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A b s t r a c t  

Two ways of applying EBG to constraint propagation with interval labels are 

presented. The first method, CP-EBG-1, is described by a straightforward use of a 

Prolog EBG implementation.  The second, CP-EBG-2, performs two phases: First, 

constraint propagation is done and, using EBG, a generalized final labelling is 

derived but  no extra conditions ave learned. Second, constraint propagation is 

again performed using the final labeltings of phase 1 as the initial labelling. This 

time, conditions are learned which form the desired concept description. 

It  is shown that  CP-EBG-2 learns more general concept descriptions than CP- 

EBG-1. A proof is outlined that  CP-EBG-2 produces correct concept descriptions 

for the class of constraints using linear equations and interval arithmetic. Central  

to this proof- and to possible proofs for other constraint classes - is the notion of a 

moderate generalization. I t  guarantees that  a generalization which was learned 

from one instance and which is now used in a new situation, does not lead to the 

exclusion of any solution for this new situation. 

K e y w o r d s  

Explanation-based generalization, constraint  propagation, interval labels, 

moderate generalization. 
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1. I n t r o d u c t i o n  

Constraint propagation is a popular and widely used inference technique in AI 

(Davis, 1987). It operates on a constraint network, i.e., a set of variables (nodes) 

interconnected by constraints which express relations among variables. The most 

common type of constraint propagation is label inference: Every variable is 

assigned a set of possible values, and constraints are evaluated in order to restrict 

this set. This sort of constraint propagation is also called local constraint 

propagation (Gfisgen & Hertzberg, 1988) or simply, as we will do throughout this 

paper, constraint propagation. 

Given a constraint network, typical questions are whether a locally consistent 

solution (labeling of all variables) exists or what a particular value of such a 

solution is. Sometimes, the constraint network is fixed but some inputs vary and 

we have to determine the answer to these questions for various possible inputs. 

This is a situation which we faced in an application of model-based diagnosis for 

robot operations. Since constraint propagation turned out to be too slow for this 

application, we applied explanation-based generalization (EBG) to it. Thereby we 

learned general rules which, if applicable, derived the same results as constraint 

propagation would do. When we compared the execution time of constraint 

propagation for a specific instance with the time needed to match a rule learned by 

EBG from constraint propagation and this example, the latter was faster by two 

orders of magnitude. With the help of conditions learned from constraint 

propagation, we could construct rules for error diagnosis whose usage reduced the 

average diagnosis time considerably (Zercher, 1988, 1990 a). 

In the next section we present a straightforward way to apply EBG to constraint 

propagation and illustrate it with a small example; this is the method used in the 

above mentioned literature. In Section 3, we propose a new, two phase approach, 

which learns a more general but still correct concept description. Properties of 

both methods are discussed in Section 4. We show in Section 5 that  one can also 

learn concept descriptions from inconsistencies detected by constraint 

propagation. Section 6 introduces the notion of a moderate generalization, and we 

will show that, together with the monotonicity property of constraints, this is 

sufficient to guarantee that the new method yields correct generalizations. In the 

final section, we present our conclusion. 
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2. E B G  a n d  c o n s t r a i n t  p r o p a g a t i o n :  F i r s t  a p p r o a c h  

EBG is a powerful, knowledge intensive learning technique (Mitchell et al., 1986; 

DeJong & Mooney, 1986). It  is able to learn a correct generalization from a single 

t ra ining instance. Utilizing an available domain theory, EBG constructs an 

explanation why the given example belongs to the target concept. This 

explanation is then generalized and a conjunction of conditions, which forms a 

sufficient condition for the target concept, is extracted from it. EBG guarantees  

that  the learned description fulfills an operationality criterion (Keller, 1987) that  

tries to ensure that  the description can be efficiently evaluated. Some authors put  

EBG in a theorem proving framework and consequently speak about proofs, proof 

trees, and so forth; other authors put  it in a problem solving framework where an 

explanation is a sequence of operators which transform an initial state into a goal 

state. As (Mooney & Bennett ,  1986) have shown, both are two views of the same 

coin since the proposed, different generalization algorithms yield basically the 

same results. 

