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A b s t r a c t .  The problem addressed in this paper is related to display- 
ing a real 3-D scene from any viewpoint. To display a scene, a relatively 
sparse set of 2-D re#rence view8 is stored. The images that  are in- 
between the reference views are obtained by interpolation of coordinates 
and brightness (colour). This approach is able to generate the scene rep- 
resentation and render images automatically and efficiently even for com- 
plex scenes of 3-D objects. This is possible since the processing time does 
not depend on the complexity of the scene as there is no at tempt to un- 
derstand the semantics of images. 

In this paper we present a novel approach to automatically determine 
a minimal set of views from which the complete scene can be rendered. 
The method consists of two procedures: view-interval growing and selec- 
tion. The first procedure independently searches for the intervals from 
which large portions of the scene can be rendered. These intervals are 
then passed to the selection procedure, which selects the minimal set 
of necessary views. The selection procedure is posed as an optimization 
problem that minimizes the number of reference views and the error due 
to the interpolation. 
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1 T a s k  F o r m u l a t i o n  

527 

Traditional approaches for displaying a 3-D scene from any viewpoint use a full 
3-D model of the scene. The drawback is tha t  the methods for automat ic  3-D 
model reconstruction can only cope with simple man-made  objects. 

Recently, alternative methods have appeared using image-based scene repre- 
sentations. In this case, the scene is not represented by a 3-D model but ra ther  
by a collection of 2-D views. The research activities focus either on the geom- 
etry of the problem [UB91, Sha94, LF94], or on the image interpolation prob- 
lem [CW93, SD95, WHH95]. However, none of the works address the problem of 
how to determine an optimal set of views from which the scene can be rendered 
to a sufficient degree of accuracy. 

This paper  proposes a novel paradigm of how to automatical ly select the set 
of reference views from the set of all views of a scene for displaying purposes. In 
further text, the term primary views denotes captured 2-D images that  consti tute 
the input information about  the scene. By reference views we understand the 
smallest subset of the original set of pr imary views that  is sufficient to accurately 
interpolate all other pr imary views. 

Let us illustrate the above idea on an example. Imagine, tha t  a 3-D rigid 
object is fixed on a table tha t  can turn and slant. A camera  looks at the object 
on the table from a fixed point. We can capture and store 2-D views covering 
the whole hemisphere of possible views. Assume for the moment  that  we already 
have a set of reference views. The reference views should encompass the crucial 
information needed for displaying. Other views can be computed by interpolation 
from the reference views, where the interpolation combines both position (coor- 
dinates) and brightness or colour. These images are called interpolated views. 

There are four issues related to the formulated task [WHH95]: (1) How to 
predict the position and the intensity of a point in the new view if the positions 
and the intensities of corresponding points in the reference views are known? 
(2) How to determine the visibility of points in the new view? (3) How to find 
the optimal set of necessary reference views? (4) How to find the correspondence 
between reference views? In this paper  we primarily concentrate on issue 3. 

A "brute force" method would represent a scene by generating a densely sam- 
pled set of pr imary views. Our intention is to do bet ter  and replace many  pr imary 
views by a much sparser set of reference views. Practically, we can think of sev- 
eral possible setups related to the capturing of pr imary  views: (1) A 3-D object 
can be placed on a turn-and-slant  table and captured by a camera  from a fixed 
viewpoint. (2) Several dozens of cameras can be placed around the captured 
object.  This setup was proposed for the so called virtualized reality [KNR95]. 
(3) The source of pr imary views can also be a video sequence. An uncalibrated 
camera moving along an unknown tra jectory is the most  general case. 

Note, that  the practical experiments reported in this paper  fall in the first 
category, however, our paradigm applies to all three categories. 
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2 N e w  P a r a d i g m  f o r  S e l e c t i o n  o f  R e f e r e n c e  V i e w s  

The basic idea is to group close and similar primary views and represent them 
by the reference views. Let us first assume the simple case where the object 
makes a 1-DOF movement with respect to the camera. This corresponds to an 
object placed on a turn-table and observed by a camera from a fixed distance. 
Moreover, let all possible primary views lie on a view circle. Let us assume that  
a densely sampled set of primary views is captured. Similar and neighbouring 
views on the view circle can be used to create the viewing interval of the view 
angle. Limits of the interval correspond to two 2-D images. The images within 
the interval can be interpolated from the extremal 2-D images. If there is a close 
similarity between the interpolated and the primary views, we can represent the 
whole viewing interval by its two extremal views. They will be called reference 
views. The similarity between interpolated and primary views is based on an 
approximately identical visual appearance. The visual appearance dissimilarity 
(VAD) measure is used for comparing interpolated and primary views. The VAD 
is described in more detail in Section 2.1. The VAD should be below a predefined 
precision for all views in the interval. 

