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A b s t r a c t  

In the paper the algorithm of the 'naive' Bayesian classifier (that assumes the independence 

of attributes) is extended to detect the dependencies between attributes. The idea is to opti- 

mize the tradeoff between the 'non-naivety' and the reliability of approximations of probabilities. 

Experiments in four medical diagnostic problems are described. In two domains where by the 

experts opinion the attr ibutes are in fact independent the semi- naive Bayesian classifier achieved 

the same classification accuracy as naive Bayes. In two other domains the semi-naive Bayesian 

classifier slightly outperformed the naive Bayesian classifier. 

K e y w o r d s :  machine learning, Bayesian classifier, approximations of probabilities, (in)depen- 

dence of events 

1 I n t r o d u c t i o n  

Let Ai, i = 1 . . .  n be a set of attributes, each having values Vi.j,j = 1 . . .  NV~. Let Uj be one of m 

possible classes. If the values of attributes for a given object are obtained in sequential order from 

A1 to Ak, 1 < k < n, the probability of class Cj can be updated using the sequential Bayesian 

formula (Good 1950): 

k 
P(cAv,,~,,...,vk, jO = e(cj) ~ e(c~lv~,~,,...,v,.j,) .= p ~ : :  : ~ , )  (1) 



207 

where J~ represents the index of the value of at tr ibute A~ for current object to be classified. The 

correctness of eq. (1) is obvious as the right hand side can be abbreviated to obtain the identity. 

If the values of all at tr ibutes are known then k = n. If in (1) the independence of at tr ibutes is 

assumed, the naive Bayesian formula is obtained: 

P(CilVL.r, . . . . .  V,,d.) = P(Ci) f i  P(CilV~"r') ,=, P(Cj) (2) 

Both formulas, (1) and (2) can be used to classify new objects, given the set of training ex- 

amples with known classes from which the prior probabilities can be approximated. An object 

is classified to class with maximal probability calculated with (1) or (2). In fact, formula (1) 

is appropriate for induction of decision trees, if the selection of the next at t r ibute to be tested 

is assumed to be independent of an object to be classified (Kononenko 1989). In the case of a 

decision tree, the values V1,jI , . . . ,  Vk,$~ in (1) represent the path from the root to the leaf of a tree. 

If a limited number of training data is available, the approximation of the probabili ty with relative 

frequency: 

P(CjIVLJ,, . . . ,  Vk,.lh) = Nci'v":'""'vk"* (3) 
Yvt.jx ,...,vk.:~ 

becomes unreliable due to small number of training instances having the same values of at tr ibutes 

as the new object to be classified. This is also the reason of applying various pruning techniques 

when generating decision trees. Smaller k in (3) implies greater denominator which implies better  

approximation of probability. 

On the other hand, in naive formula (2) the approximation of probabilities on the right hand 

side with relative frequencies is much more reliable. In addition, Cestnik (1990) has shown that  

instead of using relative frequencies it is better to use the following formula for approximation of 

probabilities on the right-hand side of (2) to still improve the reliability of approximations: 

p(ci]vk,.r~) = Nci.vk,,~ + 2 X P(Ci) 
Nv,,,~ + 2 (4) 

where P(Cj) is approximated using the Lapla£e's law of succession (Good 1950): 

P(Cj) = yci  + 1 
N + 2  

(5) 



208 

The same formula was used also by Smyth and Goodman (1990). It was experimentally veri- 

fied, that  the naive Bayesian formula achieves better classification accuracy than known inductive 

learning algorithms (Cestnik 1990) and, surprisingly, the explanation ability of naive Bayes, at 

least in inexact domains such as medical diagnostics, is better than the explanation ability of a 

decision tree (Kononenko 1990). The kind of explanation by naive Bayes is the sum of information 

gains by each at tr ibute for/against each class for a given object, which appeared to be preferable 

by human experts than single if-then rule for a classified object. 

