
E X P L A N A T I O N - B A S E D G E N E R A L I Z A T I O N

A N D C O N S T R A I N T P R O P A G A T I O N

W I T H I N T E R V A L L A B E L S

Kai Zercher

Siemens AG, ZFE IS INF 33,
Otto-Hahn-Ring 6, D-8000 Mfinchen 83

TU Mfinchen, Inst i tu t f~ir Informatik
Orleanstr. 34, D-8000 Mfnchen 80

Germany

zercher@ztivax.uucp

A b s t r a c t

Two ways of applying EBG to constraint propagation with interval labels are

presented. The first method, CP-EBG-1, is described by a straightforward use of a

Prolog EBG implementation. The second, CP-EBG-2, performs two phases: First,

constraint propagation is done and, using EBG, a generalized final labelling is

derived but no extra conditions ave learned. Second, constraint propagation is

again performed using the final labeltings of phase 1 as the initial labelling. This

time, conditions are learned which form the desired concept description.

It is shown that CP-EBG-2 learns more general concept descriptions than CP-

EBG-1. A proof is outlined that CP-EBG-2 produces correct concept descriptions

for the class of constraints using linear equations and interval arithmetic. Central

to this proof- and to possible proofs for other constraint classes - is the notion of a

moderate generalization. I t guarantees that a generalization which was learned

from one instance and which is now used in a new situation, does not lead to the

exclusion of any solution for this new situation.

K e y w o r d s

Explanation-based generalization, constraint propagation, interval labels,

moderate generalization.

313

1. I n t r o d u c t i o n

Constraint propagation is a popular and widely used inference technique in AI

(Davis, 1987). It operates on a constraint network, i.e., a set of variables (nodes)

interconnected by constraints which express relations among variables. The most

common type of constraint propagation is label inference: Every variable is

assigned a set of possible values, and constraints are evaluated in order to restrict

this set. This sort of constraint propagation is also called local constraint

propagation (Gfisgen & Hertzberg, 1988) or simply, as we will do throughout this

paper, constraint propagation.

Given a constraint network, typical questions are whether a locally consistent

solution (labeling of all variables) exists or what a particular value of such a

solution is. Sometimes, the constraint network is fixed but some inputs vary and

we have to determine the answer to these questions for various possible inputs.

This is a situation which we faced in an application of model-based diagnosis for

robot operations. Since constraint propagation turned out to be too slow for this

application, we applied explanation-based generalization (EBG) to it. Thereby we

learned general rules which, if applicable, derived the same results as constraint

propagation would do. When we compared the execution time of constraint

propagation for a specific instance with the time needed to match a rule learned by

EBG from constraint propagation and this example, the latter was faster by two

orders of magnitude. With the help of conditions learned from constraint

propagation, we could construct rules for error diagnosis whose usage reduced the

average diagnosis time considerably (Zercher, 1988, 1990 a).

In the next section we present a straightforward way to apply EBG to constraint

propagation and illustrate it with a small example; this is the method used in the

above mentioned literature. In Section 3, we propose a new, two phase approach,

which learns a more general but still correct concept description. Properties of

both methods are discussed in Section 4. We show in Section 5 that one can also

learn concept descriptions from inconsistencies detected by constraint

propagation. Section 6 introduces the notion of a moderate generalization, and we

will show that, together with the monotonicity property of constraints, this is

sufficient to guarantee that the new method yields correct generalizations. In the

final section, we present our conclusion.

314

2. E B G a n d c o n s t r a i n t p r o p a g a t i o n : F i r s t a p p r o a c h

EBG is a powerful, knowledge intensive learning technique (Mitchell et al., 1986;

DeJong & Mooney, 1986). It is able to learn a correct generalization from a single

t ra ining instance. Utilizing an available domain theory, EBG constructs an

explanation why the given example belongs to the target concept. This

explanation is then generalized and a conjunction of conditions, which forms a

sufficient condition for the target concept, is extracted from it. EBG guarantees

that the learned description fulfills an operationality criterion (Keller, 1987) that

tries to ensure that the description can be efficiently evaluated. Some authors put

EBG in a theorem proving framework and consequently speak about proofs, proof

trees, and so forth; other authors put it in a problem solving framework where an

explanation is a sequence of operators which transform an initial state into a goal

state. As (Mooney & Bennett , 1986) have shown, both are two views of the same

coin since the proposed, different generalization algorithms yield basically the

same results.

