
S T A T I C L E A R N I N G F O R AN A D A P T A T I V E T H E O R E M P R O V E R

C. BELLEANNEE J. NICOLAS

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex. France. Email : jnicolas@irisa.fr

A b s t r a c t

An adaptative theorem prover is a system able to modify its current set of inference rules in

order to improve its performance on a specific domain. We address here the issue of the

generation of inference rules, without considering the selection and deletion issues. We

especially develop the treatment of repeating events within a proof. We specify a general

representation for objects to be learned in this framework, that is macro-connectives and macro-

inference-rules and show how they may be generated from the primitive set of inference rules.

Our main contribution consists to show that a form of analytical, static learning, is possible in

this domain.

Key-words Theorem proving. Macro-operators. Sequent calculus. Generalization to N.

1 I n t r o d u c t i o n

Our aim is to improve the performance of the theorem prover on a given domain, given some

representative sample of theorems on this domain. A theorem prover may be characterized by its

set of inference rules and its set of axioms. Our methodology is to produce automatically an

auxiliary new set of macro-inference rules for the prover, rendering the specificity of the

semantics of the domain.

It seems that there has been very little work addressing the issue of adapting a general

automated prover on a specific domain (Cohen, 1987; O'Rorke, 1987; Pastre 1989). We

present these works in the last section. At a first sight, theorem proving is just a particular case

of problem solving and one may wonder why known learning methods in problem solving are

not widely used in theorem proving. The mutual ignorance of each research field is only a

299

partial answer to this situation. In order to explain the specificity of theorem proving, we need a

more accurate view of each domain.

One of the most common views of problem solving is to conceive it as a search in a state

space. The transitions in the space are formalized as applications of operators. To solve a

problem is to find a path between an initial state and a final goal state. If we want to describe

theorem proving within this framework, states are sets of formulas, the goal state being the

theorem to be proven (or its negation if we are looking for unsatisfiability). Operators are rules

of inference.

Learning in problem solving consists of building a new, more abstract state space. That is,

learning either produces clusters of states, or/and sequences of operators (paths in the space).

The first case corresponds to the learning of preconditions of operator applications. The second

case describes macro-operator learning.

What makes the learning of preconditions effective in problem solving is that each step is

meaningful. Each operator represents a transition between two worlds with a clear semantics

conveyed by the action. In theorem proving, one faces the issue of transformations that are too

atomic to represent significative steps and allows the production of uninteresting intermediate

states (sets of formulas). Unlike problem solvers where operators are problem-dependent,

theorem provers need a complete and general set of inference rules in order to draw their

conclusions, which does not capture the semantic of the domain.

The definition of a strategy is the main problem in theorem proving. We reduce it to the

learning of useful sequences of elementary steps, that is, learning of macro-inference rules. The

principle is to produce a redundant set of inference rules, making up for the increase in the

branching factor during the choice of an inference rule step, with a sensible decrease of the

number of steps needed to achieve a proof. The formation of macro-rules has been a subject of

interest since the development of problem solvers and planning systems. An early and famous

study is the MACROPS system of Fikes, Hart and Nilsson (1972). More recent studies include

(Porter, 1984; Korf 1983, 1985; Minton 1988; Iba 1989). The specificity of the problem for

theorem provers lies in the fact that elementary operators have a very poor semantics,

independant of the domain. However, it is possible to build useful macros if we consider some

proof traces of known theorems. This dynamic form of learning has been previously explored.

However, it seems that static learning, a form of learning studied by Korf (1983,1985) in the

framework of problem solving, has not lead to any work in theorem proving. Static learning

produce macro-operators while analysing operators themselves, without considering any trace

of resolution. Since operators are very general in theorem proving, one may believe that such a

technique is of no help for the problem at hand. This paper aims to show that some kind of

static learning is nontheless possible. We first present a quick view of our prover.

300

2 Automated Theorem Proving

Automated deduction methods may be split into two main streams. Resolution style methods

deal with formulas in a standard form by means of a single inference rule. Natural like methods

accept formulas in their original form but require at least as many inference rules as connectives

in the original language.