However, the naivety of formula (2) can be too drastic in certain domains with strong dependen- 

cies between attributes. There is an obvious tradeoff between the 'non-naivety' and the reliability 

of the approximations of probabilities. In the paper an algorithm is defined that  tries to optimize 

this tradeoff by detecting the dependencies between attributes'  values. 

In next section the kinds of dependencies between events are explored. In section 3 the algo- 

ri thm of the semi-naive Bayesian classifier is described. In section 4 experiments in four medical 

diagnostic problems are described and in section 5 the results are discussed. 

2 D e p e n d e n c e  of  events  

By definition events 3(1 and X2 are independent if: 

P(XIX2) = P(X1) x P(X2) (6) 

The dependence between X~ and X2 is proportional to the difference between P(X1) × P(X2) 

and P(X1X2). In the extreme we have )(1 -- X2 where P(X1X2) = P(X1) = P(X~) or X1 = X-~, 

where P(X1X2) = O. We are interested in the conditional dependence of events XI and X~ with 

respect to class Cj. The events )(1 and Xu are independent with respect to Cj if: 

P(XiX~lCi)  = P(X,]Ci) x P(X21Ci) (7) 

Again, the dependence between )(1 and X~ with respect to Cj is proportional to the difference be- 

tween P ( X ,  ICj) x P(X2]Cj) and P(X1X~ICj). In the extreme we have Cj = X1VXu = (X 1 ~ X2) 

where P(X~X2tCi) = 0 or C i = (XI ~- X~) where P(XIX~ICj) = P(X1]Ci) = P(X~ICi). 
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A B C 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

Table I: XOR 

XOR (exclusive 'or ' ,  see table 1) is the classical nonlinear problem, that  cannot be solved by the 

naive Bayesian classifier. XOR can be solved in one of the following ways: 

• the training examples are stored; such solution is appropriate only if XOR is known in 

advance to be present in the data and only in exact domains. 

• the classes are split into subclasses; this solution has similar constraints like the previous 

one. 

• at tr ibutes are joint; this solution seems to be most appropriate for the semi-naive Bayesian 

classifier as it naturally fits onto the formula, namely P(CjlX1X~ ) can be used instead of 

P(CjlX1 ) and P(Cj]X2) separately. Besides, instead of joining whole attr ibutes,  only single 

values of different attributes can be joint, which is more flexible. 

It remains to define the formula for detecting the dependencies between attributes.  The following 

formula, that  is valid for every attribute (variable) A,B and C could be used (Wan & Wong 1989): 

H(AIC ) + H(B[C) - H(ABIC ) > 0 (8) 

where 

H(X)  = - ~ P(Xj)  × Ioo2P(X#) 
J 
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and 

H(X]Y) = ~ P(Yi) x H(XIYi ) 
i 

H(XIY~ ) = - y~. P(XjY~) x log, P(X,Y~) 
i 

and where Xi, i = 1..n are possible values of at tr ibute X. 

The equality in (8) holds if attributes A and B are independent with respect to at t r ibute C. 

In that  case C stands for the at tr ibute that  represents classes. The dependence of attributes A 

and B with respect to C is proportional to the value of the left hand-side of (8). 

However, eq. (8) cannot detect dependencies between single values of attr ibutes,  which could 

be more useful, as joining attr ibutes '  values is more flexible than joining whole attributes. Be- 

sides, eq. (8) needs a threshold above which it is useful to join attr ibutes without loosing the 

reliability of approximations of probabilities. There is no obvious way to obtain such a threshold 

for optimizing the tradeoff between the 'non-naivety' and the reliability. In next section the for- 

mula is designed to include this tradeoff. 

