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Abstract  

Learning by discovery aims at bringing to light laws from a set of numerical or symbolic data. 

Our work deals with the improvement of the discovery system ABACUS created by Michalski and 

Falkenhainer, and in particular, with the way the system makes use of informative accuracy of the 

data. ABACUS, like most others current discovery systems does not use this information in the real 

physical sense, that means accuracy given by the measure device. However, in experimental domains 

accuracy cannot obviously be separated from the data. In this paper, we show how, when used in a 

more realistic manner, this information can significantly improve not only the accuracy of the results 

but also the efficiency of the search algorithm. Several additional modifications to ABACUS to 

improve the robustness of the system without losing generality will also be described. 

K e y - w o r d s  

Scientific discovery, learning by observation, numeric - symbolic integration. 
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1 Introduction 

Our work is concerned with the field of learning by discovery and consists in the 

improvement of the discovery system ABACUS created by Falkenhainer (Falkenhainer & 

Michalski, 1986) and improved by Greene (1988). This system is well-known as one descendant of 

the BACON system created by Langley, Simon, Bradshaw and Zytkow (1985; 1986 and 1987). 

Without changing the algorithm itself and its basic heuristics, we add a new kind of information 

which improves the system's efficiency, especially its search algorithm. Moreover, this information 

is general enough to be applicable in most scientific domains. With this goal, we have integrated into 

the system the notion of uncertainty of data as an inherent part of the data. 

Indeed, as soon as we have to deal with numerical data, whether it be the result of physical 

experiments or statistical results of a sociological study, the question of the accuracy associated with 

these data is raised. By accuracy, we mean the uncertainty of the data, expressed either with a 

relative value as in "the town contains 25 000 inhabitants, plus or minus two percent", or with an 

absolute value as in "it costs 400 pounds, plus or minus 20 pounds". 

When the data is experimental, the accuracy associated with a measure is characterized most 

of the time by the quality of the device used. Consequently, the accuracy of these measures cannot 

be computed automatically from the data alone, but must be part of the data itself and given by the 

expert or the system's user. 

Despite the fact that the necessity for specifying the accuracy of data during the acquisition 

step is self evident, we must emphasize that this requirement is not always observed by researchers 

in the learning community, even by those interested in data analysis or statistics. However, we can 

note one approach concerned with the problem of uncertainty. FAHRENHEIT, created by Zytkow 

(1987 ; Zytkow & Zhu & Hussam, 1990), is able to compute "errors" on the data by asking to the 

user for repeated experiments. However, these errors obviously correspond to a lack of fidelity of 

the device used, but they do not represent its sensibility (if a small change can be detected) or its 

rightness (with regard to a standard). Unfortunately, these two last properties can only be evaluated 

by a user experimentally. 

In the majority of cases, only one value is chosen to represent the accuracy of all the 

numerical data. But this solution cannot be used in learning by discovery where data can frequently 

be provided by different measuring devices and moreover where the research is done by iterating 

computations, decreasing accuracy proportionately with the number of steps. In this context, there is 

no longer any justification for associating the same accuracy with all values. 
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In this paper, we want to introduce our new version of  the system ABACUS and the 

improvements we have made concerning the use of uncertainty. We will f'=st present ABACUS's 

aim and the general principles we have chosen to improve the system. Then, we describe in detail 

some definitions needed to manipulate uncertainty within ABACUS before we present the 

improvements. The first one and the most important of our work is based on our new approach to 

dealing with accuracy. The second one concerns mathematical cancellations and tautologies. Finally, 

we present a simple but useful way to improve the iterative search and to correct the drawbacks of the 

evaluation criteria used by ABACUS to control the search. 

2 A B A C U S ' s  a i m  a n d  a l g o r i t h m  

ABACUS deals with finding relations which are of interest to the experimenter, within a set 

of  experimentations. This data set can be viewed as a matrix where each row represents an example 

and each column represents one measured parameter. In this context, the aim of the discovery system 

is to bring to light the mathematical relation(s) between all or some of  the parameters such that all or a 

majority of  the examples ~¢erify this (or one of  these) relation(s). Thus, the search space to look 

through is constituted of all the mathematical formulas one can build from the initial parameters. 

Let us precise that in the following, we will note either parameter or variable a column of the 

matrix, but parameter will rather represent the initial measured parameters and variable will rather 

represent the next columns created by the system. 

ABACUS's discovery process c6nsists in an iterative building of variables starting with the 

initial parameters as first variables. It chooses two among the four arithmetic operators (+, -, / and *) 

to apply to each pair of variables according to the existing monotonic dependency (the second 

variable increases or decreases when the first increases). As in BACON, the dependencies between 

two parameters can be computed only when all the other parameters are holding constant. The 

process stops when a variable is found which takes the same value for all examples. This variable 

will then represent the equation or law verified by the data set. 

