported in [Sian, 1990b]). The predictive ability of single versus multi-agent 

systems with the same data showed no difference if the agents interact after receiving each new instance. 

Otherwise the multi-agent system catches up the single agent after each interaction session. 
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Fig 4: Predictive performance of single versus multi-agent learning 

Predictive performance was measured against a test set. The multi-agent systems had 5 agents 

which interacted after receiving 2 new instances each. This result leads us to propose the following for 

our model: 
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Proposition 1 : The predictive ability of a learning system is unaffected by the use of muln'ple agents. 

The difference in the two systems occurs in the speed with which they perform the inductive 

generalisation. In tests the single agent system outperforms the multi-agent system in the initial stages as 

the later has the overhead of cooperation. However as the number of instances increases the 

parallelisation of the learning process rapidly overcomes this overhead. On average with 5 agents the 

multi-agent system on a SUN 4 for this data was 3 times faster. 

From this we propose the following: 

Proposition 2: In the presence of large amounts of data, a multi-agent learning system will give 

advantages in speed over a single agent system. 

We have are now trying MALE with the soya-bean disease data used in incremental AQ [Riene & 

Michalski, 1987]. A multi-agent scenario can be envisaged for this data if we assume that the data was 

collected from different autonomous agricultural centres. A cooperative approach to finding discriminant 

descriptions for these diseases can then be applied. 

5 Conclusion 

Consideration from both a pragmatic point of view i.e. multi-agent systems exist and therefore we 

must study learning within these systems and from a technological point of view i.e. looking for benefits 

to the learning process from the use of multiple agents warrants the study of the hitherto unexplored area 

of MA-ML. In this paper we have described the problems and issues in MA-ML and how the presence of 

multiple agents may affect current paradigms in ML. We have proposed a cooperative framework and 

studied its use in a sample domain. As the results show, MA-ML can give considerable benefits to 

learning systems. Further work needs to look at the use of different algorithms in the agents, richer forms 

of dialogue between the agents and ways of formulating the belief combination in agents. 
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