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Abs t rac t .  An approach to normalization is presented for both the affine 
and the projective case. The approach is based on group factorization as 
well as on optimizing parameter invariant integrals, in order to overcome 
the difficult problem of parameterization. Related work has been carried 
out by [6] and by [4] for affine transformations and by [5] for projective 
transformations. To avoid some drawbacks inherent to projective trans- 
formations it is suitable to integrate point information or explore 'thick' 
curves, 

1 I n t r o d u c t i o n  

An approach to normalization is presented mainly based on minimizing some 
fundamentM properties of a subgroup in order to normalize objects up to this 
subgroup. In the projective case it is important  that  the normalization of the 
object is not a transformation to an abstract canonical frame but rather a recon- 
struction of the physical test pattern. This is relevant because small distortions 
of the object will be large distortions of the normalized object if the line which is 
mapped on the line at infinity is close to the object. Especially [5] had to face this 
problem but [2] proved the problem being inherent to projective transformations. 
We therefore propose centered curves which are already optimal in some way so 
that  the normalization will be as extreme as the projective transformation of 
the object. 

In case of affine transformations we will generalize some results of [6] and [4] 
in IR2 to curves in IR" and surfaces in 1R a, which is necessary for stereo-graphic 
reconstruction. [6] were rather interested in the interpretation of 2d-images from 
3d-objects and [4] emphasis was on texture so that they need not care so much 
for the parameterization of curves. But exactly the parameterization of curves 
is a specific problem for affine and projective invariant pattern recognition as 
the digitMization grid is rigid so that the amount  of pixel coordinates of two 
equivalent but  digitalized image contours may extremely vary. It is the very 
advantage of extremising low order parameter invariant integrals or sums that  
the parameterization problem can be neglected. 

2 F r o m  P r o j e c t i v e  T r a n s f o r m a t i o n s  t o  A f i l n e  

T r a n s f o r m a t i o n s  

The congruences and atone transformations are subgroups of the projective 
transformations. The first task is to normalize the non-affine part of the trans- 
formation in case we want to describe objects position invariant due to the 
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pin-hole camera model. Therefore we remark the following factorization of pro- 
jective transformations:  A projective t ransformat ion can always be factorized in 
an affine part  and a nonlinear part.  

P : I R 2 - - ~ I R  2 (x,y),---~ g x + - ~ y + l , g x + h y + l  

A :  IR 2 --* IR 2 (x, y) ~ ((a - cg)x + (b - ch)y + c, (d - f g ) x  + (e - h f ) y  + f )  

Now let P be a convex polygon in IR 2. Due to our principle we want to 
extremize here some fundamental  property of the affine group in order to nor- 
realize the object under projective t ransformations up to affine t ransformations.  
The first approach was to choose the ratio of two distances on a line. Using this 
fundamental  invariant it is possible to define an affine arclength for a convex 
polygon based on intersections of tangents. The analog for continuous convex 
smooth curves would be to extremize the affine arclength f ~r x ' ( s ) x " ( s )  [ds. 
But /~strSm [2] has proved that  projective t ransformations are quite powerful 
so that  the infimum for the smooth curves would be ellipses as Blaschke [3] has 
proved the extremal  property of ellipses with respect to affine arclength. There- 
fore it does not seem to be useful just to normalize a single curve. We will look 
at two classes of objects: 

- a convex curve with a point in the interior of its bounded domain 
- a convex curve with another convex curve in the interior of its bounded 

domain 

Another fundamental  property of affine t ransformations is that  the center of mass 
(with respect to area) transforms consistently under affine t ransformations.  Now 
it is shown that  this never happens under 'pure '  projective t ransformations and 
thus we can normalize curves up to affine transformations.  

T h e o r e m  1. Let P be a convex polygon with nonempty  interior. Then the only 
projective transforms preserving the convexity and mass center of the polygon 
are the af/fine ones (i.e. those for which the non-linear part of the projective 
transform is reduced to identity). 

Proof. Due to the factorization of the projective t ransformation in an affine and 
a nonlinear part,  it is sufficient to verify the theorem for the nonlinear part .  