Table 1 shows a simple Prolog implementat ion of constraint propagation along 

with some of the predicates needed for interval arithmetic. We normally work 

with a CommonLisp implementation,  however, we use Prolog here since it is the 

de facto standard language for describing EBG research. Constraint  propagation 

works by repeatedly evaluat ing constraints. Whenever a value used by a 

constraint is changed, this constraint must  be reprocessed. This can mean that  the 

same constraint is executed several times. Constraint propagation stops - reaches 

quiescence - when no constraint  can change the value of a variable. Termination of 

constraint  propagation is guaranteed for some classes of constraints, e.g., l inear 

equations with uni t  coefficient, but  not for all (Davis, 1987). 

For the purpose of EBG, an explanation (proof) is a sequence of constraint pro- 

pagation steps which transforms an initial variable labelling into a final labelling 

which is consistent, i.e., every constraint is fulfilled. Such a sequence is exactly 

what  ¢p consistent/3 (the '/3' is a Prolog notation which means that  the predicate 

has 3 arguments)  will produce provided the predicate succeeds. In (Kedar-Cabelli 

& McCarty, 1987) a clear and concise EBG implementat ion is given. Their  

predicate pro[og ebg/3 has as arguments,  the goal clause, the generalized goal, 

and a list of learned conditions (the operational concept definition). By applying it  

to cp consistent/3, we have the desired combination of EBG and constraint 
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/* 

cp_consistent( [ConstraintIRConstraints], StartLabelling, FinalLabelling ) :- 
constraint(Constraint, StartLabelling, NewLabelling, AffectedConstraints), 
/* Applies a const ra int  and produces a new labell ing.  I f a  value of a var iable  

/* was changed then all constraints  which must  be reused are  contained in 

/* AffectedConstraint .  Fai ls  i f  an empty in terval  was derived. 

append(RConstraints, AffectedConstraints, UpdatedConstraints), 
cp_consistent(UpdatedConstraints, NewLabelling, FinalLabelling). 

cp consistent( [], FinalLabelling, FinalLabelling ). 

constraint(c4,[x(X Int), y(Y Int)), a(A lnt),b(B__lnt), c(Cl Int)], 
[x(X Int), y(Y Int)), a(A Int), b(B Int), c(C2 Int)], []) :- 

/* The simple constraint  C <-- X + [-2, 2] + A taken  from Table 2. 

interval plus(X Int,[-2,2],H__lnt}, interval plus(H Int, A Int, CNew 
interval intersection(C1 Int, CNew Int, C2 Int). 

interval intersection([A1,A2], [B1,B2], [Cl,C2]) :- 
maximum(A1, B1, Cl), minimum(A2, B2, C2), C1 -%< C2. 

interval plus([A1 ,A2], [B1 ,B2], [Cl ,C2]) :- 
Cl is A1 + B1, C2 isA2 + B2. 

maximum(- % Y, Y). 
maximum(X, Y,X) :- Y -< X. 
maximum(X, Y, Y) :- X -< Y. 

Table 1 : Pieces of the Prolog code for constraint propagation 

cp_consistent( + Constraints, + StartLabelling, -FinalLabelling ) :- */ 
succeeds i£constraint  propagat ion te rmina tes  with a consistent  final labell ing.  */ 

Int), 

*/ 
*/ 
*/ 

*/ 

propagation; it will be called CP-EBG-1. However, we perform a few modifi- 

cations, which we will explain after the following examples. 

We first look at what happens if we apply prolog__ebg/3 to the predicate 

interval intersection/3. Provided that arithmetic operations and comparisons are 
declared as being operational, calling 

pro log_ebg(  interval_intersection(J1,5], [2,6], Int3), 

interval intersection([X,Y], [U,V], Glnt3), 

LearnedConditions ). 

will succeed with the following bindings: 
Int3 = [2,5], Glnt3 = [U,Y], LearnedConditions = IX --- U, Y -< V, U -< Y] 

The first condition guarantees that the lower bound of the result interval is the 

lower bound of the second interval, the second condition guarantees that the upper 

bound of the result interval is the upper bound of the first interval, and the third 
condition guarantees that the result interval is well defined. 
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Table 2 shows an extremely simple constraint propagation problem. It is atypical 

in the sense that  there is no feedback, i.e., no constraint must be executed twice, 

but it is sufficient for demonstration purposes. The training example is defined by 