3 Semi-naive Bayesian classifier 

When calculating the probability of class Cj in (2) the influence of attributes A / a n d  Al is defined 

with: 
e(CjlY,,~,) P(C, JV,,~,) 

x (g) P(C,) P(C,) 

If, instead of assuming the independence of values V~,$, and g~,j,, the values are joint, the corrected 

influence is given with: 
P(CiIVi,j, Vk&) 

P(C~) (10) 

For joining the two values two conditions should be satisfied: the values of (9) and (10) should 

be sufficiently different while the approximation of P(Cj [V/,j,~,j,) with relative frequency should 

be sufficiently reliable. For the estimation of the reliability of the probability approximation 

the theorem of Chebyshev (Vadnal 1979) can be used. The theorem gives the lower bound on 
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the probability, tha t  relative frequency f of an event after n trials differs from the factual prior 

probabil i ty p for less than  e: 

P([f -p[ < ¢) > 1 p(1 -p) (11) 
- -  g 2  n 

The lower bound  is proport ional  to n and to cz. In our case we are interested in the reliability of 

the following approximation: 

P(Cj[V~,j, VI,j,)) = Ncjv~,,v~,,~ (12) 
N~,,,, v,,~ 

Therefore the number of trials n in (II) is equal to Nv, .,,vt,, t , i.e. the number of training instances 

having values Vi,j~ and Vtj~ of attributes Ai and At, respectively. As prior probability p is un- 

known, in our experiments for approximation of p at the right-hand side of (11) the worst case 

was assumed, i.e. p = 0.5. 

It  remains to determine the value of ~. As we are interested also if the values of (9) times 

P(Cj) and  (12) are significantly different we will use ~ that  is proport ional  to the difference be- 

tween the two values. The joint  values will influence all classes Cj,j  = 1 . . .  m. Therefore, e will 

be the average difference between (9) times P(Cj) and (12) over all classes: 

f: P(CilV,,~,vz,j,) P(C~lV"~')P(CilV~'J') (13) 
= _ P(CA x 

j=l 

It  is necessary to determine the threshold for the probabili ty (11) above which it is useful to join 

two values of two at tr ibutes.  In our experiments the threshold was set to 0.5. Therefore, the 

rule for joining two values states: join two values if the probabili ty is greater t han  0.5 tha t  the 

theoretically correct (unknown) influence of values V~j, and VL.j~ differs, in average over all classes, 

from the used (approximated) influence for less than  the difference between used influence and  

the influence of the two values without joining them: 

1 
1 4e~Nv,,~,vt,., ' >__ 0.5 (14) 

The values can be iteratively joint  so that  more than two values can be joint  together. In our 

experiments the exhaustive search was used. The number  of iterations over the whole t ra in ing  

set is approximately equal to the number of values of all at tr ibutes.  The algori thm is as follows: 
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Figure 1 XOR with 8 training instances (doubled training set) solved with the semi-naive Bayesian 

classifier. 

Determine relative frequencies needed in equation (2); 

for  each value Vi,i do  

begin  

each value Vk,~ join with V~,j; 

from training set determine the relative frequencies for joint values; 

discard the pairs for which _1 > 0.5 4~aNv~,sl vI,jI 
end 

XOR as defined in table 1 is solved with the above algorithm by joining four pairs of values as 

shown on figure 1. However, for reliability of approximation of probabilities 8 training instances 

are needed obtained by doubling the training set from table 1. 
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primary tumor breast cancer thyroid rheum. 

# instances 339 288 884 355 

# classes 22 2 4 6 

# attributes 17 10 15 32 

aver. # val . /a t t r ibute  2.2 2.7 9.1 9.1 

aver .#  missing data / ins t .  0.7 0.1 2.7 0.0 

majority class 25% 80% 56% 66% 

entropy (bit) 3.64 0.72 1.59 1.70 

# all values 59 29 141 298 

accuracy of physic. 42% 64% 64% 56% 

Table P: Characteristics of data  sets for four medical diagnostic problems 

4 Experiments in medical diagnostics 

The semi-naive Bayesian classifier, as defined in the previous section, was tested in four medical 

diagnostic problems: localization of primary tumor, prognostics of breast  cancer recurrence, di- 

agnostics of thyroid diseases and rheumatology. The data used in our experiments was obtained 

from University medical center in Ljubljana. Basic characteristics of four da ta  sets are presented 

in table 2. 