The main advantage ABACUS provides with regard to BACON is to propose to the user 

either one law as in BACON, or a collection of  laws with each one summarizing a subset of the 

examples. Two solutions can be used to find the partition : the first one is to compute it with a 

clustering algorithm and then to search for an equation on each subset independently. The second is 

to search for only one variable such that all the examples can be gathered into different subgroups 

according to their value on this variable. 
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3 N e w  principles 

1- The accuracy rate of each parameter  is provided by the user : only one 

relative uncertainty rate is provided if all the values of the parameter have been recorded with the 

same relative uncertainty, and if not, absolute uncertainty rates associated with each value. In the 
following, we will denote the relative and absolute uncertainty of a value x 0 by the respective 

expressions 13 (x O) et 8 (x0). 

In spite of the fact that learning by discovery deals usually with experimental data, this work 

constitutes the first work where the user is allowed to provide along with the data their associated 

measures of accuracy. However, in an experimental field, like physics or chemistry, the uncertainty 

rates of the values are not only supplementary information but necessary and fundamental to the 

interpretation of the measures. These new values take the place in ABACUS of the previous 

parameter "uncertainty" initially used to represent the uncertainty rate of all the numerical values the 

system had to manipulate. We will show in the next parts how, as a contrast to this simpler way of 

dealing with uncertainty, our addition of the real uncertainties can improve the system. 

2- One difficult problem in this kind of "blind" search, is how to avoid the generation of 

tautologies, that is to say equations which are self-evident like y = y, which are unfortunately often 

considered by the system as being good solutions. Although ABACUS have succeeded in controlling 

some of these tautologies, we have noticed that numerous tautologies were still not taken into 

account. 

With this goal, we have integrated together with the notion of accuracy the one of 

negligibility, which definition is based on accuracy since a variable is negligible with regard to 

another according to the accuracy of the later. Moreover, we have implemented a simplification 

module, which is particularly useful to avoid the creation of tautologies. This has been done thanks 

to some additional computations based on arithmetical rules, quite simple when done "by hand" but 

quite problematic when done automatically, because of their complexity. 

3- Finally, we have improved the search algorithm, by analyzing the way ABACUS 

evaluates variables in order to choose the best path in the search graph. At each step, the new 

variables are evaluated before the graph is splitted into two subgraphs which will be explored one 

after the other. Although this heuristic is useful in order to reduce combinatorial explosion, it is 

difficult to avoid a bad splitting of the search space. We propose a compromise, which is quite 

simple but has still proved to be useful, based on delaying the splitting. 
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4 I m p r o v e m e n t s  b a s e d  o n  n e w  a c c u r a c i e s  

We present now the principal definitions used to compare and manipulate different uncertain 

values, before we show the advantages of the use of accuracy for a discovery system. 

4.1 D e f i n i t i o n  o f  a n e w  e q u a l i t y  

In the description of  ABACUS above, we have described how the whole process relies on the 

finding of  a variable which is constant on all or the majori ty of  examples. We are therefore 

principally interested in detecting when two or more values of a same variable are equal. But once we 

are given the accuracy of  these values, we can no longer use the standard definition of equality. In 

place of  this standard definition, we introduce the notion of  the poss ib i l i ty  of  two values being 

equal. 

Note that in the previous version of  ABACUS, the uncertainty parameter was also used to 

compare two values of a same variable, but it did not allow the values to have their own absolute 

uncertainty. Now, we have to generate a new comparison function that is valid for values taking 

different absolute or relative uncertainties. The simplest way is to define this comparison function 

from the absolute uncertainties. 

Let  us call interval of definition ofx the set [x - S(x), x + S(x)], then two values x i and xj 

have the possibility of being equal if their two intervals of definition are not disjoint. Let us call this 

new property the S-equal i ty  and let us define it thus : 

if and only if 

x i et xj are S - e q u a l  

I x,i -xil <- s (xi) + s (x,i) 

Example : x =10 + 3 is S-equal to y = 12 + 1 since [ 10 -121 = 2 < 3 + 1 = 4 

We can then generalize this property to p values. Let x0, x 1 . . . . .  Xp be the values such that 

x 0 < x 1 <...  < Xp (this condition helps simplifying the definition). If  we have already verified that x 0 

... Xp_ 1 are S - e q u a l ,  then 

Xp is 5 - e q u a l  to x 0 ,..., Xp. 1 

if and only if 
X p - S ( X p ) < l ? t i ,  t$ { x i + S ( x i ) }  

o < i <  p-I 
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Finally, when is found a variable which takes constant values for all the examples in fact we 

have to set which value will represent all of  them, given that all the values of the variable are only 8- 

equal. Seeing that his value will only be used in the presentation of  the result to the user, and not in 

the incremental process, and in order to avoid possible large mistakes, we choose to represent them 

by the most precise one (12 + 1 in our example). 

