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Abstract .  We study the problem of how to detect "interesting objects" 
appeared in a given image, I. Our approach is to treat it as a function 
approximation problem based on an over-redundant basis. Since the ba- 
sis (a library of image templates) is over-redundant, there are infinitely 
many ways to decompose I. To select the "best" decomposition we first 
propose a global optimization procedure that considers a concave cost 
function derived from a "weighted L p norm" with 0 < p _~ 1. This 
concave cost function selects as few coefficients as possible producing a 
sparse representation of the image and handle occlusions. However, it 
contains multiple local minima. We identify all local minima so that a 
global optimization is possible by visiting all of them. Secondly, because 
the number of local minima grows exponentially with the number of tem- 
plates, we investigate a greedy "L p Matching Pursuit" strategy. 

1 I n t r o d u c t i o n  

In the field of signal processing and computer vision an input signal or image is a 
function f over some subset of ~ or ~2. To manipulate and analyze f,  it is useful 
to introduce a linear decomposition into basis elements fj ,  i.e., f = ~ j  cjfj . 
An example of a well known and useful decomposition of this type is the Fourier 
series expansion. 

We study the object recognition problem via a robust template decomposition 
approach. Let the image to be recognized be I and the template library be s 
The task of image recognition is reduced to a function approximation problem 
of the form 

I(x) = E E cijAi(vj)(x) = E cijT~j(x) (1) 
j i i , j  

where rj E ~:, T/j = Ai(vj) denotes an affine transformation applied to the 
template vj, and clj is the choice of coefficients that "best" decompose the image. 
Typically the library s is large, in order to accommodate many possible situations 
and also consider the possible (affine) transformations. Thus, we have an over- 
redundant basis leading to infinite many solutions, cij, to this problem. That is 
not the case for the Fourier decomposition. 

Let us illustrate the problem of function decomposition with over-redundant 
library. Say our basis consists of sinusoids and functions of the form 1/(k + 

4 x) (k E N). Assume that f(x) = sin2x + ~ is our target function (our 
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image). It is clear that only two terms from the prototype library are required to 
represent f(x).  However, one could write f (x)  using either sinusoids alone or as 
combinations of 1/(k + x) alone, but either representation would require many 
terms. The problem is to formulate a coefficient selection criterion and a method 
to compute the coefficients that yields compact representations. 

1.1 Coef f ic ien t  se lec t ion ,  concave  cos t  f u n c t i o n ,  a n d  o p t i m i z a t i o n  

Our approach [7, 13] is to construct an objective function F(c)  that when min- 
imized selects a best representation, c*, from among all solutions c that satisfy 
the constraint I(x) = ~-~j ~-~i cijAi(rj)(x). We require 

1. S p a r s e  R e p r e s e n t a t i o n :  represent (decompose) an image using as few tem- 
plates as possible in order to have an economical (minimal) representation. 
Field [9] also argued for sparse representations in the brain. 

2. Occ lus ions :  allow for partial occlusions, i.e., the cost of fitting a template 
must take into account that portions of the template may have a "bad match". 

3. Noise :  model noise via "noise templates" accounting for the difference be- 
tween the template fit and the image. This leads us to search for cost func- 
tions that escalate with the magnitude of cij, but should not dominate the 
first condition, i.e., the rate of increase in cost as a function of Icijl should 
decrease. 

The above consideration leads us naturally to adopt concave objective functions. 
In particular, we will primarily study the objective function 

M N 
Fp (c) ---- ~ ~ wi j l c i j  I p , (2) 

j=l i=1 

where N is the number of possible (affine) transformations and M is the size of 
the template library. The scalars Wij'S a r e  positive, e.g., they may be set to I or 
to the inverse of the template and image variances. 

The sparsity of templates suggests p = 0 to count the number of templates 
(weighted by wij). Noise templates should be paid according to how large the 
"repair" is, i.e., how large the error cij is. The balance between both processes, 
sparsity of tile templates and noise modeling leads to values of 0 < p <_ 1. 