Diagnostic accuracy of physicians is the average of four physicians specialists in each domain from 

University medical center in Ljubljana tested on randomly selected subsets of patients. The diag- 

nostic accuracy of physicians together with the number of classes and entropy roughly shows the 

difficulty of a classification problem. The average number of values per at t r ibute together with 

the number of instances and the number of classes roughly shows the (un)reliability of relative 

frequencies obtained from data sets. 

The percent of instances belonging to the majority class represents the classification accuracy 

of a simple classifier that classifies each object into the majority class. Such simple classifier 
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primary breast 

tumor cancer thyroid rheumatology 

(%) (bit) (%} (bit) (%) (bit) (%) (bit) 

physicians 42 1.22 64 0.05 64 0.59 56 0.26 

Assistant 44 1.38 77 0.07 73 0.87 61 0.46 

naive Bayes 51 1.58 79 0.18 70 0.79 67 0.51 

semi-naive Bayes 51 1.58 79 0.18 71 0.81 68 0.55 

# accepted pairs 0.4 1.5 32.3 17.9 

Table 8: Results of the semi-naive Bayesian classifier in four medical diagnostic problems com- 

pared with the performance of other classifiers. 

would significantly outperform physicians in rheumatology (for 10%) and in breast cancer (for 

16%). This shows that  the classification accuracy is not an appropriate measure for estimating the 

classification performance. For that reason the average in format ion  score of classifiers answers as 

defined in (Kononenko & Bratko 1991) was also measured. This measure eliminates the influence 

of prior probabilities of classes on the classification performance. 

In our experiments the formulas (4) and (5) were used for approximating the probabilities in 

equation (2). In each experiment the whole data set was randomly split into 70% of instances for 

learning and 30% of instances for testing. The results in table 3 are averages of 10 experiments 

in each domain. In the table the number of accepted pairs of at tr ibutes '  values is also presented. 

The results are compared with the performance of the naive Bayesian classifier, ID3 like inductive 

learning system Assistant (Cestnik et al. 1987) and physicians specialists. 

It came out that  joining of attr ibutes '  values in primary tumor and breast cancer is unneces- 

sary as, by the opinion of physicians specialists, the attributes are in fact independent. The 

results of semi-halve and naive Bayes in these two domains are identical. However, in diagnostics 
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semi-naive Bayes Assistant 

(non-naive Bayes) 

generates probabilities probabilities decision tree 

knowledge implicit implicit explicit 

explanation inf. gains inf. gains if-then rule 

# atts used all all few 

missing data insensitive insensitive sensitive 

prob.approx, reliable reliable unreliable 

independence assumed not assumed not assumed 

speed fast slow slow 

incremental yes no no 

mulival, arts sensitive sensitive insensitive 

domains inexact inexact exact 

Table 4: Characteristics of three classifiers 

of thyroid diseases and in rheumatology joining of attribute's values slightly improves the perfor- 

mance. 

Assistant achieved better performance in thyroid problem due to the binarization of attributes. 

In thyroid data most of attributes are continuous having initially 20 subintervals of values (see 

table 2) which are treated by Bayesian classifier as 20 discrete values. Therefore in the Bayesian 

classifier the data set is split into 20 subsets when approximating probabilities, which makes the 

approximation unreliable. On the other hand, in Assistant attributes are binarized (the values 

of each attribute are joint into two subsets) which leads to increased reliability of the probability 

approximation. 
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5 D i s c u s s i o n  

In table 4 the characteristics of naive, semi-naive Bayes and Assistant (which represents non-naive 

Bayes, see section 1) are sketched. The generated knowledge by Assistant is in the form of a deci- 

sion tree while naive and semi-naive Bayes generate probabilities. The top part  of a decision tree 

typically shows the structure of the problem. The decision tree can be used without a computer 

to classify new objects, therefore it is the kind of explicit knowledoe. On the other hand, the 

probabilities generated by naive and semi-naive Bayes cannot be directly used to classify new 

objects. This kind of knowledge is implicit. The physicians found both types of knowledge as 

interesting and useful information. 