Table 1 shows a simple Prolog implementat ion of constraint propagation along

with some of the predicates needed for interval arithmetic. We normally work

with a CommonLisp implementation, however, we use Prolog here since it is the

de facto standard language for describing EBG research. Constraint propagation

works by repeatedly evaluat ing constraints. Whenever a value used by a

constraint is changed, this constraint must be reprocessed. This can mean that the

same constraint is executed several times. Constraint propagation stops - reaches

quiescence - when no constraint can change the value of a variable. Termination of

constraint propagation is guaranteed for some classes of constraints, e.g., l inear

equations with uni t coefficient, but not for all (Davis, 1987).

For the purpose of EBG, an explanation (proof) is a sequence of constraint pro-

pagation steps which transforms an initial variable labelling into a final labelling

which is consistent, i.e., every constraint is fulfilled. Such a sequence is exactly

what ¢p consistent/3 (the '/3' is a Prolog notation which means that the predicate

has 3 arguments) will produce provided the predicate succeeds. In (Kedar-Cabelli

& McCarty, 1987) a clear and concise EBG implementat ion is given. Their

predicate pro[og ebg/3 has as arguments, the goal clause, the generalized goal,

and a list of learned conditions (the operational concept definition). By applying it

to cp consistent/3, we have the desired combination of EBG and constraint

315

/*

cp_consistent([ConstraintIRConstraints], StartLabelling, FinalLabelling) :-
constraint(Constraint, StartLabelling, NewLabelling, AffectedConstraints),
/* Applies a const ra int and produces a new labell ing. I f a value of a var iable

/* was changed then all constraints which must be reused are contained in

/* AffectedConstraint . Fai ls i f an empty in terval was derived.

append(RConstraints, AffectedConstraints, UpdatedConstraints),
cp_consistent(UpdatedConstraints, NewLabelling, FinalLabelling).

cp consistent([], FinalLabelling, FinalLabelling).

constraint(c4,[x(X Int), y(Y Int)), a(A lnt),b(B__lnt), c(Cl Int)],
[x(X Int), y(Y Int)), a(A Int), b(B Int), c(C2 Int)], []) :-

/* The simple constraint C <-- X + [-2, 2] + A taken from Table 2.

interval plus(X Int,[-2,2],H__lnt}, interval plus(H Int, A Int, CNew
interval intersection(C1 Int, CNew Int, C2 Int).

interval intersection([A1,A2], [B1,B2], [Cl,C2]) :-
maximum(A1, B1, Cl), minimum(A2, B2, C2), C1 -%< C2.

interval plus([A1 ,A2], [B1 ,B2], [Cl ,C2]) :-
Cl is A1 + B1, C2 isA2 + B2.

maximum(- % Y, Y).
maximum(X, Y,X) :- Y -< X.
maximum(X, Y, Y) :- X -< Y.

Table 1 : Pieces of the Prolog code for constraint propagation

cp_consistent(+ Constraints, + StartLabelling, -FinalLabelling) :- */
succeeds i£constraint propagat ion te rmina tes with a consistent final labell ing. */

Int),

*/
*/
*/

*/

propagation; it will be called CP-EBG-1. However, we perform a few modifi-

cations, which we will explain after the following examples.

We first look at what happens if we apply prolog__ebg/3 to the predicate

interval intersection/3. Provided that arithmetic operations and comparisons are
declared as being operational, calling

pro log_ebg(interval_intersection(J1,5], [2,6], Int3),

interval intersection([X,Y], [U,V], Glnt3),

LearnedConditions).

will succeed with the following bindings:
Int3 = [2,5], Glnt3 = [U,Y], LearnedConditions = IX --- U, Y -< V, U -< Y]

The first condition guarantees that the lower bound of the result interval is the

lower bound of the second interval, the second condition guarantees that the upper

bound of the result interval is the upper bound of the first interval, and the third
condition guarantees that the result interval is well defined.

