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A b s t r a c t  

Researchers studying classification techniques based on induced 
decision trees and rule sets have found that the model which best fits 
training data is unlikely to yield optimal performance on fresh data. 
Such a model is typically overfitted, in the sense that  it captures not 
only true regularities reflected in the training data, but also chance 
patterns which have no significance for classification and, in fact, re- 
duce the model's predictive accuracy. Various simplification methods 
have been shown to help avoid overfitting in practice. Here, through 
detailed analysis of a paradigmatic example, I a t tempt  to uncover the 
conditions under which these techniques work as expected. One attx- 
illiary result of importance is identification of conditions under which 
overfitting does not decrease predictive accuracy and hence in which 
it would be a mistake to apply simplification techniques, if predictive 
accuracy is the key goal. 

*The research reported here was supported by a grant from the Robert Wood Johnson 
Pharmaceutical l~esearch Institute. 
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1 Fitt ing and Overfitting: The Simplest Case 

A certain fictitious kind of snail may have either one horn or two. A randomly 
selected snail has one horn and is observed to prefer apple mash to banana 
mash. A second randomly selected snail also has one horn and shows the 
same preference. A third randomly selected snail, however, has two horns 
and prefers banana mash. A fourth snail is now selected and we are asked to 
predict its taste preference on the basis of the three we have just observed. 

If the new snail has two horns, we are faced with a dilemma. On the 
one hand, two of three observed snails prefer apple mash, suggesting that 
we should predict this preference. On the other hand, in our limited expe- 
rience, two-horned snails have always been observed to prefer banana mash, 
suggesting the opposite answer. 

On the basis of the evidence, we would estimate the probability that a 
2 and the probability that randomly selected snail will prefer apple mash as 

a randomly selected two-horned snail will prefer banana mash as 1. Of these 
two estimates, the first is more reliable, since it is based on more data, while 
the second is more pertinent to our prediction problem. The difficulty of 
the problem, from one perspective, is in weighing these incommensurable 
advantages. 

A second, more familiar perspective is that the difficulty lies in deciding 
which patterns in the data reflect true regularities in snail behavior and which 
axe due solely to chance. In effect, we have been asked to build a model on 
the basis of data. The question is how to capture true regularities in this 
model, while excluding spurious ones--that  is, how best to fit the model 
without overfitting it. 

The problem of overfitting is well documented in reports on decision tree 
and rule induction approaches to classification tasks; experience in practical 
applications has shown that the tree or rule set which best fits training data 
is rarely the one that will perform best in classifying new cases. Research 
has generally focused, however, on practical methods for avoiding overfitting 
rather than on deepening our understanding of it. 

This paper concentrates, instead, on the latter goal and attempts to pro- 
vide insight into the conditions under which overfitting adversely affects pre- 
diction accuracy. In approaching these questions, I have begun by isolating 
what I believe is the smallest rule induction or decision tree problem for 
which overfitting is a concern. An analysis of the snail problem--the result 
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Table 1: Models for the Snail Problem 

of this distillation--is the main focus in what follows. By looking at overfit- 
ring in the small, however, I will argue that we learn about dealing with the 
problem as it arises in practice. 

2 A F i r s t  R e s u l t  

Given a series of observations, each consisting of a number of horns (1 or 2) 
and a taste preference (a or b), only four deterministic models of preference 
are possible. Table i lists these and shows that we may represent the models 
equally well as decision trees or rule sets. 

In some cases, data may unambiguously support one of these four models. 
For example, the observations {< 1, a >, < 1, a >, < 2, a >} clearly favor M1. 
In other cases, the evidence lends no special support to either of the complex 
models/1//3 and/l//4. Given the observations {< 1, a >, < 2, a >, < 2, b >} or 
{< 1, a> ,  < 1, a> ,  < 1, b>}, for example, M1 fits exactly as well as Ms. What 
remain are equivocal cases~ exemplied by the case of the previous section, 
which lead to a choice between a simple hypothesis and a more tenuously 
supported, but better fitting complex hypothesis. 

Employing this new term, I can state the concern of this paper precisely: I 
would like to ask about the conditions under which, in equivocal cases, choice 
of the best fitting complex model over the best fitting simple one leads to 
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a decrease in prediction performance. In particular, I will be investigating 
this question for training sets of size three, since these are the smallest which 
may be equivocal. 