X = 5 and Y = 7. If we call 
prolog ebg( cpconsistent([cl  . . . .  ], [ x([5,5]), y([7,7]), a([-~, ~]) . . . .  ], Labelling), 

cp consistent([cl . . . .  ], [ x([X,X]), y([Y,Y]), a([-~, co]) . . . .  ], GenLabell ing), 

LearnedCondit ions ). 

i t  will succeed with the following bindings: 
Labell ing = [ x([5,5]), y([7,7]), a([1,2]), b([2,3]), c([6,9]) ], 

GenLabell ing = [ x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4]) ], 

LearnedConditions = [X  -< 6, 6 -< Y, -5 -< X-Y] /* simplified result */ 

This means, that  we have learned the general rule (we use '~' instead of ':-' in 

order to distinguish Prolog code from learned rules): 

cpconsistent([cl,  c2, c3, c4, c5], [x([X,X]), y([Y,Y]), a([-~, ¢o]), b([-~, ~]), c([-~, ~]) ], 

[ x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4]) ]) 

~-- X -- 6, 6 _ Y, -5 < X-Y. 

In some cases, we might not be interested in computing the consistent final 

labelling but only in determining whether it exists depending on the values of X 

and ¥. With the definition 

cp consistent prob leml(X,  Y) :- 

cp consistent([cl,  c2, c3, c4, c5], [ x([X,X]), y([Y,Y]), a([-~, =]), b([-=, =]), c([-¢% ~]) ], ) .  

we would get the rule: 

cp consistent p rob leml (X ,Y)  ~-- X<- 6, 6 - < Y ,  -5 <- X-Y. 

Table 2 shows in detail what happens; it lists the constraint propagation steps, 

their grounded and generalized results and the learned conditions. Some 

expressions have been simplified in order to enhance readability. The conditions 

are constructed when Ci.~ and C,ew,i are intersected in order to get Ci. This is done 

in the same fashion as demonstrated above in the example for the predicate 

interval intersection/3. In Figure 1, the dark shaded area shows the space 

covered by the learned concept definition. 

To the the standard EBG approach, we have applied the following modifications: 

- Predicates which are used for control purposes do not cause any conditions to 

enter the learned concept description. We took append/3 as an extremely 

simple strategy to control constraint propagation. Other strategies (Davis, 

1987) could also be used as long as they are "fair" (G(isgen & Hertzberg 1988). 

- The list of learned conditions is simplified. After conditions have been individ- 

ually simplified, e.g., X + Y-2 --_ Y + 5 becomes X --_ 7, redundant conditions are 
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A *-- [1 ,21 ,  

A Simple Constraint Propagation Problem: 

B ¢- [2 ,3] ,  C ~ -  [5,16],  C (-- X + [-2, 2] + A, C (-- Y + [-3, 3]+ B 

Training example: X = 5 .  Y= 7 

Trace of CP-EBG-1 for the variable C 

Name Interval Generalized Interval 

Co [-®,®] [ -~ ,~ ]  

C .... , [5, 16] [5, 16] 

C, [5, 16] [5, 16] 

C.ew.2 [4, 9] [X-l,  X + 4] 

C2 [S, 9] [5, X + 4] 

C.ew.3 [6, 13] [Y-l,  Y + 6] 

C3 [6, 9] [Y-l,  X + 4] 

Learned conditions 

Learned Conditions or Comment 

c o n s t r a i n t  C <--- [5, 16] 

5 _ < 1 6  

c o n s t r a i n t  C ~-- X + [-2, 2] + A 

X-1 -< 5, X + 4  < 16, 5 < X + 4  

constraint C (-- Y + [-3, 3] + B 

5 < Y - l ,  X + 4 - < Y + 6 ,  Y-1 -< X + 4  

(simplified): X -  6, 6-< Y , - 5 - < X - Y  

Trace of phase 2 of CP-EBG-2 for the variable C 

Name Interval Generalized Interval 

Co [6, 9] [Y- 1, X + 4] 

C .... , [5, 16] [5, 16] 

C. [6, 9] [Y-l,  X + 4] 

C.ew. 2 [4, 9] IX-l ,  X + 4] 

C2 [6, 9] [Y- I, X + 4] 

C.ew.~ [6, 13] [Y-l,  Y + 6] 

C 3 [6, 9] [Y-1 ; X + 4] 