So we are facing the following projective transformations:  

P ( x ,  y) = gx + -hy + 1' gx + hy + 1 gxi 4- hyi + 1 >_ 0 i = O , . . . ,  n 

if (xl, Yi) a r e  the vertices of the polygon. The inequalities define the feasible 
region as a convex closed set, which has to be bounded. In this way the lines 
are described which do not meet the interior of the closed polygon. Part icularly 
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if we fix some parameter (gi, hi), then the corresponding line Gi = ((x,  y) : 
gix + h iy+ 1 - 0} is mapped on the line at infinity. Let Go be the line through 
the origin parallel to Gi,  then Go divides the convex polygon in two half-spaces, 
H - ,  H +, as the center of mass lies in the origin. Let H § be the half with points 
between Go and Gi. The line Go is mapped identically on itself. The polygon 
is convex and convex sets within the polygon are mapped on convex sets. To 
each point h -  on the border of the polygon in H -  corresponds a unique point 
h § on the border of the polygon in H + lying on a line through the origin. 
While the Euclidean distance of such a point h -  shrinks, the Euclidean distance 
of one such corresponding point h + expands. Therefore the origin cannot be 
center of mass of the transformed polygon. For that reason look without loss 
of generality at a line parallel to the y-axis intersecting the positive x-axis: 
{(x,y)  : gx + 1 = 0} g < 0. Then we find for a vector ( rcos6 ,  r s in4)  with 
r_>0 

 ircos0 ,sin~ 
g c~176 V grcoT-O+ i gr cos ~ + 1 

As r cos 4 > 0 and g < 0 and the line is admissible, the denominator lies 
between zero and one. If ~ lies in the opposite angle region, the denominator 
will be greater than one. 

If the center of mass of a convex test pattern is marked, then we are capable 
of computing a normalized equivalent pattern which characterizes the test pat- 
tern up to an aftine transformation; for there has to be one position in which the 
marked point is the center of mass and so there exists one such projective trans- 
formation. If there were another transformation being not an affine equivalent 
one, then the above theorem would be wrong. 

Frequently we know one point in the interior of a convex test pattern but it 
need not be the center of mass. The question is whether this point is the center 
of mass of a projective equivalent pattern. 

T h e o r e m  2. Let P be a convex polygon. Then there exists at least one projective 
transform preserving the convexity of the polygon such that the origin will be 
transformed in the mass center of the transformed polygon. 

Proof. Again, only the nonlinear part of a projective transformation has to be 
taken into consideration, and therefore one may assume that  the origin has to 
be mapped on itself. The single pieces of area transform in the following way: 

zk zk+l I 
gz~+hyk+l #zk+i+hyk+i+l yk Y~+I 
gzh+hyk+l #zk+l+hyk+l+l (g xk 

I zk Zk+I I Yk Yk+l 
+ hyk + 1)(g~k+l + hyk+i -F 1) 

In order that  the center of mass of the polygon and the origin coincide, two 
equations have to be met: (the polygon is assumed to be positively orientated) 
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I 
n xk xk+l I(xk(gxk+l q- hyk+l § 1) + Xk+l(gxk + hyk + 1)) 

Y~: Yk+i K'" 
0 Xs  (gx~ + hyk + 1)2(gxk+i q- hyk+l + 1) 2 

k=O 

1)) 
Yk+l 

O = ys = ~ I(gxk + hyk + 1)~(gxk+i + hyk+i + 1) 2 
k----0 

and further the inequalities: 

gxi + hyi + 1 > 0 i = O , . . . , n .  

Both equalities may  be regarded as conditions for the gradient of a function 
to be ~ero; for g we have 

0_~ i -- -- i(xk(gxk + i Jchyk+ i -~ l )~-xkJri (gxk Jchyk Jrl)) 
Og ( 9 ~ + h y ~ + l ) ( g ~ + l + h y ~ + i + l )  - -  ( g ~ + h y ~ + l ) 2 ( g ~ k + l + h y ~ + l + i )  2 

and alike for h. So we find 

- 1  xk xk+i 
]Yk Yk+i I 

F(g, h) = (gxk + hyk 7-1)Ex-~+1+ hyk+i + 1) 
k=O 

This function has a min imum and a m ax i m um on the compact  region defined 
by the inequalities. The single summands  are negative as the areas are all positive 
and the denominators are positive because of the constraint inequalities. The  
function will decrease without limit towards the border of the compact  domain.  
Therefore a max im um  will not be attained on the border. But as there has to 
be a maximum,  the corresponding gradient must  have a zero point. 