Let So be the strategy of choosing the best fitting simple model  in equivo- 
cal cases and Sc be the strategy of choosing the best fitting complex model, x 
The question, then, is to determine conditions under which S, is superior in 
predictive accuracy. 

Let pl be the true probability of a one-horned snail preferring apple mash 
and let p2 be the true probability of a two-horned snail preferring apple 
mash. Suppose, temporarily, that  we have no prior knowledge about taste 
preferences in snails and, hence, none about the values of Pl and P2. We 
might model  this state of ignorance by assuming, a priori, that  any (pl,p~) 
pair is as likely as any other, that  is, that  the prior joint distribution for 
these parameters is uniform on the unit  square. 

Given this assumption, a straightforward Bayesian analysis allows us to 
calculate the expected prediction accuracy of models chosen by S, and Sc for 
three-observation, equivocal training sets, averaged over the  possible values 
of pl and p2. ~ This analysis shows that  Sc yields rules with a higher average 
prediction accuracy than S,. That  is, under the conditions described, over- 
fitting should not be a concern-- the  model which best fits the training data 
is the one which is likely to do best in future prediction. 

Given the effort researchers have expended in devising techniques to avoid 
overfitting in inducing classification models, this result is rather striking at 
first. The catch is that  it depends on the assumed prior distribution for p~ 
and p2. This implicitly entails an assumption that  Pl and P2, considered as 
random variables, are independent  and hence it necessarily makes observa- 
tions of one-horned snails irrelevant to predictions about two-horned ones. In 
essence, we have assumed a priori that  we must adopt the complex strategy 
of est imating the majori ty class for the two groups separately. 

This initial result illustrates how we may study the effect of overfitting 
on prediction accuracy and specify conditions under which a bias toward 
simplicity is or is not desirable. It also shows that  the choice of a prior distri- 

1Note that, while the simplicity of models M1 and M2 is purely syntactic and hence 
arbitrary, the simplicity of S, relative to ~q~ is not. To fit a model, Sc estimates the 
majority class for each of two groups; Ss does so for just one. 

2I also assume, throughout the paper, that the probability of selecting a one-horned 
snail is .5 both for the training and the test sets. 
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bution for pl and p~ is critical in weighing $8 against So. The strongest lesson 
of this first result, however, is that the straightforward Bayesian approach 
of choosing a prior distribution and analyzing its implications may be dan- 
gerously unintuitive; assumptions entailed by a prior distribution are often 
less than obvious. Rather than burying such assumptions in a joint distribu- 
tion, I have adopted a "disguised Bayesian" approach in the following which 
I believe is better suited to the goal of promoting intuitive understanding. 

3 A Disguised Bayesian Analysis 
Assume, then, that values for pl and P2 are fixed, though unknown to us. 
Suppose, for example, that the values are, respectively, .6 and .8. In this 
case, the simple model M1 is clearly optimal in prediction. It does not 
follow, however, that So is the optimal model-selection strategy under the 
assumed conditions. Sheer chance may lead to the observation sequence 
{< 1, b >, < 1, b >, < 2, a >}, in which case S, will select Ms with accuracy .3 
while Sc will select M4 with accuracy .6. Of course, for the assumed values 
of pl and p2, we would not expect this sort of problem to arise very often; S, 
ought normally be superior. Formally, we may calculate the performance of 
models selected by the two strategies for each equivocal observation sequence 
and average these performance figures, weighting by the chance of the various 
observation sequences arising under the assumed values of pl and p2. This 
calculation confirms our intuition; since it shows that models chosen by S, 
have an average prediction accuracy of .573 while those chosen by S¢ have 
an average prediction accuracy of .560. 3 

By making similar calculations for each possible pair of pl and P2 values, 
we may construct the diagram shown in Figure 1. Boundary lines in the 
figure cover (pl,p2) pairs for which S, and Sc select models with the same 
average prediction accuracy. In the upper left and lower right regions, Sc is 
superior; in the lower left and upper right, S, is superior. 

Although it omits important details--such as the degree to which pre- 
diction accuracies for the two strategies differ at a given (Pl,P~.) point--a  
diagram of this kind gives us a useful intuitive perspective on conditions un- 
der which the conventional bias toward simplicity is justified. Essentially, S, 

3Details of a more general calculation are described in Section 7. 
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Figure 1: Comparing S, and Sc 

is preferable only for (pl,p2) pairs lying near the pl = p2 line, though the 
acceptable distance grows as the parameters approach 0 or 1. 