4.2 Accuracy computation formulas 

One of  the most important improvements to the initial version of  ABACUS is its additional 

capacity to compute automatically the uncertainty rates of the variables the system generates. These 

new accuracies must obviously be computed according to the uncertainty rates of  the previous 

variables and according to the function used to generate these new variables. It is then necessary to 

introduce the computation formulas able to provide the relative or absolute uncertainties of  a function 

from either the absolute or the relative uncertainties of  the previous variables. 

We recall in the table 1 the computation formulas used to derive uncertainties when applying 

the different arithmetic operators to a pair of  variables. Some of  them can be found in the physics 

course of Joyal (1956) or Eurin and Guimiot (1953). 

op 

+/- 

p (x op y) 

(relative form) 

8 (x + y) 
(x + y) 

p (x) + p (y) 

p (x) + p (y) 

8 (x op y) 
(absolute form) 

8 (x) + 8 (y) 

8(x)  * y +  x * 8 ( y )  

8(x) + 
Y y-~ 

Table 1. Formulas for the computation of accuracy 



124 

Concerning the trigonometric functions (we deal here with cosine and sine only), there are no 

formulas giving directly the uncertainty of the result of applying the function, given the uncertainty of 

the argument. We must therefore compute separately the uncertainty of  each value, using the 

following principle : 

Let x 0 be a value with the absolute uncertainty ~ (x0). Given a mathematical function f, the 

absolute uncertainty of  f(x 0) is the maximal difference observed between f(x0) and the values f 

takes on the extreme values ofx  0. This can be written as : 

8 (f(x0)) = m a x  { I fix0 + 8 (x0)) - fix0) I, I f(x0- 5 (x0)) - fix0) I } 

Note that this formula can, from now on, be easily used for any new operator which could be 

added to the system such as exponential, logarithm, etc. 

4.3 Consequences on the final partitions and laws 

ABACUS aims at splitting the example set into a partition such that the set of all the laws 

describing each group best describes the whole of the example set. One way to discover this partition 

is to find a variable which takes constant values on the subsets of a partition of the examples. It is 

then important to accurately compute these partitions that are "induced" by a variable, in order to find 

the right final partition. 

The idea is therefore to compute these groups by comparing the values of  a variable using the 

k-equal i ty  we have defined above. Given the initial accuracy rates, we can now compute the 

partitions with more accuracy. This allows for instance the discovery of new partitions where all data 

were gathered together before, because the accuracy was not high enough to allow a distinction to be 

made between some values. 

We present in the sections below two aspects of  the improvements due to our better 

conception of  accuracy. The first one illustrates and justifies more precisely the influence of the 

accuracy rate on the resulting partitions and laws. The second emphasizes the role of the iterative 

computations of  the uncertainty rates of the variables. In conclusion, these two improvements must 

be absolutely taken into account altogether in order to have the right reasoning. 
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4.3,1 influence of the accuracy rate 

Table 2 illustrates the influence of  accuracy on both the final laws and the final partitions. 

Experiments have been performed on the same example set changing accuracy rate (artificial one and 

assumed the same for all parameters for the sake of clearness and comprehension). The experiments 

are relative to the law of  the speed of sound in air. There are fifteen examples described by four 

parameters : the speed V, the time T, the frequency FREQ and the atmospheric pressure P. Let us 

recall that the real law is : V 2 = 401.32 T (thus, the last two variables are not relevant) but small 

errors have been introduced. The results have been obtained with our new version of  ABACUS, 

computing the uncertainty of each new variable. 

P 

5% 

2% 

0.5% 

0.1% 

5.10-5% 

partitions and laws 

T = 0.836 V ( + 10% ) 

T = 250 or 273 V = 1.232 T 
T = 330 V = 1.107 T ( + 4%) 

T = 250 V = 1.267 T 
T = 273 V = 1.2t2 T 
T = 330 V = 1.107 T (+1%) 

V 2 = 401.32 T ( + 3.10 - 1 % )  

T = 0.00249 V 2 ( + 2.10 -3 %) 
(after simplification of V + T/V divided by V ) 

Table 2. Influence of the accuracy on the laws and the partitions. 