This paper deals with the second kind of methods, since we claim that keeping formulas in a

more structured form allows one to reason at different levels of abstraction, which is a

fundamental requirement for learning methods.

Amongst natural-like methods, we have chosen the system G, a sequent calculus defined by

Gentzen (Gallier, 1986), which is well suited to mechanisation because of the convergence of

its set of inference rules (due to the subformula property of the system). A sequent (SA,SB) is a

pair of possibly empty sets of formulas, noted SA ---> SB or A 1 A m --~ B 1 B n if SA ---

{A 1 Am} and SB ={B 1 Bn}. The semantics associated to this notation is that A 1,

.... A m ~ B 1 B n is true iff the formula A I ^ ...^A m ~ B l v ...vB n is true. The inference

rules of the system G directly reflect the semantics of the logical connectives. There are two

inference rules for each connective, corresponding respectively to the treatment of an occurence

of the connective in the left and in the right part of the sequent. For example, the following rules

govern the occurences of the and connective:

AI.,A2, SA--> SB S A ~ SB, B 1 S A ~ SB, B2.
AI^A2, SA --~ SB SA --4 SB, BI^B2

In the framework of the system G, a deduction of a sequent S consists in splitting up the

semantics of S, by means of the inference rules. As an example, here is a deduction tree for the

sequent " ~ (p ~ q) ~ (--,q~--,p)" (It is a proof tree for the formula F= (p ~ q) ~ (- - ~ p))

(p ~ q) ~ (~ q ~ p)
I

p ~ q ~ -~q~-~p
/ \

~ p , - - , q ~ p q ~ - - - , q ~ p

I I
--,q.---)p, - . - ,p q,~q.--~ ~ p

I I
.-.,q,p---)p q--.-) -.-,p, q

301

3 W h e n to b u i l d a n e w m a c r o

Four issues have to be addressed when considering macros :

a) When to build a new macro, b) How to build a new macro.

c) When to cancel an old macro, d) When to select a given macro.

The focus of this paper is on the first two points. Point a) raises the issue of defining the

concept of interestingness of a sequence of rules or operators. It is the subject of this section.

Point b) addresses the issue of composing a sequence of rules or operators and is developed in

section 4.

The generation of macros requires the prior definition of formal criteria leading to the

specification of the concept of an interesting sequence of rules. This work proposes to tackle

with domains where repeated applications of a same sequence of rules of inference occur during

the proof of theorems. In fact, this covers three kinds of situations. First, a given theorem may

have a regular structure, with repeated sequences of connectives, leading to a repeated

application of some sequence of rules in the proof tree. Next, the proof of the theorem itself

may be structured, leading to the natural elaboration of lemmas whose proofs may be reused for

the construction of the global proof. And last, one may want to prove several instantiations of a

generic formula, thus using the same sequence of rules for different theorems sharing a same

structure. In this last case, the prover becomes able to solve complex theorems (problems),

training itself on a set of simpler but complex similar theorems of growing complexity, thus

exhibiting an ability to learn from experience. In each case, macro-rules may be detected upon

an empirical basis : the observation of regularities in the data.

The problem is referred to as the "generalization to N" problem since the work of Shavlick

and Dejong (1987), and is a subject of growing interest in the Machine Learning community

(see, e.g., (Cheng &Carbonell, 1986; Cohen, 1987,1988; Prieditis, 1986)). It involves the

extension of a given procedure accepting a fixed number of arguments, in order to obtain a new

looping procedure, able to handle an arbitrary finite number of arguments. The aim of this

transformation is to keep the computation inside reasonable bounds of complexity with the

growing number of arguments.