316

Table 2 shows an extremely simple constraint propagation problem. It is atypical

in the sense that there is no feedback, i.e., no constraint must be executed twice,

but it is sufficient for demonstration purposes. The training example is defined by

X = 5 and Y = 7. If we call
prolog ebg(cpconsistent([cl ], [x([5,5]), y([7,7]), a([-~, ~])], Labelling),

cp consistent([cl], [x([X,X]), y([Y,Y]), a([-~, co])], GenLabell ing),

LearnedCondit ions).

i t will succeed with the following bindings:
Labell ing = [x([5,5]), y([7,7]), a([1,2]), b([2,3]), c([6,9])],

GenLabell ing = [x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4])],

LearnedConditions = [X -< 6, 6 -< Y, -5 -< X-Y] /* simplified result */

This means, that we have learned the general rule (we use '~' instead of ':-' in

order to distinguish Prolog code from learned rules):

cpconsistent([cl, c2, c3, c4, c5], [x([X,X]), y([Y,Y]), a([-~, ¢o]), b([-~, ~]), c([-~, ~])],

[x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4])])

~-- X -- 6, 6 _ Y, -5 < X-Y.

In some cases, we might not be interested in computing the consistent final

labelling but only in determining whether it exists depending on the values of X

and ¥. With the definition

cp consistent prob leml(X, Y) :-

cp consistent([cl, c2, c3, c4, c5], [x([X,X]), y([Y,Y]), a([-~, =]), b([-=, =]), c([-¢% ~])],) .

we would get the rule:

cp consistent p rob leml (X ,Y) ~-- X<- 6, 6 - < Y , -5 <- X-Y.

Table 2 shows in detail what happens; it lists the constraint propagation steps,

their grounded and generalized results and the learned conditions. Some

expressions have been simplified in order to enhance readability. The conditions

are constructed when Ci.~ and C,ew,i are intersected in order to get Ci. This is done

in the same fashion as demonstrated above in the example for the predicate

interval intersection/3. In Figure 1, the dark shaded area shows the space

covered by the learned concept definition.

To the the standard EBG approach, we have applied the following modifications:

- Predicates which are used for control purposes do not cause any conditions to

enter the learned concept description. We took append/3 as an extremely

simple strategy to control constraint propagation. Other strategies (Davis,

1987) could also be used as long as they are "fair" (G(isgen & Hertzberg 1988).

- The list of learned conditions is simplified. After conditions have been individ-

ually simplified, e.g., X + Y-2 --_ Y + 5 becomes X --_ 7, redundant conditions are

317

A *-- [1 ,21 ,

A Simple Constraint Propagation Problem:

B ¢- [2 ,3] , C ~ - [5,16], C (-- X + [-2, 2] + A, C (-- Y + [-3, 3]+ B

Training example: X = 5 . Y= 7

Trace of CP-EBG-1 for the variable C

Name Interval Generalized Interval

Co [-®,®] [-~ ,~]

C , [5, 16] [5, 16]

C, [5, 16] [5, 16]

C.ew.2 [4, 9] [X-l, X + 4]

C2 [S, 9] [5, X + 4]

C.ew.3 [6, 13] [Y-l, Y + 6]

C3 [6, 9] [Y-l, X + 4]

Learned conditions

Learned Conditions or Comment

c o n s t r a i n t C <--- [5, 16]

5 _ < 1 6

c o n s t r a i n t C ~-- X + [-2, 2] + A

X-1 -< 5, X + 4 < 16, 5 < X + 4

constraint C (-- Y + [-3, 3] + B

5 < Y - l , X + 4 - < Y + 6 , Y-1 -< X + 4

(simplified): X - 6, 6-< Y , - 5 - < X - Y

Trace of phase 2 of CP-EBG-2 for the variable C

Name Interval Generalized Interval

Co [6, 9] [Y- 1, X + 4]

C , [5, 16] [5, 16]

C. [6, 9] [Y-l, X + 4]

C.ew. 2 [4, 9] IX-l , X + 4]

C2 [6, 9] [Y- I, X + 4]

C.ew.~ [6, 13] [Y-l, Y + 6]

C 3 [6, 9] [Y-1 ; X + 4]

Learned condit ions(simplif ied): X -< 12,

Learned Conditions or Comment

result o£phase 1

c o n s t r a i n t C ~ [5, 16]

5-<Y-1. X+4 -< 16, Y-1 - X + 4

c o n s t r a i n t C *--- X + [-2, 2] + A

X-1 -< Y- l , X+4--% X+4, Y - l - X + 4

c o n s t r a i n t C ¢--- Y + [-3, 3] + B

Y-1 -<Y- l , X + 4 - < Y + 6 , Y - I - < X + 4

6 < Y , - 5 < X - Y , X - Y _ 0

Table 2: Constraint propagation and EBG

removed. A condition is redundant if it is either always true like 0 --- 2 or if it is
implied by the remaining conditions. For instance, × __. 7 is implied by X ~ 5.
For the general case of linear inequalities, this test can be performed with the
well known Simplex method (e.g., Papadimitriou & Steiglitz, 1982). In our

experiments, simplification drastically decreased the size of the learned
concept description. This is one of the major causes why the learned concept

3t8

Y

1 0 -

i

i

m

m

I I I I I I I I I

/

5 10

Figure 1 : Coverage of learned concept definit ions

X

description can be executed much faster than constraint propagation on the

same example. See also (Minton, 1988) on the importance of simplification for

EBG.