In order to understand these results, it must not be forgotten that each solution corresponds to 
T 

a constant variable. The first result (for p = 5%) means that the values of  the variable V on the 15 

examples are found ~i-equal. In the two following cases, where the accuracy rate p is decreased, the 

15 are no more k-equal altogether but are k-equal when they are splitted into 2 or 3 groups. In the 

two last cases, the accuracy rate was obviously too high to allow all the values of  ~ to be k-equal,  

V 2 
even by intervals. The system was able by generating the new variable---~---, to find an approximation 

V2 
of  the right law. However, in the last case,---~-- was not found constant with regard of the error rate 

of  2 10"3% but found it all the same by simplification of a formula obtained by combining next 

variables, according to the new improvement we will see in section 4. 
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Moreover, if we had increased the accuracy rate, there exists some value of  the accuracy for 
V 2 T 

which---T-- like ~ will no more be found constant, nor the right law will be found. Generally, 

increasing accuracy does not necessarily improve the solution : a too high accuracy may lead to a 

solution other than the one desired, or even none at all. 

The results shown in table 2 have been performed by varying the uncertainty rate. It must be 

pointed out that the user cannot in reality choose the accuracy rates, since they are provided by the 

measurements devices, and that each parameter has only one given accuracy that cannot be changed 

anymore. Actually, all solutions proposed by the system are correct, and one uncertainty is not better 

than another. The estimation of a result can then be done only according to the user's point of  view. 

We assume then that in the user's interest it is better to give effectively each accuracy rate of  the initial 

parameters than to choose randomly one accuracy rate. 

In the law of the speed of sound, for instance, if we give the following fight uncertainty rate: 

p(T) = 0.3%, p(V) = 0.001%, p(P) = 1% and p(FREQ) = 3%, the law V 2 = 401.206 * T is 

correctly found with an approximation of 0.202%. 

4 .3 .2  inf luence  o f  the a c c u r a c y  c om pu t a t i on  

We have shown how the uncertainty rate can have an important influence on the final 

partitions. Furthermore, this influence is not relied to the treatment of the accuracy along the search : 

the good relationship can be pointed out using the initial version of ABACUS with an accuracy rate 

well chosen. However, in a different way, automatic computation of  the accuracies on all variables, 

by influencing the variable accuracy, also influences how the values of the examples on this variable 

are 8-equal and thus the final partition. The most important is not therefore to choose the right initial 

accuracies but also to update the accuracies in the course of  the generation of  the new variables. 

For instance, let us compare the percentage of values constant for the va r i ab le -~  according 

to the uncertainty rate chosen. The minimum observed value is 400.69612 and the maximum one is 

401.32234. With an uncertainty rate of  0.09%, all the values are found k-equal, whereas it is no 

more true with an uncertainty rate Of 0.03% for which only 60% of the values are found k-equal. 

Therefore, if the uncertainty rate is fixed by the user at 0.03%, in the initial version in which the 

accuracy rate stays constant, the law will not be found. On the contrary, by updating the uncertainty 

rate according to the number and type of the operations involved, the v a r i a b l e - ~  ~ will be found 

constant and the law will be discovered. 
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In our new version of the algorithm, high accuracy rates clearly may occur on the initial 

parameters, but we know in this case that it corresponds effectively to the noise in the experiments, 

and we are insured to be right when comparing the values of this parameter. Moreover, high 

accuracy rates stay being a problem just when the law to discover is quite simple and does not need 

many computations. Indeed, as the accuracy rates are decreasing proportionally to the number of 

steps of  the algorithm, if the law is quite complex, the variable representing it will never in fact now 

take this large accuracy rate. Even in this case, the problem (high accuracy preventing discovering a 

solution) that appeared in the initial version have therefore been eliminated. 

5 Deal ing  with  tauto log ies  

Tautologies are the source of new difficulties. Since at each step the system does not 

memorize the functions already applied but it keeps only the result under the form of a sum of 

products, there exits a definite chance to be stopped discovering a formula which is by simplification 

(the user must do) equivalent to a tautology. We present in the following two important ways we 

have added to the previous version of ABACUS in order to avoid such uninteresting solutions. 

5.1 Prun ing  negl ig ible  terms 

Since k-equality must take the place of the standard equality, we must exchange the standard 

definition of negligibility with a new one taking into account the interval of definition of the values. 
We consider now that x0, with 5(x0) as its absolute accuracy is negligible with regard to Y0 if k/x i 

[x0" 8(x0), x0 + 5(x0)],  Y0 + xi ~ [Y0 - 5(Y0), Y0 + [i(Y0)]. Thus, we obtain this theorem : 

x 0 is negligible with regard  to Y0 

if and only if 
I x 0 I < ~ (Y0)" ~ (x0) 

This theorem is then used to determine if a given variable is negligible with regard to another 

thanks to the definition : 

"' x is negligible with regard to y 
if and only if for all examples E, 

the value of  x at E is negligible with 
regard  to the value of y at E. 
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This notion of  negligibility between two variables is from now on used to control the 

generation of new variables• It is forbidden now to add or subtract two variables when one is 

negligible regarding the other. Consequently, when x is negligible regarding y, we exclude the 

possibili ty of finding a solution such as y = y + x, or even of  the type 1 + x/y -- 1 (obtained by 

dividing y + x by y), those are unfortunately sometimes proposed as solutions by the initial version 

of  ABACUS.  In this way, we reduce the search graph significantly by pruning numerous 

uninteresting paths. 