We now define more precisely this notion of regularity in the framework of theorem

proving. We introduce for this purpose the basic concept of homogeneity, which roughly

corresponds to the invariance with permutation on the components of a logical object. The

motivation for this choice comes from the observation of classical "hard" logical puzzles like the

placing of queens on a board, the colouring of a complete graph (Greenwood and Gleason

1955) or the Schurr lemma (Schur 1916). They all include homogeneous formulas, and the

302

difficulty of their proofs stems from the incapability of general theorem provers to handle such a

global property. As a consequence, the size of their proofs depends exponentially on the

number of "objects" in the problem (number of queens, of nodes...). We developed a

semantical and a syntaxical version of the homogeneity criterion. The detection of syntactical

homogeneity leads to a form of static learning, in the sense that no proof is needed in order to

build macros.

3.1 Basic definitions

Definition : A macro-operator of arity n M is a)~abstraction of a logical object w.r.t. [

n variables F 1 F n, i.e. of the form)~FI,~..F n M(F1,...F n)
i i i

This definition is primarily designed for formulas, where operators are connectives and we

will focus on formulas in the rest of the paper. But the definition may be easily instantiated to

handle sets of formulas, by means of a special connective ",". Finally, we represent a proof in

the same way, rules of inference being treated as connectives of arity 2.

Examples: Id = X F.F is the identity macro operator, of arity 1.

Equiv = ~. A , B . (A ~ B) ^ (B ~ A) is a macro-connective of arity 2 corresponding to the usual

equivalence relation.

I Definition : A formula F is semantically homogeneous with respect to the components Scl

if S c is a set of sub-formulas occurring in F such that F is invariant for every permutation on[
these objects (i.e every permutation on S c leads to logically equivalent formulas). The I
cardinality of S c is the arity of homogeneity.]

(Macro-)connectors themselves may be viewed as generic formulas. We say that a connector

of arity 2 is extendable iff it is associative and homogeneous of arity 2, that is iff it is

associative and commutative.

Examples:

{pvqvr, ~pv~q, ~pv~r , ~qv---x} is a set of formulas homogeneous of arity 3 with respect to

the components p,q,r.

The v connective is extendable.

303

We now provide a syntactical, stronger notion of homogeneous logical objects. This

provides a practical definition of homogeneity. We first define the notion of homogeneous

block, which is a syntactical characterization of the elementary (smallest) homogeneous objects.

Definition : A formula F is a homogeneous block with respect to a set of components S o

deno ted <C,M> if there exists a redex of F= (F A FI) , such that

a) the only operator of F A is the extendable connective C, the link of the block

b) each formula fie F I is an instance of the macro-operator M, the pattern of the block

c) the set {f i} is invariant (unaltered) for every permutation of its components S c.

Propositionl: If there exists a redex (FA FI) representing a formula F such that the
formulas fi of FI are homogeneous blocks with respect to a set of components S c, then F is

semantically homogeneous with respect to S c. We say that F is a connection of the blocks FI ,

with the block structure FA.

Examples:
F1 = p v q v r = ((L x,y,z , xvyvz) p q r) = <v,Id> is a homogeneous block with respect to

{p,q,r}.The extendable connective v is the link and ~. x. x = Id is the pattern of the block.

F2 = (~ p v ~ q) A (~ p v ~ r) A (~ q v ~ r) = ((X x ,y , z . XAyAZ) ~ p v ~ q ~ p v ~ r ~qv--,r) =

<A,~.x~.y.~xv~y> is a homogeneous block with respect to {p,q,r}.

F3 = (~pv~q)A(~pv~r) is not homogeneous with respect to {p,q,r}. Indeed, given the

permutation {p<--q, q<--p}, the formula becomes (~pv-~q)A(~qv~r) which is clearly not

equivalent.

F = (pvqvr) A (~pv~q) A (~pv~r) A (~qv~r) is not a homogeneous block with respect to

{p,q,r}, but it is a homogeneous formula with respect to {p,q,r}. It is a connection of the

blocks {F1,F2} whose block structure is ~ x ~.y. x A y.

The converse of the proposition is clearly false. For example, (p ~ q) A (p v ~ q) is

homogeneous with respect to {p,q} but is not decomposable in homogeneous blocks. We

assume that syntactical regularities are the only relevant regularities at the formula level and that

the detection of equivalences occurs at the proof level. Thus, we obtain a practical, efficient

way to test for homogeneity. Moreover, we have proved in (Belleannre, I991) the following

result, showing the expression power of the syntactical criterion:

Proposition2: for every semantically homogeneous formula of the propositional calculus,

there exists at least one logically equivalent formula syntactically homogeneous.