The objective function is non-convex, and in fact the optimization problem 
will generally have multiple local minima, making the optimization more diffi- 
cult. We will show that it is possible to characterize all local minima and obtain 
the global one by visiting them. Since the number of local minima grows expo- 
nentially with the size of the template library we consider an alternative greedy 
algorithm. Recently, Chen and Donoho [3, 4] studied the overcomplete signal 
representation problems with L 1 norm optimization. Their method is based on 
linear programming, which is efficient, but only applies to the p = 1 case and still 
leads to a slow algorithm. Coifman and Wickerhauser [5], modeled an entropy 
like function, ~i, j  ICij 121~ 12 with more constraints on the the coefficients cij 
square-sum to 1. 
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C o m p a r i s o n  w i t h  principal component a n a l y s i s / E i g e n f a c e s :  Our ap- 
proach is fundamentally different from the "eigenfaces" approach (PCA ap- 
proach) [16]. In our case the basis functions are fixed and the adaptation of 
the method is on choosing the appropriate coefficients (from a redundant basis), 
a non-linear process. In the PCA approach the choice of basis functions, a linear 
process, is where the adaptation occurs. PCA works well only when the task 
function is a simple linear superposition of the basis functions. 

1.2 Matching pursuit 

Inspired by Mallat and Zhang's work [14] we consider a matching pursuit strat- 
egy where, at each stage, the criterion of best selection is based on minimizing 
an image residue. In regression statistics, this decomposition method is known as 
Projection Pursuit Regression, a non-parametric method that is concerned with 
"interesting" projections of high dimensional data (see Friedman and Stuetzle 
[10], Huber [11]). Recently, Bergeaud and Mallat [2] used the (n 2) matching pur- 
suit with a redundant family of Gabor oriented wavelets to approximate images 
and produce compact decompositions for the main features of images. 

The original matching pursuit is based on the standard L 2 (Hilbert space ) 
method. We propose an L p matching pursuit with 0 < p _< 1, to improve the 
robustness. With 0 < p < 1, we lose the structure of inner product but the notion 
of a template "closest" to the image is recaptured via the cost function. 

2 T e m p l a t e  L i b r a r y  a n d  I m a g e  C o o r d i n a t e s  

We must first establish a well-defined over-redundant library of templates con- 
taining many non-canonical templates as well as one canonical template. A canon- 
ical template is a trivial template with zero gray-level value pixels everywhere 
except one pixel at the extreme left and top corner that its gray-level value is 1. 
Moreover, we will assume we can apply a set of affine transformations to each 
template, indeed we will restrict ourselves to translations. Clearly, this single 
canonical template plus a set of all translations form a basis for the image space. 

C o o r d i n a t e  t r a n s f o r m a t i o n s :  Suppose we have now created a template library 
f~ = {rj : j = 1...M} for some application, where we will use el - 7-1 to represent 
the canonical template. Let the image to be recognized be I of dimension N 
and each template 7-j be of dimension AfT (we assume that both N and NT 
are perfect square numbers). Furthermore, let P = { P l , P 2 , " ' , P N }  and Q = 
{ql, q 2 , ' " ,  qNT} be the pixel sets of I and any rj, respectively. (We order the 
pixels from top to bottom and left to right.) Let the translation Ai(rj) indicate 
that the first template pixel ql is positioned at the i-th pixel pi E P.  The mapping 

~-i N) + formula for Ai is such that qr ~-~ Pk = Pk(r,0 where 3 k = i + ( [ ~ J  x 
r - - 1  ( r -  1 - [~7~r J • ~ ) '  Denote Tij = Ai ( r j )and  e i l =  Til = Ai(cl) 4, then we 

z The expression LxJ denotes the greatest integer less than or equal to x. 
4 Note that e~l(pj) = ei(pj) ---- t~ij, where (fij -- 1 for i -- j and tfij = 0 otherwise. 
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have Tij(Pk)  = rj (qr). Using these notat ions,  one can write the decompos i t ion  
equat ion (1) as 

N 54 N N M . N  

: e TA(p ) (3) 
i=1 j=2 i=1 .k=l A=N+I 

where A = )~(i,j) = (j  - 1) x N + i. We m a y  write I[k], cA[k] and Ta[k] instead 
of I (pk) ,  eA (Pk) and Tx (p~), respectively, for simplification. 