We have introduced a new concept which allows us to control this kind of  tautology and even 

to avoid logical errors (or that may be seen as logical errors by the user). Moreover, although this 

notion of  negligibility can be considered as an improvement independent of the one due to accuracy, 

it is unsafe to use it without knowing the correct accuracy of the variables. For instance, pruning the 

space search according to this concept within the initial version of ABACUS where the uncertainty 

can be 2% (default value) for all values can lead to eliminating interesting variables. The robustness 

of the pruning is thus increased by taking into account the accuracy of the parameters. 

5.2 Simplifying formulas 

An intermediary step in the building of  equations is relative to their simplification, or 

numerical cancellation. As the desired law becomes more complex, more numerous variables are 

generated and thus, higher is the chance for ABACUS to fail by finding a tautology. Thus, this phase 

of  simplification is needed not only in the user's interest but essentially to eliminate the tautologies. 

5.2.1 the  p r o b l e m  

In the ABACUS system, the form used to express the equations is a sum-of-products. For 
y bx 

instance, x ,  (a-b) is expressed in the system as - An algorithm based on this notation to test y -')--. 

whether a new term contains a partial cancellation already exists in the initial version of ABACUS 

and when the test is fulfilled, the system does not create the candidate term. ABACUS thus already 

• a_, (bc) simplified to ac. deals with numerical cancellations such as .  b 

Unfortunately, numerous tautologies remain that the initial version of ABACUS cannot 
X1.A X2.A 

detect. One family of them can be represented by : ~ + ~ with X 1 + X 2 = X. 

For instance, x - -Y--- = 1 is obviously a tautology. x - y  x-y 
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The reason why the initial version of ABACUS cannot recognize it is the following. In order 
x 

to follow the sum-of-products format, when it subtracts two quotients ~ and , it seems 

sufficient to generate directly the form x_~Xy - x---~y' and therefore, the system does not test if  any 

cancellation is possible. 

More generally, let us compare ABACUS'  way of  dealing with formulas and computer 

algebra rules indicated by Davenport,  Siret and Tournier (1986) in order to have a canonic 

representation. There are four of these rules : 

1- no rational in the expression of a quotient. 

2- no integer must divide both the numerator and the denominator. 

3- the main coefficient of the denominator must be positive. 

4- no common divisor between the numerator and the denominator. 

Unfortunately, in the initial version of ABACUS, just the first condition is verified. 

5 .2 .2  a solut ion.  

Our work has therefore consisted in improving the system such that all formulas also verify 

the last three rules. The solution we propose is to apply to quotients well-known arithmetical rules : 

- In all cases, we execute if  needed the self-evident simplification, like when subtracting or 

dividing two identical terms. 

If there is no quotient in all the involved terms, go to the third thereafter step. Otherwise, 

- firstly, we transform all the terms such that they get the same quotient. In general, that needs to 

compute the smaller common multiple of all the quotients. 

- Secondly, we simplify the dividend if needed, and if the result is a constant, we note that it is 

indeed a tautology, else, we simplify the quotient. 

- Thirdly, if  it is not a tautology, we reconstruct the equation as a sum-of-products. 

Example : let us perform a a x+y y 

We start with computing the common denominator : (x+y) .y = xy +y2, then, we compute the 

dividend • a.y - a (x + y) = a.y - a.x - a.y, we simplify into -a.x, and finally we return the final 
- a . x  

quotient xy  +y2"  Since it is already in the sum-of-products form, the simplification stops. 
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The last rule is unfortunately not completely verified since we do not deal with factorization. 
x 2 - 2 x  + 1 and x-1 

That implies that x 2 - 1 ~ are not still recognized as been equal. But since our aim is 

only not to encounter tautologies, the main important point to make sure is that none solution of the 
x 2 -2x  + 1 x-  1 

form x 2 - 1 = x+----i" will be found. To obtain this solution, the system must perform the 

subtraction between the two terms. Now, the system must transform the expression by putting the 

them on the same denominator, we know that it will obtain 0 and thus it will not create any tautology. 

5 .2 .3  a d d i t i o n a l  i m p r o v e m e n t  

In ABACUS initial, when two variables are combined in order to attempt the generation of a 

third one, a simplification check is performed, and as soon as a first simplification occurs, the 

generation of  the third variable is disowned. 