The next step consists in generalizing the number of parameters a same macro-operator is

able to handle, leading to the construction of an homogeneous concept.

304

3.2 Macro-operators of variable ar i ty

|

Definition : A macro-operator of variable arity M(L) is an abstraction of variable length such[

that L denotes the set of variables occurfin~ in the macro. I

The expression of these macro-operators requires the definition of a language of operators

handling sets of logical objects. We have designed for this purpose a general set operator

schema. In order to improve the readability of paper, we only present a restriction of our

schema, sufficient for the current description. In this schema, "logical object" means formula or

sequent:
o 0

M((Macro-)Operator, Structure_of_selections, Set_of_logical_objects), where
o o

M(Md,Struct(Vr..,Vd),L) - {Md (~V1..., cV d) / c instanciates Struct(Vt...,V d) in L}

A structure with variable arity is based on a notion of repetition of patterns.

In our schema, in terms of control structures the macro is a for loop producing instances of the
macro-operator M d. Struct(Vr..,Vd) may be viewed as the condition part of a while loop on the

set of primitive components L.

In the schema:

-The macro-operator Md is either a simple macro operator or a primitive macro-operator of

variable arity (that is, the extension of an extendable macro of arity 2 to greater arities by means
o o

of a repeated application of it). For instance, we define A(L) to be the repeated application of A

on the elements of L.
-The selector Struct(V t Vd) designates the set of variables {V 1 Vd}With a particular

structure (i.e. a partial ordering on the variables).

Based on this schema, we introduce simplified notations for some default values of set

operator arguments such as: 1~I (Md,L)= M (Md,Var(L),L), where Var(L) returns a pattern of

different variables the length of which is the cardinal of L, and we define primitive operators
o o

such as: AND (S,L) = M(A,S,L)).

Example : At-least-2(L) = ~I (v,/~ (A, <A,B>, L)) = ~/ (AND (<A,B>, L)) is a macro-

connective of variable arity.

At-least-2({p,q,r}) - { (pAq) V (pAr) V (qAr) }.

305

3.3 From homogeneous formula to homogeneous concepts

The def'med language allows the user to introduce his own macro-connectives in the theorem

prover. However, some macro-connectives of variable arity may be automatically derived from

simple ones. So, the homogeneity concept aims at specifying the simple macro-operators that

may be extended to handle an arbitrary number of arguments. We now define this mapping.

The process consists in generalizing to N the number of arguments of the macro, preserving

the block structure of this macro. Indeed, our fundamental claim is that preserving this block

structure preserves the underlying semantical interesting features of the operator and hence

allows it to be efficiently treated.

Formally, let F be a fixed arity homogeneous logical object for a set of components S, and
let P = (FA FI) be a redex of F where fi E F I are homogeneous blocks. The corresponding

macro-operator of variable arity is P except that

each block fi = <C,Md> is replaced with ~i = l~(C,1V~(Md,s t ructure(Md), L)),

where structure is a recursive function whose result is a partially ordered set of variables

depending on the primitive connectives of Md.

Example: Let F be the homogeneous formula F of the previous section:

F = (pvqvr)A(~pv~q)A(~pv~r)A(~qv~r) , whose block structure is F= F1AF2, with

S={p,q,r}, F1 = <v, Id> and F2 = <A, 7~x~,y.~xv~y>.

The corresponding macro-connective of variable arity is

(L) = ~I(L) A ff2(L) with

~I(L) .o .o = M(v , M(Id,<x>,L)) = M (v,L) = v (L) .

~2(L) = ~l(A,l~(~.x~.x.~xv--,y,<P,Q>,L))= ~x({ ~.x~x.~xv~y, <P,Q>,L) }).

That is '~ (L) = ~/(L) A ~x ({Lx~.x.~xv~y, <P,Q>, L) }).