3 Optimization Problem and Solution 

Equat ion  (3) can be wri t ten in ma t r ix  nota t ion  as T e  = I where 

T = 

[ c111] -- TN§ " eN[ I] 
e112]. . eN[2]. TN+I [2] .  

\ e ~ [ N ]  �9 oN[N] TN+I[N] 

TMN[1] 

TMN[N]/ 

C ---- (C1, C2, . . .  , C]%IN) t and I = (I[1], I[2] . . . .  , [IN]) t . 

Note that  if the p ro to type  l ibrary forms a basis  (linearly independent) ,  then 
M = 1, and there is no f reedom in choosing the coefficients (cA); the coefficients 
are uniquely determined by the constraint .  If  there are linear dependencies in the 
p ro to type  library, then M > 1, the p ro to type  l ibrary over-spans,  and the set of all 
solutions (cA) to the constra int  forms an (M - 1) N dimensional  affine subspace 
in the M.N-d imens iona l  coeff• space. Let S denote this solution space, i.e., 
d im(S)  = ( M - l )  N .  Using the above ma t r ix  notat ions,  our  op t imiza t ion  p rob lem 
can be formula ted  as: 

M N  

),=1 
subject  to the cons t ra in t  T c = I  (4) 

where T C R NxM'N ,  C E I~ M N ,  I E IR N, M > 1. The  next result  is shown in 
[7, 13], or previously s ta ted in [8]. 

P r o p o s i t i o n  1 All the local min ima  of  LP-cost funct ion  in (4) occur at the 
vertices of a polytope. This polytope is constructed f rom the intersect ion of  the 
a/fine subspace S and a cube defined by the origin and bounded in each axis by 

dA. dA can be as large as (Fp(co)/CoA) 1/p, where c0 is any solution to T c  = I . 
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4 O n e  T e m p l a t e  M a t c h i n g  a n d  S i m u l a t i o n s  

If  we want to find a specific face in an image, then it suffices to use only one 
face-template. In these cases the non-canonical template represents a key feature 
and the canonical templates e;~ represents non-interest elements , e.g., noise. 
Let us assume that this particular template be 72 of size NT (vl -- Cl) and Ai 
be the translation, that is, Ai(v2) = Ti2 = TN+i. This says that we look for a 
decomposition of the form: 

N 

),----1 

It is clear that c~ = I[A] if pixel p~ is not covered by TN+~. So, the equation (1) 
can be restricted to the region where TN+i is located. 

eA,(1)[Ai(1)] "'" 
eA,(1)[Ai(2)] 

eA,O)[Ai(NT)] 

eA,(Nr)[Ai(1)] TN+i[Ai(1)] ~ [ CA,(1) 
eA,(N,![A,(2)] Tg+,[r ] I " 

�9 ICAi(NT) 

r[A'.(1)] / 
= (• INT)]/ 

where  i[j] = *i(Ph) = *,5" aeeall  that =  2[d (and A (1) = i). We 
can also assume that r2[r] # 0 for r = 1 , . . . ,  NT, since otherwise we can redefine 
either r2 or the pixel ordering to get a smaller value for NT. 

It follows from Proposition 1 that the local minima of Fp(c) can be found by 
setting CN+i, C A I ( 1 ) ,  . . . ,  CAi(NT) to zero one at a time. If we set CN+i ---- 0 then 
we get c~ = I[A] for all A. This is the "pure noise" solution. The first nontrivial 
( template using) solution sets cA~o) = O. This forces the template coefficient 
CN+i = I[Ai(1)]/r2[1], from which it follows that CAi(r) = I[Ai(r)] - CN+ir2[r], 
for r = 2 , . . . ,  NT. The solution determined by setting CA,(r) = 0 (2 < r < NT) 
can be calculated in an analogous fashion. 

The optimal cost of the match of the template in the (translation) position 
i is the smallest of the values of Fp(c) across all NT + 1 solutions (c). One 
performs a similar analysis for all template translations, and finds the position 
which generated the smallest match cost. Note that in the case of one template 
matching, the LP-norm decomposition problem is actually the same as p-norm 
minimization. 