In our approach, we do not use this heuristic for the mean reason that it either forbids or 

slowly delays the generation of powerful variables. Furthermore, another interesting aspect of this 

improvement is the possible creation of  squares of  variables. Indeed, if  the initial parameters are x 

and y, ABACUS has just two ways to create the square o f x  : firstly when there exists two groups 

such that the monotonic dependency between x and y is different for each of  them. As these groups 

do not always appear, it may sometimes be impossible to generate the square ofx.  

A second way to obtain x2 is doing a product of the form (x+y) *(x+z). By development, x2 

+ xz + xy + yz will be found. Unfortunately, by this way and if  the system does not allow 

simplifications, it is impossible to obtain the square of x alone. Now, by simplifying equations, it is 

possible to create in an additional way, the square of  x (for instance, by subtracting xy from x 

(x+y)). An illustration of  the improvement is given by the law : x2 + y + z, which can be discovered 

only applying simplifications. Indeed, with the initial version of ABACUS, a solution is obtained, 

but only at the 998th variable and is a tautology : 

x * y  2 / ( x 2 * y  2 / ( x + y ) + x  4 / ( x + y ) + x * y  3 / ( x + y ) + x 3 * y  / ( x + y )  

+ x  3 / ( x 2 * y  2 / ( x + y ) + x  4 / ( x + y ) + x * y  3 / ( x + y ) + x 3 * y /  ( x + y ) ) =  1.0 

which can be simplified to : (xy2 + y3) • (x + y) 
(x2y2 +x 4 + xy3 + x3y) " 

Now, by simplifying x(x + y) - xy, we obtain the square of x alone and the solution is 

obtained when the 86th variable is generated. This shows a huge improvement on the original 

version of  ABACUS. 
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6 Improving the search algorithm 

The search is done through a directed graph where each generation is the result of all the 

possible combinations of all the couples of all the previous generations. Since for each couple of 

variables two functions are created (according to the monotonic dependencies), if n is the number of 

initial parameters, each generation can be composed at most of twice the number of combinations of 

two elements between n, which corresponds to 2n(n - 1). 

In average, only half of the possible combinations are realized, but the complexity of the 

search remains equal to O(n 2p) if p is the maximal depth of the graph. The problem is then how to 

decrease the size of this graph. 

One way to limit combinatorial explosion would be to find an evaluation function predicting 

which variable leads the quickest to the solution. Unfortunately, there are no known functions able to 

perform this test. We will describe the function chosen by ABACUS, its drawbacks and the principal 

improvement we have added which help to reduce each time the complexity. 

One of the most important heuristic used by ABACUS is to split (according to a given 

evaluation function) at each generation the resulting nodes (or variables) into the a-nodes set 

containing the most "interesting" nodes or active nodes and the s-nodes set containing the others 

which can be viewed as "sleeping" nodes. The exploration starts then developing the a-nodes, 

returning to develop the s-nodes only when no solution has been found. A maximum depth can be 

fixed by the user and helps to prevent combinatory explosion. The order of development of the nodes 

is illustrated the figure 1 below by the numbers above the nodes. 

6.1 E v a l u a t i o n  f u n c t i o n  o f  A B A C U S  

ABACUS' choice of evaluation function is the "degree of constancy" which represents for a 

function the percentage of the data for which the function evaluates to a constant. This choice is 

justified by the construction of the data which consists in gathering the examples by doing successive 

experiments for which the variations of two parameters are examined while all the others parameters 

are held constant. 

For instance, if the law is ab/c = cte, a group of examples will be built to examine the 

dependencies between a and b. When the system computes the new variables, it finds that the values 

of a increase when those of b decrease, and it will build a+b  and a*b according to the basic 

heuristics. 
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Once the new variables being generated, the system will have to sort them according to their 

degree of  constancy and to cut the ordered set in half to obtain the a-nodes set and s-nodes set. But 

here a*b will be found constant on at least one group while a+b has a small chance to be constant on 

some examples. We can see here that the choice is directly dependant on the groups built by the user. 

6 .2  T h e  problem 

Unfortunately, the user does not always provide all the groups characterizing all the couples 

of  parameters. Furthermore, especially if there are numerous data, it can happen that variables not 

leading to the solution can present a degree of constancy greater than those of "good" variables. All 

these conditions can lead the system to split the variables badly. 

Another instance of  splitting the variables badly is presented in figure 1. This figure 

represents the initial tree built by the system on a set containing 13 examples which describes the 

conservation of  momentum. Eight parameters M1, V1, M2, V2, M1P, V1P, M2P, V2P, 

representing the mass and the velocity of the two objects before and after a collision. 

We recall that the real law is : M1V1 + M2V2 = MIPV1P + M2PV2P. 

G 

,o,,6, 
(o, 4 6) 

(Mla M2~ MIp, M2P, 
Vl, V2, VlP, V2P) 

M2V2 (0, 381 

(0, 30) 
(0, 23) 

o-.  II ............. 