Subsequently if the affine part  of the decomposition is fixed the transfor- 
mat ion is unique because of theorem 1. However, a single point is principally 
hard to detect. Therefore we look at objects which may  be normalized in a 
more robust way and which are still of some practical significance. We con- 
sider two closed convex curves: (x(t), y(t)) lies in the bounded open domain  of 
(~(t), ~(t)). Particularly we will look at curves of the following type: (~(t), ~(t)) = 
(Ix(t), ly(t)) l > 1 whose center of mass coincide. Another fundamental  prop- 
erty of affine transformations is that  area ratios are preserved. So we want to 
extremize the ratio of the area of the two curves in order to normalize the curves 
up to affine transformations.  

The task is to describe the object consisting of the two convex curves pro- 
jectively invariant (up to affine transformations).  

F(g, h) = 
f ~,(t)~(t)-u(t)~(t) dt 

( g x ( t ) W h y ( t ) q - 1 )  ~ 
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Consequently we face the following optimization problem with the restriction 
that  the convexity of the objects is preserved. 

F(g, h) ~ rain g~(t) + h~(t) + 1 > 0 

The feasible region is again a compact set and towards the border of the set 
the values of the function grow without a limit. So a minimum of the function 
has to lie in the interior of the set and the gradient of the function is of the 
following form: 

OF(g,h) f -2~  ~;r dt f ~ - ~  d t -  f ~;~-?~i; 2dt r - 2 x  ~ - ~  ~dt (gs h~ -{- 1) 3 (gx.-I-hy-F1) 2 (g~'-Fh~ -t- 1) J (gx-~-hy+l) 

bg - (f ~ - ~  dt ~2 (gx-Fhy-F1) 2 ] 

This implies, that  the gradient of the function is zero if the centers of mass 
of the two curves coincide. 

f ~ x y - y x  3dt  (g~+h~+Z) 

f x y - y x  J4 (g~+h~+Z)~ ~o 

x (g~+hy+ i )a dt 

f ~ - ~  ~dt 

So if our test object consists of two curves which are centered, then the test 
pat tern will already be an extremal object. In order to demonstrate uniqueness 
of the optimization problem we restrict to the particular class of objects already 
mentioned above: (~(t), t~(t)) = (lx(t), ly(t)) l > 1 where the center of mass of 
(x(t), y(t)) lies in the origin. If we parameterize our curve (x(t), y(t)) with the 
area-parameterization [1] we will derive the following simplified function which 
is to be optimized: 

12 
f (glx(t)+hZy(t)+l) ~''dt 

F(g, h) = ] ~ dt ~ rain glx( t)  + hZy(t) + 1 > 0 
(gx(t )+ hY( t )T1) 2 

We know that  the parameter (g, h) -- (0, 0) represents a local minimum as the 
centers of mass of our curves coincide due to their construction. Further our two 
curves are apparently projective equivalent. Due to theorem 1 we know that the 
center of mass of our curve cannot remain in the origin under the above 'pure' 
projective transformations unless (g, h) -- (0, 0). The relation of our objects is 
(x(t), y(t)) ~ (Ix(t), ly(t)) and the relation of the projective transformed objects 
is 

( ~(q y(t) ) ( ,~(t) ly(t) ) 
gx(t)-Fhy(t)-Fl ' gx(t)-Fhy(t)+l "~ kglx(t)+hly(t)-Fl ' glx(t)-Fhly(t)-F1 

and if there were a second minimum then the centers of mass would have to 
coincide. But as 1 > 1 the line {(x,y)  : g l x + h l y +  1 = 0) is parallel to 
{(x, y) : gx + hy + 1 = 0} and closer to the object. Thus similarly as in theorem 
1 the centers of mass of the transformed objects cannot coincide. So there has 
to be a unique minimum. 
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Fig.  1. Projective transformed object, normalized object up to affine transformations 
after some iterations. (The normalization of the non-convex curves is based on the 
corresponding convex curves) 

3 From Affine Transformations to Congruences  

Due to our principle we want to extremize some fundamenta l  p roper ty  of the 
congruences in order to normalize our objects under equiaffine t rans format ions  
up to congruences. We therefore chose the Euclidean distance and found later 
on tha t  there had been performed some research in this respect. 