This result is easily explained. The more one- and two-horned snails are 
alike, the less is to be gained by treating them differently for purposes of 
prediction. At the same time, the risk incurred in considering the two types 
of snails separately remains constant. This risk is due to the fact that Sc 
relies on less data in determining predictions for each snail type than S0; for 
the observation sequence {< 1, a >, < 1, a >, < 2, b>}, it bases predictions for 
two-horned snails on just one observation. 

The striking point about Figure 1 is not, then, that the So regions lie 
along the Pl-" P2 line, but rather that they are so much smaller than those 
in which S¢ is preferable. This would seem to suggest that a bias toward 
simplicity increases prediction accuracy only in exceptional circumstances. 
Since practical experience has shown exactly the opposite, however, we must 
ask what it is about practical applications that leads to a prevalance of 
parameter vectors falling in So regions. I will come back to this question in 
Section 5 after first discussing the effects of noise. 

4 N o i s e  

The analysis of the previous section implicitly assumes what Spangler, et 
al. (Spangler et al., 1988) have called "inconclusive data." If pl and p2 are 
not taken from the set {0,1}, then the number of horns on a snail does not 
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Figure 2: Comparing Sa and S~, n~ = 0, .8 

entirely determine its taste preferences. Presumably, as in many realistic 
application, unobserved attributes account for this apparent deviation from 
determinism. 

For additional realism, we may consider the possibility of influences com- 
promising the validity of some observations. If a particular one-horned snail 
happens to prefer apple mash, for example, noise of various kinds might 
cause us mistakenly to treat the observation as either < 1, b > or < 2, a > or 
even < 2, b >. 

Let nd be the level of description noise, the probability that the true 
number of horns will be replaced by a random value equally likely to be 1 
or 2. Let ne be the level of classification noise, the probability that the true 
taste preference of a snail will be replaced by a random value equally likely 
to be a or b. For either of these kinds of noise, let a primed symbol denote 
the noise level in test (or performance) data, if this is different from the level 
in data on which a prediction model is based. Thus, n~ denotes the level of 
description noise in the test data. 

Unexamined intuition might suggest that the increase in uncertainty re- 
sulting from introduction of noise would tend to favor selection of So over 
Se. Figure 2 shows, however, that this is only weakly so for the case of even 
extreme classification noise. 4 

This figure is, again, easy to explain. Adding classification noise has 
precisely the same effect as shifting the parameter pair (iol,p2) in a straight 

4Details of calculations supporting figures in this section are given in Section 7. 
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Figure 3: Comparing 5', and So, n d -  0, .2, .4, .6 and .8 

line toward the point (.5,.5). Examination of Figure 1 shows that very few 
points in the region where S~ is preferred can be moved into the region where 
So is preferred by such a translation. Hence, addition of classification noise 
expands the S° region only by annexation of these points. 

Description noise, however, obliterates the distinction between descrip- 
t ion 9roupa identifiable subsets of the population which may be treated 
differently by a classification model--and makes it less profitable to consider 
the groups separately. While classification noise shifts (pl,p2) in the direc- 
tion of (.5,.5), description noise shifts it toward the px = P~ line. Examination 
of Figure 1 indicates that all points in the S~ region can eventually by moved 
into the S° region by such a translation. Hence, the intuition that simple 
models are best for weak data is justified in this case. Figure 3 illustrates 
the effect graphically. Note that noise must be increased to a level of roughly 
na = .4 to make the size of the So and S~ regions comparable. 

A last point to note about description noise is that na and n~ each have 
a significant effect on the relative merit of So and S~. Figure 4 shows first 
the effect of description noise in the test set (where it might most likely be 
expected to appear) and then the incremental effect of description noise in 
the training set. 

5 D i s c u s s i o n  

The results I have presented may be summarized as follows: 
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• Whether overfitting ought to be a concern depends critically on the 
distribution of problems over the PI-P2 unit square. 

• In the absence of description and classification noise, the portion of this 
square in which S, is preferred is considerably larger than the one in 
which S0 is preferred. 

• Classification noise has a nearly negligible effect on the relative merit 
of So and So. 

• Description noise has a strong effect, however, even at moderate levels, 
and this is due in roughly equal measure to the effect of noise in the 
training and testing sets. 

In response to the question posed in the title of this paper, then, we 
may tentatively generalize from the paradigmatic snail problem and answer 
that overfitting decreases prediction accuracy either (1) in the presence of 
significant description noise or (2) when classification patterns in description 
groups are not sharply distinguished in typical problems. The latter is just 
another way of stating the condition that available description attributes 
tend not to be very relevant to predicting classifications. 