~ - ' ~ ' ~ ' ~  I m.~~n~. '~ (o,3o) I 
~/~v' j .P (o,3o, I 

Figure 1. Variables splitting according to their degree of constancy 

(numbers in parentheses give the accuracy of  the variables) 
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We can note two important points : 

- in the example, four among five variables are needed to create the equation and they must be 

gathered in the same set to be considered at the same time. Here, as the system is constrained to 

choose, it necessary splits the variables into two subsets, separating all the necessary variables. For 

this reason, the solution will be discovered only after the system has developed the subtree the root 

of  which is the a-node n° l ,  after have exploring almost a hundredth of nodes. It is clear that 

systematically splitting the variables is not a good solution, especially when there are few of  them. 

- we can see an instance of a variable (M2PV1P in s-node n°2) which is not useful for discovering 

the solution which has however a better degree of constancy than a "good" variable (M2PV2P). That 

illustrates the well-known characteristic of an heuristic, that is to say, that a heuristic has a definite 

chance to fail in helping to solve a problem. Here, that implies that the known best nodes (necessary 

for building the solution) are not always those estimated with the higher degrees of constancy. 

6.3 A n e w  h e u r i s t i c  a s  a s o l u t i o n  

To overcome these drawbacks of  the algorithm, we restrict the heuristic of  splitting the 

variables according to their degree of constancy by the following condition : 

"If the variables o f  the generation are not too numerous, 

do not split them into a-nodes and s-nodes." 

We will estimate when the variables are too numerous not in absolute way, but with respect to 

the number of  variables in the antecedent generation. For instance, hundred variables in the first 

generation may be considered as a great amount if there are only 20 parameters, but not in the case 

of  60 parameters. In this aim, we choose to set the minimum threshold for splitting to twice the 

number of variables in the previous generation. In this way, we are sure to reduce significantly the 

combinatorial explosion. 

Furthermore, when there are few initial parameters, 10 or 15 for instance, even twice the 

number of them may be easily tractable. It is thus necessary to represent by a parameter the absolute 

minimum of  variables under which it is not necessary to split. Let us call it min-split. The splitting of 

a generation gen k will be controlled by the two hereunder rules : 

and 
" i f  count (genk) ~min-split = > do not split" 

" i f  count (gen k) > rain-split & count (gen k) < 2 * count (genk.1) => do not split" 
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The results this new heuristic are shown in the table 3, which compares the number of nodes 

created when it is used with the number of  nodes generated when it is not used. 

discovered law 

m l . v l  + m2.v2 = 
m l p . v l p  + m2p.v2p 

Ni.s in(01)  = N2.sin(02) 

E = I.cos(i) / r 2 

I = V0.cos(c0t) [ r 

F = m v 2 cos (0) / r 

initial version 

250 

47 

152 

25 

with new 
heuristic 

107 

82 

37 

35 

146 121 
S = (x+y).(z+w) 

out of bound 65 

Table 3, Results of the heuristic "do not split if not too numerous" 

In the previous example of the conservation of momentum, the number of new variables (5) 

is even less than the number of initial parameters (8), thus the system will not split them. This 

corresponds to delaying the choice between these variables. Applying this heuristic to the example, 

we observe that the number of nodes created until the law is found is decreased from 250 to 183. 

We can note that the importance of the addition of  this new heuristic cannot be evaluated from 

the number of  nodes. The last example is the most representative case : on one hand, a bad choice 

without heuristic leads to the impossibility to find a solution inside the boundary of thousand nodes, 

and on the other hand, the new heuristic has allowed a delayed choice which then leads to the 

solution within a hundredth nodes. 

On the other extreme, two examples in this table show that when the choice was already the 

best one, the added heuristic does not improve the rapidity but on the contrary delays the discovery 

of  the law. As we are interested in improving the system to diminish the search such that the number 

of  nodes and the time spent stays reasonable, we consider that the addition of  research the heuristic 

sometimes lead to is negligible compared to the large improvement it adds when the laws are complex 

and when the evaluation function is inefficient to sort the variables correctly. 

With this heuristic, we have automatically eliminated a high proportion of failure due to a bad 

initial choice. Since these bad choices avoid a law to be found in the threshold of hundred nodes, the 

efficiency of this heuristic is self evident. 
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7 Conc lus ion  and future  work  

We have presented here three complementary aspects of our improvement of the system 

ABACUS. These improvements do not change the basic principles used in the system but integrate 

simple and useful notions independent of the application domain, quality which is one of the most 

principal aim of  our system. Moreover, these improvements can not only be applied to ABACUS, 

but to all systems belonging to the BACON family like FAHRENHEIT or IDS (Nordhausen & 

Langley, 1990). Unfortunately, we have not resolved completely the problem of finding the law in 

only one step. However, we think that numerous improvements can be still added. Therefore, we 

present some different aspects which worth been further analyzed and improved : 

1- The research axis we have presented here concerning accuracy seems worth exploring 

further. Firstly, some problems are still not resolved : for example, the problem of dealing with 

trigonometric values, always belonging to the interval [-1, 1] and easy to confuse even with a small 

degree of accuracy. 