4.1 S i m u l a t i o n s  

We have designed a sequence of experiments focused on the effects of noise and 
occlusions to demonstrate both the weighted and unweighted (all w~ 's are set 
to 1) L p decomposition methods are superior to the conventional correlation 
techniques. The weights used in the weighted scheme are defined as w~(i,j) = 

NT 1/([~-~k= t [Tj[k]IP][~-]ff__rl ][[Ai(k)]lP]) , for 0 < p < 1 . 
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The experiments consist of numerous trials on random images with fixed 
occlusion size and fixed noise variance. The latter determines the signal-to-noise 
ratio (SNR) for the experiment, defined here as the ratio of the standard deviation 
of the image to the standard deviation of the noise. 

Each trial has four components: an image, a template, an occlusion, and noise. 
The image is 64 pixels wide by 64 pixels high, randomly generated using an 
uncorrelated uniform distribution across the range (-256,256) .  The template is 
a 4 pixel by 4 pixel subimage of the image. After selecting the template, a portion 
of the image from which the template is drawn is "occluded" by redrawing from 
the same distribution that formed the image, i.e., from an uncorrelated uniform 
distribution with range (-256,256).  (Occlusion sizes range from 0-14 pixels, 
from a total subimage size of 16 pixels.) Finally, noise is added to the (occluded) 
image, drawn from an uncorrelated Gaussian mean-zero random variable. 

Translates of the template are compared against the noisy, occluded image, 
using both weighted and unweighted LP-norm decomposition method. (Because 
both the template and the image are drawn from zero-mean random variables, 
there is little difference between 2-norm error minimization and standard cor- 
relation.) For each method the translation position yielding the best score is 
compared with the position of the original subimage from which the template 
was formed. If the two agree then the match is considered successful, otherwise 
the match fails for the trial in question. 

5 M u l t i p l e  T e m p l a t e s  a n d  M a t c h i n g  P u r s u i t  

In this section, we proceed to elucidate the matching pursuit method for the 
case of multiple templates. The basic idea is to devise a greedy iterative method 
where at each stage only one template is selected and thus, we can rely on the 
previous section result. In this section we will also consider, for comparison, a 
cost function based on the L T S  (Least Trimmed Squares, Rousseuw 1983, 1984, 
[151). 

5.1 R e v i e w  

We briefly review the (L 2) matching pursuit below. Suppose it is given a signal 
f ,  and a library of functions D = {gT}~cr where F is a set of index tuples and D 
represents a large, over-redundant family of functions. A "best" matching library 
element to the residual signal structures at each stage is decided by successive 
approximations of the residual signal with orthogonal projections on elements in 
the library. That  is, say at stage n, for any element g-~ ~ D, we consider 

R ~ - t f  = <  R'~-tf ,  g~ > g~ + R ~ f  (6) 

where R n f  is the n-th residue after approximating R '~ - l f  in the direction of g7 
(assume that the initial residue is the function f ,  i.e. R ~  = f) .  The matching pur- 
suit strategy is to find g-y. that minimizes IIRn:ll (or the g-y' closest to R '~- l f ) ,  
i.e, I I R " - l f  - < R'~-lf ,  g-/. > 9"y'IIL~ = M i n l l R n - l f  - < Rr~-lf, 97 > g,,/llZ~, 