Since we do not want to be affected by the starting point during the growth 
of the viewing interval, we start  the process of creating the interval from each 
primary view independently. The result is a set of candidate intervals that  can 
potentially overlap. To select the best set that  covers the whole range of views 
is the goal of an optimization task. 

In this paper, the stress is put on the method of computing reference views. 
We worked out the simplest case where primary views lie on the view circle. 
The generalization to the view sphere case seems possible. A few remarks on the 
generalization will be discussed in Section 4. 

2.1 The Visual Appearance Dissimilarity 

The visual appearance dissimilarity (VAD) assesses the closeness of the match 
between a primary view and its interpolation created from some reference views. 
In other words, it expresses the error due to replacing the real image by the 
interpolated one. The word dissimilarity can hardly be defined in absolute terms. 
It is related to the purpose the interpolated images will serve to and must be 
designed with this purpose in mind. For instance, a human observer can tolerate 
slight geometrical distortion of the whole image, but is very disturbed by some 
spatially small artifacts in the images. For the demonstration of our approach, 
we chose the following simple VAD function. 

Let v(x, y) denote the primary view and i(x, y) the interpolated view. Let 
Oi denote the set of points that  could not be interpolated in i(x, y) because of 
occlusion. A complementary set O/c denotes the points that  are not occluded. 
We can define a VAD as a scalar function that  is basically independent on image 
interpretation: 

VAD(v, i )=~ IOil+/~ Z Iv(x 'y)- i (x 'Y)l  ' (1) 
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where a and/~ weight the influence of occlusion and of the error due to incorrect 
matching or interpolation, respectively. I.I is the number  of elements of a set. 
Another possibility is to use the sum of squared pixelwise differences or other 
measures [Cha89]. 

2.2 C o n s t r u c t i n g  t h e  Se t  o f  P l a u s i b l e  V i e w i n g  I n t e r v a l s  

Let us consider the simple 1-DOF case where pr imary views lie on the view cir- 
cle. Then the plausible viewing interval (PVI) is a viewing interval such tha t  all 
pr imary views inside it can be interpolated from the two pr imary  views corre- 
sponding to PVIs endpoints with the VAD smaller than  some predefined value s 

i7 i4 

v3 i5 

v6 vSl~. 

Fig .  1. Example of primary views 
and PVIs. 

Let us focus now on the construction of 
the set of PVIs. The input is a set of all pri- 
mary  views, Vl, . .  �9 vg. The neighbour of the 
view v jr is the view Vl. The desired output  
is the set of the PVIs. In Fig. 1, the dots 
on the circle represent pr imary  views, and 
the circular arcs illustrate constructed PVIs,  
i l , .  �9 �9 ,is.  

We use a technique similar to region grow- 
ing. Each PVI  has a start ing and an ending 
pr imary view. Initially, we have a degenerate 
case where each PVI  consists of only one pri- 
mary  view. Then we can t ry  to extend the 
PVI  by adding the left neighbouring pr imary  
view to the existing PVI.  If the expanded in- 
terval is to be the PVI,  we should check if all 
interpolated intermediate views and the cor- 

responding pr imary views satisfy the condition 3 tha t  the image VAD < e. If the 
left neighbour fails, we try to merge the right neighbour. If the right neighbour 
also fails, then the final PVI  is obtained. 

The interval merging process results in one PVI  for each pr imary  view. Now, 
the selection procedure, described in section 2.3, has the task to find those PVIs  
that  best cover the whole view circle. 

All the intervals are first grown to their full extent and then passed to the 
selection module. As a consequence of the selection process, eventually very few 
of the intervals emerge as sufficient to cover the view-space. We call this s t ra tegy 
Build(intervals)-then-Select because it grows all the intervals fully and indepen- 
dently, and then discards the redundant  ones. However, the computat ional  cost 
can be reduced. Instead of growing all the intervals completely, it is possible to 
discard some of the redundant intervals even before they are fully grown [Leo93]. 
This suggests incorporating the selection procedure into the procedure of grow- 
ing intervals. We call this approach Build(intervals)-and-Select. 

3 In current experiments, we check the VAD for all intermediate images. However, 
repeating the VAD check for all primary views within the PVI every time the interval 
is extended is time consuming. If the current PVI was interpolable from extremal 
images, it is likely that, after merging one new primary view to it, we might not 
check every primary view for the VAD < e again. 
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2.3 S e l e c t i o n  o f  the  O p t i m a l  Se t  o f  P l a u s i b l e  V i e w i n g  Intervals  

The selection is a discrete optimization problem and its formulation is similar 
to the one presented in [Leo93]. 