An additional point remains to be studied : as the graph search is explored, variables appear 

which have more and more values such that they have an absolute accuracy rate higher than the value 

itself. Intuitively, when we are provided a value like 10 + 20, we decide that it does not merit much 
attention. Let us then consider a variable such that all its values verify 8(x0) >x 0` Even if it leads to a 

solution, we are practically guaranteed that the solution proposed will verify a very low accuracy 

rate, and if another solution is provided with more reasonable accuracies, the former will be rejected. 

We propose to fix a percentage T (it could be a parameter of  the system) which would indicate 
that when the accuracies becomes higher than T times x 0, it is not worth keeping the variable. This 

heuristic could reduce in an important way the search graph, but needs to be carefully examined to 

avoid errors. 

2- In the same way that we have introduced accuracy, we will continue examining which kind 

of knowledge could be integrated without restricting the application field. For instance, an interesting 

knowledge used in ABACUS is constituted by the measure units. Their importance is such that when 

they are not used, the complexity is increased in such a way that generally, the system cannot find a 

solution within the threshold of  thousand nodes. It would therefore be interesting to find analogical 

information so much powerful. 
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Now, when looking at qualitative physics, we can verify that a lot of knowledge are also 

available in every domain : for instance, the relations or laws already known between the parameters, 

or even incompatibilities between different types of variables, others than the compatibility rules. For 

instance, the expert knows whether it is worth multiply the length of the cube and the temperature or 

not. Dealing with this kind of information, we would in some way relate qualitative physics to 

scientific discovery. Now, the problem is an acquisition one : how to gather all this information? 

Acknowledgments 

I would like to thank the following people who helped me a lot during this work : my thesis 

adviser Y. Kodratoff, M. Sebag and M. Schoenauer working at Polytechnic, H. Ralambondralny 

who has worked at the INRIA in Diday's team, and all the mebers in the team Inftrence et 

Apprentissage who helped me in the correction this paper, G. Bisson, K. Causse and A. Gordon. 

References 

Davenport J., Siret Y., Tournier E. Calcul formel. Systdmes et algorithmes de manipulations 
algebriques. CoUeetion etudes et recherche en informatique, Eds Masson, Pads, 1986. 
Eurin M., Guimiot H. Physique, Classiques HACHETTE, 1953. 
Falkenhainer B.C., Michalski R.S. Integrating Quantitative and Qualitative Discovery: The 
ABACUS system. Machine Learning Journal, vol. 3, 1986. 
Falkenhainer B.C., Michalski R.S. Integrating Quantitative and Qualitative Discovery. Machine 
Learning: An Artificial Intelligence Approach, vol III, R.S. Michalski, J.G. Carbonell, T.M. 
Mitchell reds.), 1990. 
Greene G.H. The ABACUS.2 system for quantitative discovery : Using dependencies to discover 
non-linear terms, ML188-17 TR-11-88, 1988. 
Joyal M. Cours de physique, Vol. 3 Electricite, Eds Masson & Cie, 1956. 
Langley P., Bradshaw G.L., Simon H. BACON.5: the discovery of conservation laws. Proceedings 
of the seventh International Joint Conference on Artificial Intelligence, p 121-126, 1985. 
Langley P., Zytkow J., Simon H.and Bradshaw G.L. The search for regularity : Four aspects of 
scientific discovery in Machine Learning: An Artificial Intelligence Approach, volume II, Michalski 
R.S., Carbonell J.G., Mitchell T.M.(Eds.), Tioga, Palo Alto, Calif., 1986. 
Langley P., Zytkow J., Simon H. and Bradshaw G.L. Scientific discovery. Computational 
explorations of the creative process. MIT press, Cambridge, MA, 1987. 
Nordhausen B., Langley P. A robust approach to Numeric Discovery", Proceedings of the seventh 
International Conference on Machine Learning, p 411-418, edited by B.W. Porter and R.LMooney, 
Morgan Kauffman Publishers, Austin, 1990. 
Zytkow J. M. Combining many searches in the FAHRENHEIT discovery system. Proceedings of 
the fourth International Workshop on Machine Learning, p 281-287, Morgan Kauffman Publishers, 
Irvine, 1987. 
Zytkow J. M., Zhu J and Hussam, A., Automated discovery in a chemistry laboratory. Proceedings 
of the AAAI-90, AAAI Press, p 889-894, 1990. 