7EF 
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Fig .  I .  (a)Experimental matching accuracy as a function of occlusion size with no noise. 
The solid curves correspond to our proposed weighted L p decomposition, dashed to the 
unweighted L p decomposition. Note that smaller values of p outperform larger values 
providing nearly 100% correct results with p = 0.125 for occlusions as large as I i  (out 
of 16) pixels. Also given a p value the weights (normalization) can help improve the 
results. (b) Experimental  matching accuracy as a function of occlusion size at a Signal 
to noise Ratio (SNR) of 37. The solid curves correspond to our proposed method, 
dashed to the unweighted L p method. Here we note that p = 0.125 still performs very 
well, although good results can not be obtained if the occlusion is larger than half 
the template size. Notice that the results using larger values of p are less affected by 
noise, especially those with p > 1. (c) Experimental matching accuracy as a function 
of noise level at a fixed occlusion size of 5 (out of 16) pixels. Note again that larger 
values of p produce results which are less sensitive to noise. For example, the results 
for p = 0.125, which are best for large SNR, are poorest for SNR of less than about 
3. The solid (dashed) curves correspond to weighted (not weighted) L p method. (d) 
Experimental  matching accuracy as a function of p, at various noise levels and occlusion 
sizes. For an occlusion size of 4/16 and a SNR of 9.2, the best p value for our weighted 
L p method is somewhere between 0.25 and 0.5. The solid (dashed) curves correspond 
to weighted (not weighted) L p method. 
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5.2 O u r  a p p r o a c h  

Assume that R ~  = I, the input image. Then, at stage n, if a transformed 
template Tx(= Tij = Ai(rj))  and coefficient cA are chosen, the n-th residual 
image can be updated as follows: 

l ~n I (pk )  : ] :~n- l I (pk)  -- C)(~)~(pk ) for k = 1 . . . N .  (7) 

Note that Tx is only of dimension ArT and we assume that Tx (Pk) = 0 if Pk is 
not covered by Tx. From (7), R'~[ can be derived by "projecting" R'~-I I  in 
the direction of T~. At each stage, we recover a best matching by minimizing 
cox llR ~*r] ILp where wa is defined similarly to the case of one-template matching. 

5.3 Matching pursuit simulations 

We first work with synthetic data and then with real images. 

Synthetically Randomized Images : Let's begin with a simple experiment to test 
our template matching algorithm for a synthetic example. In this experiment, the 
template library s consists of three different types (or shapes) of templates ((a), 
(b), (c) in Figure 2). There are 40 templates for each type so that /2 includes 
120 non-canonical templates and one canonical template q .  Each of the non- 
canonical template is a synthetically randomized image with gray-level values 
between (0,200) generating from a random number generator. To construct a 
test image I1 (as in Figure 2-(d)), we first select one non-canonical template 
randomly from each template type in Z; to form the base (exact) image then 
add noise and an occluded square derived from uniform distribution in (0, 10) 
and (245,255), respectively. The threshold values used in simulation vary with 
respect to the value of p for L p matching pursuit and a for L T S  matching pursuit. 
We see that both methods can handle occlusions (e.g. see Figure 2-(e) R~). Our 
experiment results suggest for p E (0.25, 0.75) and a E (0, 51, 0.75), both the 
LP and L T S  methods are rather robust. But,, as shown in Figure 2-(f) R2, both 
methods failed to recognize the occluded object for p _> 0.75 and for a > 0.75. 

Face Recognition : A small library of face templates has been established (see 
Figure 3 (a)-(f)). The dimension of all the six templates is 64 x 64. Numerous 
experiments have been carried out to test our algorithm. To illustrate, consider 
the three real images, I~ - 13, in Figure 4 (a)-(c). We obtained decomposition 
results RI, Ru and R3 shown in Figure 4, for p = 0.25. (Similar results are 
derived for p = 0.50 and 0.75.) When p = 2, it is indeed the L'- matching 
pursuit method and the recognition results are  /~4, R5 and R6. Our proposed 
L p matching pursuit has the robustness advantage over the L e one. In case that 
an image contains objects with large occlusions (like Ia), the L T S  may fail to 
recognize them as shown in 4-(1). In addition, the L e is more efficient than L T S  
regarding to the computation complexity. 
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Fig .  2. (a), (b), (c) are synthetic template type 1, type 2 and type 3, respectively. (d) 
Test image I1 with noise added and occlusion (e) Result of the decomposition for the 
L p with p = 0.25, and also for the LTS with a = 0.51. (a is the robust constant of 
LTS.) (f) Results once the breakdown limits are reached, and occluded templates are 
not recognized. For example, L p, with p = 0.75 and LTS with a = 0.75. 

Fig .  3. (a) - ( f )  are the face and book templates used in the face recognition simulation. 
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