We handle the predicate is/2 differently. Instead of gett ing the generalized

interval [Y-I, X + 4], standard EBG would produce something like [U, V] plus

the conditions U is Y-1 and V is × + 4. We achieve our type of generalization

with a simple change: When prolog ebg/3 performs is/2 on the grounded data,

=/2 is done for the generalized data (in addition, the use of clause/2 must be

altered slightly). This modification causes in fact only a syntactic change in the

EBG result. However, it has several small advantages, the main being that it

makes the presentation of EBG and its results simpler and easier to read.

3. EBG and constraint propagation: Second approach

We will call the new approach CP-EBG-2. From a given example it is able to learn

a more general concept description than CP-EBG-1. CP-EBG-2 consists of two

phases: First, we do constraint propagation and use EBG to construct a

319

generalized final labelling but we do not learn any <__/2 conditions. Second, with

the consistent labelling and its generalization produced in phase 1, we again

perform constraint propagation and apply EBG to it. Off course, the labelling and

its generalization will not be changed by any constraint (after all, this is the

property of a consistent labelling). This time, however, we will learn conditions

and form the desired concept description. For our example these steps are

illustrated in Table 2. We have learned the general rule

cpconsis tent ([c l , c2, c3, c4, c5], [x([X,X]), y([Y,YD, a([-~, ~]), b([-~, ~]), c([-~, =])],

[x([X,X]), y([Y,Y]), a([1, 2]), b([2, 3]), c([Y-1, X + 4])])

(- - X < 12, 6 < Y , - 5 _ X - Y , X - Y _ < O .

or as an alternative

cp consistent p rob leml (X ,Y) ~- X <- 12, 6 <-Y, -5 < X-Y, X-Y-< O.

The area covered by the learned concept description is depicted in Figure 1 by the

light and dark shaded areas. As we can see, the concept description found by the

new method is more general (covers a larger area) than the one learned by the old

method (only the dark shaded area). In Section 6 we will show that CP-EBG-2

always produces correct concept descriptions. The Prolog code of CP-EBG-1, CP-

EBG-2, and the examples presented here is available from the author upon

request.

Why can CP-EBG-2 learn a more general concept description than CP-EBG-1 for

the same generalized labelling? A formal argument is presented in Section 6, but

the following trivial example should help to get an intuitive understanding:

Assume we want to find the maximum of the list [1,2,3]. We do this in the usual

sequential fashion and after we have determined that 1 _ 2 and 2 <- 3 we conclude

that 3 is the maximum. A generalization of these reasoning steps would be that Z

is the maximum of [×,Y,Z] if X<-Y and Y<-Z. However, the antecedent 'X<-Z and

Y---Z' would obviously be more general and still be correct. We could get this

antecedent if we generalize the verification that 3 is indeed the maximum, i.e.,

1<-3 and 2<-3. By generalizing the verification of the solution instead of

generalizing the steps which led to the solution, a more general concept

description was found.

As an effect of our modified EBG, all functional expressions, e.g., Y-l, needed to

compute the final labelling are included in the final generalized labelling. If we

use standard EBG this is not the case; we just get generalized intervals like [U,V].

Consequently, starting phase 2 of CP-EBG-2 only with such a generalized

labelling would not produce a useful result; the connection to the parameters of

320

the initial labelling - here X and Y- would be lost. To perform CP-EBG-2 correctly

with standard EBG, we keep after phase 1 all predicates which compute the final

labelling, i.e., the is/2 predicates, and remove all others, i.e., the <-/2 predicates.

Phase 2 is then performed as before. Both methods will produce equivalent results.

In this paper one should read 'generalized labelling' as either the result of our

modified EBG or as the result of standard EBG plus the conditions which are

needed to compute the labelling. When we talk about 'generalized solution' this

should be understood the same way.