Learned condit ions(simplif ied): X -< 12, 

Learned Conditions or Comment 

result o£phase 1 

c o n s t r a i n t  C ~ [5, 16] 

5-<Y-1.  X+4 -<  16, Y-1 - X + 4  

c o n s t r a i n t  C *--- X + [-2, 2] + A 

X-1 -< Y- l ,  X+4--% X+4,  Y - l -  X + 4  

c o n s t r a i n t  C ¢--- Y + [-3, 3] + B 

Y-1 -<Y- l ,  X + 4 - < Y + 6 ,  Y - I - < X + 4  

6 < Y ,  - 5 < X - Y ,  X - Y _ 0  

Table 2: Constraint propagation and EBG 

removed. A condition is redundant if it is either always true like 0 --- 2 or if  it is 
implied by the remaining conditions. For instance, × __. 7 is implied by X ~ 5. 
For the general case of linear inequalities, this test can be performed with the 
well known Simplex method (e.g., Papadimitriou & Steiglitz, 1982). In our 

experiments, simplification drastically decreased the size of the learned 
concept description. This is one of the major causes why the learned concept 
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Figure 1 : Coverage of learned concept definit ions 

X 

description can be executed much faster than constraint  propagation on the 

same example. See also (Minton, 1988) on the importance of simplification for 

EBG. 

We handle the predicate is/2 differently. Instead of gett ing the generalized 

interval [Y-I, X + 4], standard EBG would produce something like [U, V] plus 

the conditions U is Y-1 and V is × + 4. We achieve our type of generalization 

with a simple change: When prolog ebg/3 performs is/2 on the grounded data, 

=/2 is done for the generalized data (in addition, the use of clause/2 must  be 

altered slightly). This modification causes in fact only a syntactic change in the 

EBG result. However, it has several small advantages, the main being that  it  

makes  the presentation of EBG and its results simpler and easier to read. 

3. EBG and constraint propagation: Second approach 

We will call the new approach CP-EBG-2. From a given example it is able to learn 

a more general concept description than  CP-EBG-1. CP-EBG-2 consists of two 

phases: First, we do constraint propagation and use EBG to construct a 
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generalized final labelling but we do not learn any <__/2 conditions. Second, with 

the consistent labelling and its generalization produced in phase 1, we again 

perform constraint propagation and apply EBG to it. Off course, the labelling and 

its generalization will not be changed by any constraint (after all, this is the 

property of a consistent labelling). This time, however, we will learn conditions 

and form the desired concept description. For our example these steps are 

illustrated in Table 2. We have learned the general rule 

cpconsis tent ( [c l ,  c2, c3, c4, c5], [x([X,X]), y([Y,YD, a([-~, ~]), b([-~, ~]), c([-~, =]) ], 

[ x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4]) ]) 

( - - X <  12, 6 < Y , - 5 _ X - Y , X - Y _ < O .  

or as an alternative 

cp consistent p rob leml (X ,Y)  ~- X <- 12, 6 <-Y, -5 < X-Y, X-Y-< O. 

The area covered by the learned concept description is depicted in Figure 1 by the 

light and dark shaded areas. As we can see, the concept description found by the 

new method is more general (covers a larger area) than the one learned by the old 

method (only the dark shaded area). In Section 6 we will show that CP-EBG-2 

always produces correct concept descriptions. The Prolog code of CP-EBG-1, CP- 

EBG-2, and the examples presented here is available from the author upon 

request. 

Why can CP-EBG-2 learn a more general concept description than CP-EBG-1 for 

the same generalized labelling? A formal argument is presented in Section 6, but 

the following trivial example should help to get an intuitive understanding: 

Assume we want to find the maximum of the list [1,2,3]. We do this in the usual 

sequential fashion and after we have determined that  1 _ 2 and 2 <- 3 we conclude 

that 3 is the maximum. A generalization of these reasoning steps would be that  Z 

is the maximum of [×,Y,Z] if X<-Y and Y<-Z. However, the antecedent 'X<-Z and 

Y---Z' would obviously be more general and still be correct. We could get this 

antecedent if we generalize the verification that 3 is indeed the maximum, i.e., 

1<-3 and 2<-3. By generalizing the verification of the solution instead of 

generalizing the steps which led to the solution, a more general concept 

description was found. 