Given this summary, two questions are worth considering. First, since 
simplification strategies do generally help in practice, why is it that the 
conditions just stated normally hold?. Second, are there cases in which they 
do not hold and, hence, in which techniques for avoiding overfltting might 
actually yield inferior models? 
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Regarding the first question, description noise is certainly a common 
problem and, when present, may account for the fact that simplification 
techniques increase prediction accuracy. In many classification problems, 
however, description noise is insignificant. We may expect, for example, that 
a patient's vital signs will normally be measured correctly; the problem with 
using these to build a decision tree for diagnosis is that they do not entirely 
determine an illness. 

If it pays to avoid overfitting in such cases, it must be because descrip- 
tion attributes are not often highly relevant to classification. This may seem 
counter-intuitive at first, since we might expect analysts applying decision 
tree or rule induction techniques to choose attributes which they have good 
reason to believe are highly relevant. In fact, however, analysts often in- 
elude a large number of description attributes, relying on the power of the 
induction technique to identify relevant ones. Also, perhaps more important, 
even relevant attributes are often highly interdependent, measuring similar 
qualities in a variety of ways. Hence, even if an attribute is highly relevant 
to classification taken by itself, it may be virtually valueless after other at- 
tributes have been taken into account. At the lower levels of a large decision 
tree, for example, the assumption that remaining attributes are unlikely to 
help might typically be justified. 

These points lead to a natural answer to the second question posed above. 
In some cases, we may reasonably expect that description attributes are 
relevant and that  description noise will not play a role. In these c/~ses, some 
familiar and highly successful simplification techniques might be expected 
to lead to suboptimal classification procedures. For example, if we observe 
that two randomly selected dogs enjoy a certain food F,  but a randomly 
selected person does not, it might well be reasonable to predict that people 
generally will not like F,  despite the fact that two of three animals have 
been observed to enjoy it. Here, we are relying on our ability to distinguish 
reliably between dogs and people and on our common sense knowledge that 
an animal's species has a strong bearing on its taste preferences. 

By contrast--to take a well-known example--Quinlan's (Quinlan, 1987) 
normally powerful technique of building a decision tree, converting it to a rule 
set and then simplifying this set would lead to the opposite prediction, since 
the observed difference between canine and human tastes is not statistically 
significant. The basic problem is that the statistical approach proceeds by 
assuming that  attributes are irrelevant to classification unless proven other- 
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wise. This null hypothesis is precisely the second condition I have identified 
as conducive to the success of simplification techniques. 

6 R e l a t e d  W o r k  and  C o m m e n t s  

In their seminal work on CART, Breiman, et al. (Breiman et al., 1984) ana- 
lyze the problem of overfitting nicely, identifying the basic tradeoff between 
model support and potential accuracy. Their analysis concentrates on ex- 
plaining why overfitting is a problem rather than on when this problem arises. 
Others, notably (Niblett, 1987) and (Weiss, 1987), have also suggested pow- 
erful approaches to dealing with the problem of overfitting in practice and 
attempted mathematical analyses to support their work. Like Breiman et 
al., these authors concentrate in both algorithms and mathematical analyses 
on handling the kinds of cases normally faced in practice--in which over fit- 
ting is a concern--rather than distinguishing these from the less likely cases 
in which methods for avoiding overfitting might actually decrease predictive 
accuracy. 

My distinction between description and classification noise is drawn from 
Quinlan's analysis of the effect of noise on decision tree performance (Qnin- 
lan, 1986). Quinlan does not, however, address the question of how noise 
affects overfitting and strategies for avoiding it. 

A good review of such strategies is given in (Quinlan, 1987). As this 
review makes clear, there are other reasons than prediction accuracy to prefer 
simplicity in induced classification procedures. 

Needless to say, the tiny problem I have analyzed here assumes away 
a host of important subtleties and we must be careful to consider the ex- 
trapolations I have offered as suggestive rather than conclusive. Large data 
sets, large attribute sets, problems involving continuous or multi-valued at- 
tributes, prior knowledge of relations between attributes--all  these affect the 
analysis drastically and may in some cases render it inapplicable. On bal- 
ance, however, I think even this small problem deepens our understanding 
of the problem of overfitting. In a word, it suggests (1) that methods for 
dealing with overfitting work only because of the validity of certain implicit 
assumptions and (2) that we may benefit by attempting to make these ex- 
plicit. 
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7 Appendix 

This appendix explains how to calculate the prediction accuracy of S~ and 
! S= on the basis of given values for Pl, p2, ha, n~, nc and n¢. 