At first one might think that the result of CP-EBG-2 could also be achieved by

first computing the final consistent labelling and then presenting this as a train-

ing example to EBG. EBG would proof that the labelling is consistent and would

then derive a general condition for this. But this idea is flawed since all

connections to the initial labelling and its parameters are lost. The two phases of

CP-EBG-2 are really required.

4. P r o p e r t i e s o f C P - E B G - 1 a n d C P - E B G - 2

The training example used by CP-EBG-1 and CP-EBG-2 guides the generalization

process. It thereby determines which generalized final labelling is constructed and

when constraint propagation and its generalization is stopped. The latter point is

not apparent in our example, but as soon as there are feedback loops, e.g.,

introduced by the constraint B ~- £ - A, this becomes important. When feedback

loops are present, it is difficult to imagine how generalization could be done

without the help of examples. This is similar to the problem partial evaluation

faces with recursive rules.

Phase 2 of CP-EBG-2 is conveniently described as doing EBG. Note however, in

this phase the example is not really required since the outcome of all constraint

propagation steps, i.e., no change, is known in advance.

One question is whether two phases are sufficient. The rule learned by CP-EBG-2

describes the largest possible coverage of the determined generalized labelling.

Consequently, another phase which would try to change the learned <-/2

conditions could not be of any help.

Whenever an interval intersection is generalized three <_/2 conditions are

produced. Consequently, CP-EBG-1 will initially produce a number of conditions

equal to three times the number of constraint propagation steps. On the other

321

hand, with CP-EBG-2 it is just three times the number of existing constraints. The

number only depends on the problem size and not on the number of inference steps

performed. Usually, this means that CP-EBG-2 initially produces far fewer

conditions than CP-EBG-1. Therefore, less time must be spent by CP-EBG-2 on

simplification. Consequently, CP-EBG-2 will usually - despite the need for a

second phase - be much faster than CP-EBG-1.

When constraint propagation does not terminate, CP-EBG-1 or CP-EBG-2 are

obviously not possible. In such a situation one must resort to other inference

techniques. If the task is to decide the consistency of constraints which are linear

equalities or inequalities, a sound technique is the Simplex method. We can even

apply EBG to it (Zercher, 1990b).

Finally, a note on implementation seems in place. The predicate prolog ebg/3 is

a general EBG implementation based on a Prolog meta-interpreter and is there-

fore quite slow. A much better speed is achieved with a specialized implemen-

tation: All predicates are augmented by extra parameters for generalized values.

The generalization operations are explicitly coded. We experienced that Lisp is

better suited than Prolog. One reason is that Lisp has efficient array operations

which are needed to implement the Simplex method (required for simplification).

5. Learning from incons is tencies

Sometimes, we want to learn a concept description for the inconsistency of a

constraint network depending on the input variables. An inconsistency is present

when the intersection of two intervals, e.g., [1,2] and [4,5], is empty. CP-EBG-1

learns conditions for such a case by doing the same as before with the one

exception that the detection of an inconsistency, i.e., the upper bound of one

interval is lower than the lower bound of the other, produces a corresponding

general </2 condition and immediately stops constraint propagation. With the

training example X = 5, Y = 15 we learn the rule

cp incons is ten t . ._prob leml (X,Y) *-- X-Y < - 5 , 1 _< X, X < 6.

In the case of CP-EBG-2, we stop phase i as soon as an inconsistency has been

found and in phase 2, we just generate the one condition capturing the

inconsistent interval intersection. In effect this means that we take just the one

322

</2 condition from phase 1 and ignore all _-</2 conditions. For the same t ra ining

example, CP-EBG-2 learns the rule

cp inconsistent probleml(X,Y) (-- X - Y < - 5 .

CP-EBG-2 will always produce just one single condition which implies an

inconsistency. This is quite surprising at first. If we look at the space defined by

the extra input variables (here X and Y), one can easily show that the subspace of

all consistent Variable values is convex. Consequently, an inconsistent subspace

can be described by just one hyperplane (linear inequality).

For a given instance, we expect that the one condition concept description learned

from this example can be executed much faster than constraint propagation on

this example. We can even proof this s tatement with precise complexity results. If

l inear equations and unit coefficients are used as constraints the time complexity

of constraint propagation is already O(nE) where n is the number of variables and

E is the total size of all constraints (Davis, 1987). In contrast to this, executing one

learned condition has a complexity of just O(n).