Al ready Brady  and Yuille [6] have pointed out  for a large class of curves 
7(t) = (x(t), y(t)) tha t  the following min imiza t ion  problem has a unique solut ion 
in IR 2 up to congruences: 

+ H ) 

under  the restriction tha t  the determinant  of A is equal one. The par t icular  prob- 
lem is in this case tha t  it is not  possible to determine the parameters  explicitly in 
general so tha t  we are forced to use i terative algori thms.  The  advantage  is t ha t  
we need not care for the parameter iza t ion problem as the integral is pa ramete r  
independent .  We also used the squared distances and derived the same explicit 
formula  as [4]. But  [4] were not tha t  interested in contours  and therefore could 
neglect the parameter iza t ion  problem which raises in this case as the integral  
is no longer parameter  independent.  Nevertheless a complete  explicit fo rmula  
was derived in ]R 2 [9] by using Arbter ' s  [1] area parameter iza t ion.  The  whole 
a lgor i thm was tested with reM images [9] and  the object  recognit ion results were 
very satisfying. 

In IR 3 we prefer the ordinary Euclidean distance, as it is not  so easy to pa- 
rameterize our curve in this case. Therefore it will be shown, tha t  the problem - 
to find a m o n g  all equiaffine equivalent curves tha t  one, with min imal  Eucl idean 
arclength - has a unique solution for a large class of point  sets in ]R ~ unless the 
object  is degenerate.  We want to ment ion tha t  it is not  so difficult to demons t ra t e  
the existence of a solution. Consider three points  in IR 2 which are not  collinear: 
(x~, yt),  - �9 �9 (x3, Y3). The linear t ransformat ion  with de terminant  one min imiz ing  
the following term ~-~=t X/( axk § bYk) 2 + (cxk + dyk) 2 will t ransform the three 
points  in such a way tha t  they represent the vertices of an equilateral t r iangle [9]. 
So if there are more  points  then there will always be a lower bound  build up by 
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an equilateral triangle. In IR a the same is true for a regular tetrahedron and so on. 

T h e o r e m 3 .  The optimization problem has a unique solution up to congruences, 
unless the polygon can be embedded in a hyperplane. 

Proof. Let P1 be a polygon: (xl,  Y l ) , ' " ,  (x~, Yn) in IR '~ and P2 = A P  + z an 
affine equivalent polygon. Suppose that  both these polygons are opt imal  due 
to our minimization problem. According to the mat r ix  decomposition theorem 
[7] we can factorize A in the following way: A = O1DO2 where O1 and 02 are 
orthogonal matrices and D is a diagonal matr ix  with positive diagonal elements. 
Thus we redefine our polygons in the following way: P1 := OaP1 and P2 := 
DP1. P1 and P2 are again opt imal  as an orthogonal mat r ix  does not change 
the Euclidean distances. So the t ransformation mat r ix  between the two opt imal  
polygons is a diagonal matr ix.  Now we can prove uniqueness by proving that  the 
following restricted optimization problem has a unique solution. 

fi )~i xi~ ---+ rain Ai = 1 Ai > 0 
k = l  i = 1  i = l  

- The objective function: 
In order to verify that  there is a unique solution we consider one single 
summand  as a function: V~im__l 22x~. This function is convex, because, if 
)~ and # are two vectors and 0 < ~ < 1 the convexity condition can be 
expressed in the following relation: 

i = I  i - -1  i = 1  

The relation is true due to the Minkowski inequality. As each single summand  
is a convex function and as a sum of convex functions leads to a convex 
function, our function has to be convex too. 
If  F is a convex function than the level-sets Ne := {x : F(x)  < c} are convex 
closed sets, and our special level-sets are restricted too in case none of the 
components  k of the vectors x are identically zero; for if you assume that  
the level-sets are not restricted, then we could find a ~ r O, because of the 
convexity of the level sets, such that  for all c~ >_ 0 we find ~ E No, i.e. 