As an effect of our modified EBG, all functional expressions, e.g., Y-l, needed to 

compute the final labelling are included in the final generalized labelling. If we 

use standard EBG this is not the case; we just get generalized intervals like [U,V]. 

Consequently, starting phase 2 of CP-EBG-2 only with such a generalized 

labelling would not produce a useful result; the connection to the parameters of 
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the initial labelling - here X and Y- would be lost. To perform CP-EBG-2 correctly 

with standard EBG, we keep after phase 1 all predicates which compute the final 

labelling, i.e., the is/2 predicates, and remove all others, i.e., the <-/2 predicates. 

Phase 2 is then performed as before. Both methods will produce equivalent results. 

In this paper one should read 'generalized labelling' as either the result of our 

modified EBG or as the result of standard EBG plus the conditions which are 

needed to compute the labelling. When we talk about 'generalized solution' this 

should be understood the same way. 

At first one might think that the result of CP-EBG-2 could also be achieved by 

first computing the final consistent labelling and then presenting this as a train- 

ing example to EBG. EBG would proof that the labelling is consistent and would 

then derive a general condition for this. But this idea is flawed since all 

connections to the initial labelling and its parameters are lost. The two phases of 

CP-EBG-2 are really required. 

4. P r o p e r t i e s  o f  C P - E B G - 1  a n d  C P - E B G - 2  

The training example used by CP-EBG-1 and CP-EBG-2 guides the generalization 

process. It thereby determines which generalized final labelling is constructed and 

when constraint propagation and its generalization is stopped. The latter point is 

not apparent in our example, but as soon as there are feedback loops, e.g., 

introduced by the constraint B ~- £ - A, this becomes important. When feedback 

loops are present, it is difficult to imagine how generalization could be done 

without the help of examples. This is similar to the problem partial evaluation 

faces with recursive rules. 

Phase 2 of CP-EBG-2 is conveniently described as doing EBG. Note however, in 

this phase the example is not really required since the outcome of all constraint 

propagation steps, i.e., no change, is known in advance. 

One question is whether two phases are sufficient. The rule learned by CP-EBG-2 

describes the largest possible coverage of the determined generalized labelling. 

Consequently, another phase which would try to change the learned <-/2 

conditions could not be of any help. 

Whenever an interval intersection is generalized three <_/2 conditions are 

produced. Consequently, CP-EBG-1 will initially produce a number of conditions 

equal to three times the number of constraint propagation steps. On the other 
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hand, with CP-EBG-2 it is just three times the number of existing constraints. The 

number only depends on the problem size and not on the number of inference steps 

performed. Usually, this means that  CP-EBG-2 initially produces far fewer 

conditions than CP-EBG-1. Therefore, less time must be spent by CP-EBG-2 on 

simplification. Consequently, CP-EBG-2 will usually - despite the need for a 

second phase - be much faster than CP-EBG-1. 

When constraint propagation does not terminate, CP-EBG-1 or CP-EBG-2 are 

obviously not possible. In such a situation one must resort to other inference 

techniques. If the task is to decide the consistency of constraints which are linear 

equalities or inequalities, a sound technique is the Simplex method. We can even 

apply EBG to it (Zercher, 1990b). 

Finally, a note on implementation seems in place. The predicate prolog ebg/3 is 

a general EBG implementation based on a Prolog meta-interpreter and is there- 

fore quite slow. A much better speed is achieved with a specialized implemen- 

tation: All predicates are augmented by extra parameters for generalized values. 

The generalization operations are explicitly coded. We experienced that  Lisp is 

better suited than Prolog. One reason is that Lisp has efficient array operations 

which are needed to implement the Simplex method (required for simplification). 

5. Learning from incons is tencies  

Sometimes, we want to learn a concept description for the inconsistency of a 

constraint network depending on the input variables. An inconsistency is present 

when the intersection of two intervals, e.g., [1,2] and [4,5], is empty. CP-EBG-1 

learns conditions for such a case by doing the same as before with the one 

exception that  the detection of an inconsistency, i.e., the upper bound of one 

interval is lower than the lower bound of the other, produces a corresponding 

general </2 condition and immediately stops constraint propagation. With the 

training example X = 5, Y = 15 we learn the rule 

cp incons is ten t . ._prob leml (X,Y)  *-- X-Y < - 5 ,  1 _< X, X < 6. 