6. C o r r e c t n e s s o f C P - E B G - 2

We will try to keep this section as brief and as informal as possible. We will

heavily use (Gtisgen & Hertzberg, 1988) for which we will henceforth take the

short form (G&H); for those who want to get a deeper unders tanding we highly

recommend this paper. Since prolog eb 9 is a correct method and cp consistent

implements a fair constraint propagation strategy (Def. 8 G&H), our first

approach CP-EBG-1 is guaranteed to learn a correct concept description. Correct

means, that if an instance fulfills the learned conditions then the labelling, which

we get by instant iat ing and evaluating the generalized labelling, is identical to

the final labelling produced by constraint propagation.

The concept descriptions constructed by both approaches guarantee that the final

generalized labelling is consistent. However, the CP-EBG-1 concept description in

addition assures that, for a new instance, all constraint propagation steps yield

results analog to the one produced by the t ra ining instance. Consequently, CP-

EBG-2 learns a more general concept description than CP-EBG-1. We must

however show that the CP-EBG-2 concept description is also correct.

A labelling k assigns every variable of a constraint network an interval, i.e., a

description of a set of possible values. A labelling LI is a subset (C) of a labelling

323

L2 , iff the subset relat ion holds for every var iable value. A constraint c is a

mapping from a labell ing to a new labelling. A constraint includes computing a

new value and intersecting it with the old one. We only deal with monotonic

constraints (Def. 2 G&H), i.e., c(L1) C_ L1 and [L1 C_ L2 -* c(Li) C_ c(L2)]. Almost all

types of constraints, including the one we are us ing (linear equat ions with

intervals), are monotonic. An instant iat ion h is a function which maps a

generalized labell ing to a grounded labell ing by replacing certain var iables with a

value and eva lua t ing all expressions. For instance, i fh ins tant ia tes X with 5 and Y

with 7, then h([Y-1,X + 4]) = [6,9].

Def. 1: Let c be a constraint, h an instantiat ion, L1 a labelling, GL1 a generalized

labell ing such tha t L1 = h(Gkl). A generalization gen is a function which

produces a new generalized labell ing GL2 given c, L1, and GLi such tha t

GL2 =gen(c, ki,GL1) and c(L1) = h(GL2).
Def. 2: Let hi be one part icular instantiat ion, L~ = h~(GL1), GL2 = gen(c, L1,GL1),

and H be the set of all possible ins tant ia t ion functions.

A generalization gen is moderate, iff V hi E H: c(h,(GL,)) C_ hi(GL2).

Moderateness means tha t if we derive a general labelling from a constra int

execution of a specific instance and then use this labell ing for a different instance

(instantiation), the resul t ing ins tant ia ted labell ing will be a superset of wha t

executing the constraint will give us. Moderateness prevents us from rul ing out

possibly consistent values from a labelling.

For l inear equat ions and interval ari thmetic, the generalizations we perform are

all moderate. The rat ional is the following: When we generalize ar i thmet ic

operations like +/2 there is no loss of precision. When we generalize intervalMin-

tersection/3 we have to generalize maximum/3 (responsible for the lower bound)

and minimum/3 (responsible for the upper bound). For instance if we compute the

minimum of 9 and 13 we get 9; if the generalized values are X + 4 and Y + 6 the

generalized resul t is X + 4. Even if this resul t is not correct for a different

instant iat ion (e.g., X = 8, Y = 5), it can only cause an interval to be larger than it

should be (but never smaller).

Prop. 1: Let cp be a mapping from an init ial labell ing to a final consistent

labell ing (if i t exists) as it is computed by constraint propagation. Let GLs

be a general s ta r t labelling. If fikF is a generalized final label l ing con-

structed by moderate generalizations of the constraint propagat ion for

some hi, then Y hi E H: cp(hi(Gks)) C: hi(GLF).
This can be easi ly proved by induction. It a l ready gives us the correctness of CP-

EBG-2 in the case of inconsistency: If a superset of the labell ing achievable with

324

constraint propagation is already inconsistent, then constraint propagation would

also detect an inconsistency.

Prop. 2: Same requirements as Proposition 1.

If hi(GLF) is consistent, i.e., hi(GL~) = cp(hi(GLF)),

then hi(GLF) = cp(hi(GLs)).
This can be proved using the uniqueness property of constraint propagation

(Prop.2 G&H). Proposition 2 guarantees that if the CP-EBG-2 concept description

is fulfilled then constraint propagation would terminate with a consistent

labelling identical to the instantiated generalized final labelling constructed by

CP-EBG-2. Consequently, this proposition gives us the correctness of CP-EBG-2.