The explanation of classification of a new object in Assistant is simply the if-then rule used for 

the classification while in naive and semi-naive Bayes the explanation is the sum of information 

gains from all at tr ibutes for/against the conclusion. Physicians preferred the sum of information 

gains as more natural  explanation, similar to the way physicians diagnose (Kononenko 1990). 

While if-then rules typically include too few attributes for reliable classification (Pirnat et al. 

1989), naive and semi-naive Bayes use all available attributes. Besides, learning of decision rules 

and classification with decision rules is very sensitive to missing data. Missing value of an at- 

tribute in naive and semi-naive Bayes is simply ignored. 

The major advantage of naive and semi-naive Bayes is reliability of approximation of probabili- 

ties. Due to small number of training instances covered by single decision rule the final decision 

of a rule is unreliable. Pruning of decision trees partially overcomes this problem, "however due 

to pruning rules are shortened and more attributes are discarded from diagnostic process. 

If attributes are human defined (as was the case in medical data  used in our experiments) at- 

tributes are usually relatively independent, as humans tend to think linearly. However, indepen- 

dence assumption is often unrealistic. Semi-naive Bayes overcomes the independence assumption 

while preserving the reliability of probability approximations. But learning is not as fast as with 

naive Bayes and it is not incremental. Incremental versions of semi-naive Bayes can be developed 

similarly to incremental versions of ID3 (Van de Velde 1989). 

Assistant with on-llne binarization of attributes successfully solves the problem of continuous 
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and multivalued at tr ibutes (as shown in the case of thyroid diseases, see table 3). The naive 

Bayesian classifier assumes that  all attributes are discrete. Therefore, continuous attr ibutes must 

be converted to discrete by introducing a number of fixed bounds, loosing the integrity of training 

set and the order of values. The semi-naive Bayesian classifier is unable to join values of the 

same at t r ibute in order to keep the training instances together for more reliable approximation 

of probabilities. There are two possibilities to overcome that  problem: 

• The use of XOR for joining the values of attributes besides AND as used in the algorithm 

described in section 3. XOR should join values V~,z and V~,k with similar P(Cj]V~,z) and 

P(CilV~,k }. and small Nv~,r and/or  Nv~,k. Therefore, the aim of joining with XOR is op- 

posite to that  with AND: increasing the reliability of approximation of probabilities while 

unchanging the influence of attribute 's values. 

• The use of fuzzy bounds for continuous attributes can overcome both the loss of the infor- 

mation about the order of values as well as the loss of integrity of training set. 

Semi-naive Bayes tries to optimize the tradeoff between the 'non-naivety' and the reliability of 

probability approximations. By lowering the threshold in (14) the reliability of probabili ty ap- 

proximations decreases and the 'non-naivety' increases, which can be useful for exact domains. 

For inexact (fuzzy} domains the threshold should be higher. Naive Bayes is due to independence 

assumption more appropriate for inexact domains while Assistant is appropriate for exact do- 

mains with, ideally, complete set of attributes and complete set of training instances. 

An expert system shell based on the semi-naive Bayesian classifier can provide a useful tool 

for generating expert systems in domains, where training data is available. Dependencies be- 

tween at tr ibutes can be determined automatically or, in case where there is not enough training 

instances for reliable probability approximations, the dependencies can be provided by human 

experts. Human expert can be consulted to determine also prior probabilities if not enough train- 

ing data  is available. The explanation ability of such a system seems powerful enough to assist 

experts or non-experts in their everyday work. 
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