In the case of CP-EBG-2, we stop phase i as soon as an inconsistency has been 

found and in phase 2, we just generate the one condition capturing the 

inconsistent interval intersection. In effect this means that we take just the one 
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</2 condition from phase 1 and ignore all _-</2 conditions. For the same t ra ining 

example, CP-EBG-2 learns the rule 

cp inconsistent probleml(X,Y) (-- X - Y < - 5 .  

CP-EBG-2 will always produce just  one single condition which implies an 

inconsistency. This is quite surprising at first. If we look at the space defined by 

the extra input  variables (here X and Y), one can easily show that  the subspace of 

all consistent Variable values is convex. Consequently, an inconsistent subspace 

can be described by just  one hyperplane (linear inequality). 

For a given instance, we expect that  the one condition concept description learned 

from this example can be executed much faster than constraint propagation on 

this example. We can even proof this s tatement  with precise complexity results. If 

l inear equations and unit  coefficients are used as constraints the time complexity 

of constraint propagation is already O(nE) where n is the number  of variables and 

E is the total size of all constraints (Davis, 1987). In contrast to this, executing one 

learned condition has a complexity of just  O(n). 

6. C o r r e c t n e s s  o f  C P - E B G - 2  

We will try to keep this section as brief and as informal as possible. We will 

heavily use (Gtisgen & Hertzberg, 1988) for which we will henceforth take the 

short form (G&H); for those who want  to get a deeper unders tanding we highly 

recommend this paper. Since prolog eb 9 is a correct method and cp consistent 

implements a fair constraint propagation strategy (Def. 8 G&H), our first 

approach CP-EBG-1 is guaranteed to learn a correct concept description. Correct 

means, that  if an instance fulfills the learned conditions then the labelling, which 

we get by instant iat ing and evaluating the generalized labelling, is identical to 

the final labelling produced by constraint propagation. 

The concept descriptions constructed by both approaches guarantee that  the final 

generalized labelling is consistent. However, the CP-EBG-1 concept description in 

addition assures that, for a new instance, all constraint propagation steps yield 

results analog to the one produced by the t ra ining instance. Consequently, CP- 

EBG-2 learns a more general  concept description than  CP-EBG-1. We must  

however show that  the CP-EBG-2 concept description is also correct. 

A labelling k assigns every variable of a constraint network an interval, i.e., a 

description of a set of possible values. A labelling LI is a subset ( C ) of a labelling 
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L2 , iff the subset  relat ion holds for every var iable  value. A constraint  c is a 

mapping from a labell ing to a new labelling. A constraint  includes computing a 

new value and intersecting it with the old one. We only deal with monotonic 

constraints  (Def. 2 G&H), i.e., c(L1) C_ L1 and [ L1 C_ L2 -* c(Li) C_ c(L2) ]. Almost  all 

types of constraints,  including the one we are us ing (linear equat ions with 

intervals),  are monotonic. An instant iat ion h is a function which maps  a 

generalized labell ing to a grounded labell ing by replacing certain var iables  with a 

value and eva lua t ing  all expressions. For instance, i fh  ins tant ia tes  X with 5 and Y 

with 7, then h([Y-1,X + 4]) = [6,9]. 

Def. 1: Let c be a constraint,  h an instantiat ion,  L1 a labelling, GL1 a generalized 

labell ing such tha t  L1 = h(Gkl). A generalization gen is a function which 

produces a new generalized labell ing GL2 given c, L1, and GLi such tha t  

GL2 =gen(c, ki,GL1) and c(L1) = h(GL2). 
Def. 2: Let  hi be one part icular  instantiat ion,  L~ = h~(GL1), GL2 = gen(c, L1,GL1), 

and H be the set of all possible ins tant ia t ion functions. 

A generalization gen is moderate, iff V hi E H: c(h,(GL,)) C_ hi(GL2). 

Moderateness means  tha t  if we derive a general  labelling from a constra int  

execution of a specific instance and then use this labell ing for a different instance 

(instantiation),  the resul t ing ins tant ia ted  labell ing will be a superset  of wha t  

executing the constraint  will give us. Moderateness  prevents  us from rul ing out  

possibly consistent values  from a labelling. 