If na is the probability that a description value will be replaced at random, 
then the chance that the observed value will be erroneous is rid~2. Define 
ed -- rid~2 and e~, ec and e'c analogously. Then the probabilities of making 
any of four basic observations are: 

P ( < l , a > )  = [(1--ed)(1--e¢)pl + (1--ed)e¢(1--pl) + 
e~(1 -- ~o)p,. + e~eo(1 -- p2)] /2  

P ( < l , b > )  = [ ( 1 - e ~ ) ( 1 - e o ) ( 1 - p l )  + ( 1 - e ~ ) e o p l  + 
e~(1 - eo)(1 - P2) + e~ecp2]/2 

P ( < 2 ,  a > )  = [(1--ed)(1--ec)p2 + (1--ed)e¢(1--p2) + 
e~(1 - eo)p, + e~eo(1 - p l )1 /2  

P ( < 2 ,  b > )  = [ (1 -ea) (1 -e¢) (1 -p2)  + (1--ed)ecp2 + 
ed(1 -- e~)(l - -  p , )  + eaecpl]/2 

As noted earlier, P (<  1,->) is assumed to be .5. 
If we consider the order of observations, there are 12 possible equivocal 

three-observation training sets. Strategies 5', and Sc ignore the order of 
observations, however, and we can simplify calculations by recognizing just 
four equivocal observation sets: 

01 = { < l , a > , < l , a > , < 2 ,  b>} 

02 = { < l , b > , < l , b > , < 2 ,  a>} 

03 = { < l , a > , < 2 ,  b>,<2,b>} 

04 = { < l , b > ,  <2, a > , < 2 ,  a>}  

Each of these may appear in three equally likely permutations. Hence, if we 
let 

kl = P(<l ,a>)2P(<2,  b>) 

k2 = P(<l ,b>)2P(<2,  a>) 

k3 = P ( < l , a > ) P ( < 2 ,  b>) 2 

k4 = P(<l ,b>)P(<2 ,  a>) 2 
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and 
n = ka + k9 + k3 + k4 

then we have P(Oi) = ki/n for i = 1,2, 3,4. Note that these probabilities 
are implicitly conditioned on observation of an equivocal training set, since 
we are only comparing the accuracy of S, and S~ under these circumstances. 

Let A(MI) be the accuracy of Mi as measured by the probability of its 
predicting the observed class. Then 

A(M~) = (1 - e'¢)(pi + p2)/2 + e'c(1 - (Pi + p~.)/2) 

A(M2) = e'~(p~ + p2)/2 + (i - e'¢)(l - (Pi + p2)/2) 

Since S, chooses Mi given O1 or 04 and M2 given 0~. or 03, we have 

A(Ss) = [P(O1) + P(O4)]A(M~) + [P(O2) + P(O3)]A(M2) 

where the accuracy of a strategy is taken to be the average accuracy of the 
models it selects. Likewise, we have 

A( M3) 

A(M,) 

= [(1-e~)(1-e:)pl  + (1-e~)~:(1-pl )  + 
~(1 -~:)p2 + ~e:(1-p2)  + 
( 1 - e ~ ) ( 1 - e : ) ( 1 - p 2 )  + (1-e~)e~p2 + 
~ ( 1 - e ~ ) ( 1 - p l )  + ~:p~]/2 

= [ ( 1 - ~ ) ( 1 - ~ ) ( 1 - p ~ )  + ( 1 - ~ ) ~ p ~  + 
_ e t e I m  e~(l e:) ( l -p2) + d ~2 + 

( i - e ~ ) ( i - ~ ) p 2  + ( i - ~ ) ~ ( i - p ~ )  + 
~(1-~; )p l  + ~ ( 1 - p ~ ) ] / 2  

and, since Sc chooses/I//3 given 01 or 03 and M4 given 02 or 04, 

A(Sc) = [P(01) + P(O3)]A(M3) + [P(O:) + P(O4)]A(M4) 

As I have noted, these calculations yield the expected observed accuracy 
of $8 and So, counting a prediction model as successful when its predictions 
match the apparent class of new objects. To calculate the accuracy of these 
strategies in predicting the true class of new objects, simply let n' c = 0. 
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