For instance, ~ ({a,b,c,d}) = (a v b v c v d) A (~ a v ~ b) A (~ a v ~ c) A (~av--,d) A

(~bv--~c) A (~bv~d) A (~cv~d).

From a semantic point of view, the instance F expresses the meaning 1-among-3, and the
o o

generalized formula F represents the concept 1-among-N. Actually, the generalization

preserving the block structure also preserves the homogeneity property.

We do not claim that this mapping is the only interesting one. It has been considered for its

simplicity, and in our opinion it exhibits the concept the more naturally induced from the

instance, within the bias of homogeneity. But it must be clear that other transformations have to

306

be considered in order to fully benefit from the expressiveness of the language of macros of

variable arity.

4 H o w to b u i l d a n e w m a c r o - r u l e

This section deals with the integration of the new macro-connectives in the framework of the

system G (see section 2), according to a partial evaluation principle. The problem is the

following: given a macro-connective, we would like the system to be able to take it into account

directly through associated macro-rules. For each macro-connective, two inference rules may

be generated, one operating on a macro occurring in the left part of a sequent and the other one

in the right part. A macro-rule is produced by synthesizing the deduction tree of the macro-

connective. The method used to process the inference rules assigned to a macro-connective MC

may be featured by the following algorithm.

func construct-the-inference-rules (MC):
construct-one-rule (MC ---->) construct-one-rule (---> MC)

func construct-one-rule (Sequent):

Deduction-tree := expand-tree (Seqtient)

Leaves:= extract-the-leaves (Deduction-tree)
Leaves
Sequent

We precise now the construction of the rules for the simple and the variable arity cases.

For a macro-connective MC with fixed arity, the function "expand-tree" processes the

deduction tree associated to the sequent MC--> (or ---> MC) applying inference rules of the

system G to the sequent. The development is achieved when all the operators occurring in the

partition of MC have been completely expanded, that is, when the resulting sequents contain

only logical objects of the initial partition (those sequents are the leaves of the tree). Then, the

second procedure "extract-the-leaves" simplify the proof, removing redundant leaves such as

axioms and subsumed leaves. The resulting macro-rule consists of the optimized leaves as its

premise, and in the macro-connective as its conclusion.

Example: Given the macro-connective MC defined by MC(A,B,C) = (B~C)~((A~B) A

(B~A)), the following figure i11ustrates the processing of the right macro-ride for MC:

307

deduction tree resulting from expand-tree (--->MC(A,B,C)):

--~(B=~-')~((A~B) A (B~A))

B=~C --> (A~B) ̂ (B~A)
/ \

B~C ----> A~B B~C ----> B~A
I I

B~C,A ----> B B~C,B ----> A
I I I I

A---> B,B A,C---> B B--> A, B B,C--> A

right macro-rule for MC resulting from
construct- 1-rule(--->MC(A,B,C)):

A --->B B,C--->A

-->MC(A,B,C)

In order to derive the deduction tree of a macro-connective with variable arity, according to

the system G, the function "expand-tree" needs extended derivation rules dealing with the

variable arities. For illustration purpose, we just present one of them, treating the occurence of a

variable arity AND in the left part of a sequent (for more information see (Belleannde, 1991)):

1~ ([SA --> SB,X], <X>, L)
0¢1

SA ---> SB, A(L)

5 A n e x a m p l e

We show an example of a homogeneous formula handled by the system. The first step

consists in detecting the simple homogeneous formula and then learning the corresponding

macro-rule with variable arity. The second step illustrates the use of the learned structure.