7. C o n c l u s i o n s

We have presented two ways of combining EBG with constraint propagation. The

first, CP-EBG-1, is described by a straightforward use of prolog ebg/3 and it is

obviously a correct method. The second, CP-EBG-2, performs two phases: First, a

generalized final labelling is derived but no conditions are learned. Second,

constraint propagation is again performed using the final labellings of phase 1 as

the initial labelling. Now conditions are learned which form the desired concept

description. This concept description is more general than the one constructed by

CP-EBG-1. The reason is that al though both descriptions guarantee that the final

labelling is consistent, the CP-EBG-1 description in addition assures that the final

labelling is reached with equivalent intermediate labellings. Or, to express it

differently, a CP-EBG-2 description only guarantees that a particular solution is

correct, whereas a CP-EBG-1 description requires that the solution is reached on a

specific path with specific intermediate results.

We have proved the correctness of CP-EBG-2 for the class of constraints using

linear equations and interval arithmetic. Central to this proof- and to possible

proves for other constraint classes - is the notion of a moderate generalization. It

guarantees tha t a generalization which was learned from one instance and which

we now used in a new situation, does not lead to the exclusion of any solution for

this new situation. The propositions outlined in Section 6 are very general and do

not depend on the use of interval labels; they are applicable whenever variables

are labelled with (the description of) a set of possible values.

We have applied CP-EBG-2 in an example application where we had originally

used CP-EBG-1 (Zercher 1990a). CP-EBG-2 led to clear improvements, i.e., for a

325

given set of training examples, the number of rules needed to be learned was

decreased, the coverage of the learned rule set increased, and the average

matching time for the rule set also decreased.

We think that a two phase EBG approach, i.e., first derive a generalized solution

and then justify this solution again in order to learn a concept description, will

also be useful in other domains. In fact, we first discovered the two phase principle

when we tried to apply EBG to the Simplex method (Zercher 1990b). Here it was

obviously the correct and better approach. This then triggered a reconsideration of

our first combination of EBG and constraint propagation. Clearly, whenever we

want to apply the two phase approach to a new inference technique, we have to put

in extra efforts in order to determine whether we will still learn correct concept

descriptions.

Acknowledgements

I would like to thank Angelika Hecht, Peter Struss, and my advisor Prof. Bernd
Radig for many fruitful discussions and useful suggestions on earlier versions of
this paper. Special thanks go to the anonymous referees for their helpful
comments. The author thankfully acknowledges the support by a Ph.D. grant from
Siemens AG.

References

Davis, E., (1987). Constraint propagation with interval labels.
Artificial Intelligence, 32,281-331.

DeJong, G., & Mooney,R. (1986). Explanation-based learning: An alternative
view. Machine Learning, 1,145-176.

Giisgen, H.-W., & Hertzberg, J. (1988). Some fundamental properties of local
constraint propagation. Artificial Intelligence, 36, 237-247.

Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization
as resolution theorem proving. Proceedings of the Fourth International
Workshop on Machine Learning (pp. 383-389). Irvine,CA: Morgan Kaufmann.

Keller, R. M. (1987). Defining operationality for explanation-based learning.
Proceedings of the Sixth National Conference on Artificial Intelligence
(pp. 482-487).

Minton, S., (1988). Quantitative results concerning the utility of explanation-
based learning. Proceedings of the Seventh National Conference on Artificial
Intelligence (pp. 564-569).

326

Mitchell, T. M., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based
generalization: a unifying view. Machine Learning, 1,47-80.

Mooney, R. J., & Bennett, S. W. (1986). A domain independent explanation-based
generalizer. Proceedings of the Fifth National Conference on Artificial
Intelligence (pp. 551-555). Philadelphia, PA: Morgan Kaufmann.

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorical Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall.

Zercher, K., (1988). Model-based learning of rules for error diagnosis.
In Hoeppner, W. (Ed.), Proceedings of the 12th German workshop on artificial
intelligence (GWA188) (pp. 196-205). Springer.

Zercher, K., (1990 a). Constructing decision trees from examples and their
explanation-based generalizations. In Marburger, H., (Ed.), Proceedings of the
14th German workshop on artificial intelligence (GWA190) (pp. 267-276).
Springer.

Zercher, K., (1990 b). Learning efficient rules and decision trees for error
diagnosis of robot operations. Unpublished working paper.