_ 2 2 

k = l  i = 1  k = l  i = 1  

But this can only happen if the whole expression is equal zero. 
- The feasible region: 

The set m _ 1-Ii=l ~i > 1 hi > 0 is a convex set; for if 

fI I T  ~ - > 1  #~>_1 ~ > 0  # i > 0  
i = 1  i=1 
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we calculate due to the concavity of the logarithm for 1 > c~ > 0 

log ~Ai + (I - ~)>~ 

m 

-- ~-~ log(olAi + (1-- oOpi ) 
i 

m m 

i i 

Now taking the exponential of the two sides, one gets: 

m m m 

1-I(c~Ai + (1 - oL)#i) _> ( H  A ' ) '~ (H p~)(1-~) _> 1 
~=i i----I i=i 

if the two products are greater than one. And especially due to the last 
inequality we find that the constraint set I ] i=l  Ai = 1 A~ > 0 is the border 
of a strictly convex set. 

There exists a neighbourhood of the origin which does not contain a point 
of the feasible region as the Euclidean norm of an admissible point is always 
greater than one. Therefore one can find a factor such that the unit-level set, 
stretched by this factor, will intersect the constraint set in a unique point due 
to the strict convexity of the constraint set. 

3.1 L ine  o b j e c t s  in IR 3 

The algorithm was tested on some objects in ] a  3 and each time it led to a 
'unique ~ solution, see figure 2. The algorithm may be as well applied on objects 
which are build up by several curves. 

0 4  

~ I 
-0.2 

-0.r 

=S 10 0 5 

5 

0 0 ~.s 

Fig. 2. Atline transformed and normalized helix 
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3.2 N o r m a l i z a t i o n  o f  S u r f a c e s  in  IR3 

Closely related to the problem of minimizing the arclength under equiaffine 
t ransformations is the problem of minimizing the surface of an object in IR a 
under equiaffine transformations:  

Let x = (Xl, x2, xa) and y = (Yl, Y~, Y3) be two vectors in IRa. Then the 
crossproduct Z = x x y is the vector whose components consists of the minors 
of the mat r ix  which rows are x and y. There is an impor tant  relation among 
a vector z, the crossproduct Z and the affine transformed vectors z*, Z*. For 
example Blaschke [3] has proved that:  z 'Z*  = zZ. So we can easily prove that  
the crossproduct acts as a contravariant tensor under affine transformations: 
Z* = A~-~ Z. Let ~(u,  v) := Z ( u ,  v)i + Y(u ,  v)j  + Z(u,  v)k be a surface with a 
compact  parameter  domain K. The area I (~ )  of the surface ~5 on K is defined 
by 

/K /K ~ ~ IN(u ,v ) ld(u ,v )= I ~  x 7vJd(u,v) .  

Particularly we find 

OY OY 
x(~) = fK V ~ J + '  o(~,,v)" o(o,~) = 

In [8] it is proved that  the surface area as defined above is invariant under 
'admissible '  parameter  transformations.  N(u,  v) is the normal vector. So if we 
consider the problem to find one surface among all equiaffine equivalent surfaces 
with minimal  surface area, we find due to the contravariance of the crossproduct 
the following problem: 

,-~ o(v, z) c o(z, x)~ (o(x, Y) 
KII A (( O~,  v) ) '  ' ~ ' '  ~ v) ))d(~,~) II ~ rain 

with the restriction that  the determinant  of the matr ix  A is one. But as the 
matrices form a group we may replace the term A t-1 with A. The structure of 
the problem, to minimize Euclidean distances under equiaffine transformations 
is the same as above. Therefore this new optimization problem for surfaces will 
again have a unique solution. 

4 C o n c l u s i o n  

The emphasis in our paper  is on parameter  invariant integrals - area in the 
projective case and perimeter in the affine case - in order to overcome the difficult 
problem of parameterizat ion.  To normalize the rotation due to our principle we 
used such a normalization scheme as: n 2 y]k=l(aXk+byk) --+ min  a2-q-b 2 "- 1. 
But we omit  this passage here as the problem of parameterizat ion is not so 
difficult in the case of congruences and finish with some normalized objects: 
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Fig.  3. a) Projective transformed object b) projective normalized object c) affine nor- 
malized object d) congruent normalized object 
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