5.1 L e a r n i n g step

- Given the formula F= (aAb) v (-~aA--,b), the system detects whether it is homogeneous

with respect to its components {a,b}. The resulting block structure is F--- F 1 v F 2

with F I = (aAb) = <A, Id> and F2= (~aA~b) = <A, ~.x .~x>

- Then, the application of the generalization to N algorithm produces the homogeneous
o o Oo o o

formula with variable arity F : F (L) = FI(L) v ~2(L)

308

with ~ 1 (L) = ~I (A, 1~ (Id,<A>,L)) = ~I (A,L) = X (L)
o o o o

and F2(L) = ~I(A, ~I(~.x .--,x ,<A>,L)) = A({ I x .-~x, <A>, L })

-Both macro-rules associated to ~ are established applying on '~ variable arity rewriting

rules (see section 4). Notation: PROD is a product on sets o f sequents.

a- Left rule:

derivation tree:

~(L) V A({~.x .~X ,<A>,L}) ---)

/ \

~0~) -~

I

PROD (~ (~.x .[x -~ a, <a>, L))

I

L--~

o o

A({~,x .-~x ,<A>,L}) --~

I

PROD (~I (~x . [--nx ---)] ,<A>, L))

I

PROD (~4(~.x .[--) x] , <A>, L))

l

---)L

synthesized rule:

L ----) ---~ L

b- Right rule:

derivation tree:

---) A(L) V A({~.X .--nx ,<A>,L})

PROD ({---) A(L)

I

PROD ({ ~I(%x .[---) x] ,<A>, L)

I

PROD ({ ~I (%x .[---) x] ,<A>, L)

I

~ (~.x~,y. x ---) y, <A1;A2> L)

synthesized rule:

(~,x~,y. x ---) y, <A1;A2>,L)

, -+ A ({ ~ . x . - n x , <A>, L })

, ~ (~.x .[. ~ x 1 , <A>, L) })

, ~ (~ . x . [x - ~ I , < A > , L) })

~ F

5.2 Using the learned rules

309

o o

From now on, when the system detects that a formula F is an instance of F, it directly
derives F by means of both previous rules. For instance, the formula F 2 = (pAqAr) V

(~pA-~qA--~r) matches the formula F, with the instanciation L={p,q,r}, so the immediate
o o

derivation of "F2--~" using the macro-rule " F ---~" is (while an indirect derivation of "F2---~"

would have produced a derivation tree with 10 nodes and 7 levels):

(pAqAr) V (-npA~qA--~r) --~

/ \

p,q,r --~ --~ p,q,r

6 Related W o r k

Amongst the systems addressing the issue of adapting a general automated theorem prover

on a particular domain, one can distinguish two main approaches.

The system Muscadet (Pastre, 1989) is a representative of the first approach. In this system,

the learning component may be classified as performing knowledge acquisition. Indeed,

learning proceeds by transforming some declarative knowledge into a procedural, deductive

one.

Muscadet is a general theorem prover with an expert system architecture. It is dedicated to

mathematical fields requiring a lot of knowledge and know-how, like set theory, relations,

topology... Specific knowledge is given to the system as facts and rules. Then some meta-rules

automatically translate mathematical definitions into inference rules.

The second approach is related to explanation based learning in order to build an operational

knowledge guiding deductions.

The system realized by O'Rorke consists in applying an EBL learning system to

propositional calculus problems from Principia Mathematica (O'Rorke, 1987). The system

generalizes the already proven theorems in order to forget the extraneous details and to

remember only the main features of the specific theorems.

310

The generalized theorems are then stored to be reused for future proofs. For instance, the

theorem ~ (p v q) ~ (p ~ q) gives rise to the theorem ~ (A v B) ~ (A :=:, D).

In this system, the learriing process consists in learning particular lemmas, characteristic to

the domain, in order to augment the set of basic axioms of the theorem prover.

The system ADEPT (Acquisition of DEterministic Proof Tactic) (Cohen, 1987, 1988)

performs a more sophisticated kind of EBL. It acquires some control knowledge, that is, search

strategies for a theorem prover on a particular domain, given instances of "good proofs".

The method consists in analysing the inputs proofs in order to fred which inference rule was

used in which situation. This learned knowledge is represented in a finite state automaton, and

is used to guide the choice of the inference rule to employ in future proofs, when similar

situations occur. Learning belongs to generalization to N methods, which allows recognition

and generalization of looping constructs in the proof instances.