For l inear equat ions and interval  ari thmetic,  the generalizations we perform are 

all moderate.  The rat ional  is the following: When  we generalize ar i thmet ic  

operations like +/2 there is no loss of precision. When we generalize intervalMin- 

tersection/3 we have to generalize maximum/3 (responsible for the lower bound) 

and minimum/3 (responsible for the upper bound). For instance if  we compute the 

minimum of 9 and 13 we get 9; if  the generalized values  are X + 4 and Y + 6 the 

generalized resul t  is X + 4. Even if  this resul t  is not correct for a different  

instant iat ion (e.g., X = 8, Y = 5), it can only cause an interval  to be larger than  it  

should be (but  never  smaller). 

Prop. 1: Let  cp be a mapping from an init ial  labell ing to a final consistent  

labell ing (if i t  exists) as it is computed by constraint  propagation. Let  GLs 

be a general  s ta r t  labelling. If  fikF is a generalized final label l ing con- 

structed by  moderate  generalizations of the constraint  propagat ion for 

some hi, then Y hi E H: cp(hi(Gks)) C: hi(GLF). 
This can be easi ly proved by  induction. It  a l ready gives us the correctness of CP- 

EBG-2 in the case of inconsistency: If  a superset  of the labell ing achievable with 



324 

constraint propagation is already inconsistent, then constraint propagation would 

also detect an inconsistency. 

Prop. 2: Same requirements as Proposition 1. 

If  hi(GLF) is consistent, i.e., hi(GL~) = cp(hi(GLF)), 

then hi(GLF) = cp(hi(GLs)). 
This can be proved using the uniqueness property of constraint propagation 

(Prop.2 G&H). Proposition 2 guarantees that  if the CP-EBG-2 concept description 

is fulfilled then constraint propagation would terminate with a consistent 

labelling identical to the instantiated generalized final labelling constructed by 

CP-EBG-2. Consequently, this proposition gives us the correctness of CP-EBG-2. 

7. C o n c l u s i o n s  

We have presented two ways of combining EBG with constraint propagation. The 

first, CP-EBG-1, is described by a straightforward use of prolog ebg/3 and it is 

obviously a correct method. The second, CP-EBG-2, performs two phases: First, a 

generalized final labelling is derived but no conditions are learned. Second, 

constraint propagation is again performed using the final labellings of phase 1 as 

the initial labelling. Now conditions are learned which form the desired concept 

description. This concept description is more general than the one constructed by 

CP-EBG-1. The reason is that  al though both descriptions guarantee that  the final 

labelling is consistent, the CP-EBG-1 description in addition assures that  the final 

labelling is reached with equivalent intermediate labellings. Or, to express it 

differently, a CP-EBG-2 description only guarantees that  a particular solution is 

correct, whereas a CP-EBG-1 description requires that  the solution is reached on a 

specific path with specific intermediate results. 

We have proved the correctness of CP-EBG-2 for the class of constraints using 

linear equations and interval arithmetic. Central to this proof- and to possible 

proves for other constraint classes - is the notion of a moderate generalization. It 

guarantees tha t  a generalization which was learned from one instance and which 

we now used in a new situation, does not lead to the exclusion of any solution for 

this new situation. The propositions outlined in Section 6 are very general and do 

not depend on the use of interval labels; they are applicable whenever variables 

are labelled with (the description of) a set of possible values. 

We have applied CP-EBG-2 in an example application where we had originally 

used CP-EBG-1 (Zercher 1990a). CP-EBG-2 led to clear improvements, i.e., for a 
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given set of training examples, the number of rules needed to be learned was 

decreased, the coverage of the learned rule set increased, and the average 

matching time for the rule set also decreased. 

We think that a two phase EBG approach, i.e., first derive a generalized solution 

and then justify this solution again in order to learn a concept description, will 

also be useful in other domains. In fact, we first discovered the two phase principle 

when we tried to apply EBG to the Simplex method (Zercher 1990b). Here it was 

obviously the correct and better approach. This then triggered a reconsideration of 

our first combination of EBG and constraint propagation. Clearly, whenever we 

want to apply the two phase approach to a new inference technique, we have to put 

in extra efforts in order to determine whether we will still learn correct concept 

descriptions. 
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