Our method shares with all these systems the common concern to "operationalize" some

knowledge about the kind of proofs that are requested from the prover. ADEPT is the nearest

system from ours. But, we are working on the structure of the theorems themselves rather than

the proofs. Both approaches are not concurrent and the full treatment of homogeneity requires a

work at the proof level. However, homogeneity is a global criterion, and requires to work on

the whole proof. The regularity criterion in ADEPT (two rules of inference belongs to a same

class if they are immediately followed by identical rules) is more local and thus, potentially

captures more and shortest macros.

7 Conclusion

This paper proposes a framework enabling one to introduce learning abilities in an automated

theorem prover. It is founded on the detection of regular structures within formulas and proofs.

We provide a representation, that is a language and operators to deal with such structures

We have not yet addressed the important issue of determinating when to cancel an old

macro. Iba (1989) has developed a general framework to describe system managing sets of

macro-operators. In this view, the set of macro-operators is pruned by two types of filters.

Static filters are applied at the creation of a new macro to decide on analytical criteria which

macro may be kept. Dynamic filters are applied after an execution requiring some macro-

operators to decide on empirical criteria which macro may be kept.

311

In the framework of theorem proving, according to this work, we plan to experiment with

the following filters:

static filters: a) Keep macros of polynomial complexity (analytical measure), b) Check for

each new macro if it is not redundant with some old ones. Remove the most specific.

dynamic filters: c) Keep macros of polynomial complexity (empirical measure), d) Retain

macros in an ordered list of bounded size. Remove the least frequently used.

References

BeUeannre C. "Improving deduction in a sequent calculus". Proc of the 8th biennal conference
of the CSCSI", pp 220-226, Ottawa, may 1990.

Belleann6e C. "Vers un drmonstrateur adaptatif". Th~se de l'Universit6 de RennesI, Jan 1991.
Cheng P. & Carbonell J. "The FERMI system: Inducing Iterative Macro-operators from

Experience". Proc. of AAAI, 1986.
Cohen W. "A Technique for Generalizing Number in Explanation Based Learning".

ML TR 19, Rutgers University, Sept 1987.
Cohen W. "Generalising Number and Learning from Multiple Examples in Explanation Based

Learning". Proc. of 5th ICML, pp256-269, Morgan Kaufmann, Los Altos, Calif. 1988.
Fikes R., Hart P. & Nilsson N. "Learning and Executing Generalized Robot Plans "

A.I. 3, pp 251-288, 1972.
Gallier J.H. "Logic for Computer Science: Foundations of Automatic Theorem Proving".

Harper & Rown, New York, 1986.
Greenwood R.E. & Gleason A.M. "Combinatorial relations and chromatic graphs"

Combinatorial Journal 7, 1955
Iba G. "A Heuristic Approach to the Discovery of Macro-operators".

Machine Learning 3, pp 285-317, 1989.
Korf R. "Learning to Solve Problems by searching for macro-operators".

PhD Thesis Carnegie Mellon University, 1983.
Korf R. "Macro-operators : A Weak Method for Learning". A 1 26, pp35-77, 1985.
Minton S. "Learning Effective Search Control Knowledge: an Explanation Based Approach".

PhD Thesis Carnegie Mellon University, 1988.
O'Rorke P. "LT revisited : Experimental results of applying explanation-based learning to the

logic of principia mathematica". 4th IWML Irvine,1987.
Pastre.D "Muscadet : An Automatic Theorem Proving System Using Knowledge and Meta-

knowledge in Mathematics". Artificial Intelligence, vol 38, 1989 pp 257-318.
Porter.B "Learning Problem Solving". PhD Thesis University of California, Irvine 1984.
Prieditis A. "Discovery of Algorithms from Weak Methods".

Proc. of International Meeting on Advances in Learning, Les Arcs France, 1986.
Schur I. "0ber die kongruenz xm+ym=z m mod p" Jber Deutsch Verein 25, pp114-116. 1916
Shavlik J. & Dejong G. "An Explanation-Based Approach to Generalising Number".

Proc. of IJCAI-87, Milan, Italy, pp236-238, 1987.