The set of PVIs which has been 
generated may be highly redundant. 
Thus the selection procedure selects 
a subset of best PVIs and rejects the 
superfluous ones. The optimization of 
an objective function including the in- 
formation about the competing PVIs 
is carried out. The objective function 
is proposed in the following form: 

F(i)  = i T c i  (2) 

The vector i T = [ i l ,  i 2 , . . . ,  iR] denotes 
a set of PVIs, where ii is a presence- 
variable having the value 1 for the pres- Fig.  2. The experimental setup for cap- 
ence and 0 for the absence of the i-th turing the sequence. 
PVI in the resulting set of PVIs. The diagonal terms of the matrix C express 
the cost-benefit value for a particular PVI 

Cii = K l S i  - K 2 l l e i l l  - g 3 v /  , (3) 

where Vi is the number of reference views plus the data  volume needed for 
correspondence per PVI, si is the number of primary views that  are covered 
by the interval, and II~ill is the error measure calculated for the interval. The 
coefficients K1, K2, and K3 adjust the contribution of the three terms. 

The off-diagonal terms handle the interaction between the overlapping PVIs. 

Cij = -K ILO/N Oil + K211'iJll + K3Oij 
2 , II,iJll -- max( ~ ,i, ~ ,j) 

DINDj DiNDj 

(4) 
Di denotes the domain of the i-th PVI, i.e., the primary views that  are covered 
by the i-th PVI. 01j = 1 if the intervals i and j are adjacent, i.e., if the end view 
of the first interval is equal to the start  view of the other interval or vice versa. 
Otherwise, 0ij = 0. 

The objective function takes into account the overlap between the different 
PVIs which may be completely or partially overlapped. However, we consider 
only the pairwise overlaps in the final solution. The matrix C is symmetric, and 
depending on the overlap, it can be sparse or banded. These properties of matrix 
C can be used to reduce the computations needed to calculate the value of F(i) .  

We have now formulated the selection problem in such a way that  its so- 
lution corresponds to the global extreme of the objective function. Maximiza- 
tion of the objective function F(i)  belongs to the class of combinatorial opti- 
mization problems (quadratic Boolean problem). Since the number of possible 
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Fig. 3. Ten views from the PIG sequence 36 degrees apart. 

solutions increases exponentially with the size of the problem, the exhaustive 
search is usually not tractable.  Various methods have been proposed for find- 
ing a global "optimum" of a class of nonlinear objective functions. Among these 
methods are winner-takes-all strategy, simulated annealing, microcanonical an- 
nealing, mean field annealing, Hopfield networks, continuation methods,  and 
genetic algorithms. We are currently using two different optimization methods.  
One is a simple greedy algorithm that  is computat ionally very efficient, the other 
one is tabu search [GL93, SL95]. Tabu search is computat ionally a little more 
demanding but it provides consistently bet ter  results than  the greedy algorithm. 

Fig. 4. A pair of reference views and the interpolated view. (a, c) are the reference views 
(8 ~ and 16 ~ in the captured sequence), (b) is the interpolated view (corresponding to 
12 ~ in the sequence). 

3 E x p e r i m e n t s  

In this section, we show the practical feasibility of our approach on an experiment 
which was carried out on real data  and for one degree of freedom of the object 's  
motion. The Build(intervals)-then-Select control s t ra tegy was used to select the 
optimal  set of reference views from a large set of pr imary views. 
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The setup which was used to capture primary views is shown in Fig. 2. The 
object to be captured, a small clay sculpture of a pig about 6 cm long, was placed 
on a turn-table. The object was viewed by the camera from the distance 2 metres 
(the focal length of the camera lens was 100 mm, CCD chip had the side 12.7 
mm). That means that the projection was close to orthographic. 

We captured 180 primary views of the 
object. Each neighbouring pair of views 
was 2 degrees apart. Ten primary views 
of the sequence are shown in Fig. 3. The 
size of the images was 150 • 80 pixels. 

Assuming for a moment that a set of 
reference views of these 180 primary views 
have already been selected, the remain- 
ing views can be constructed by view in- 
terpolation as described, e.g., in [LF94, 
WHH95]. The example triplet of two ref- 
erence and one interpolated views is shown 
in Fig. 4. In the interpolated view, the 
pixels detected by the stereo matcher as 
occluded can be seen as black pixels in- 
side the boundary of the object. In these 
pixels the view interpolation fails. 

The view interpolation requires that 
the correspondence is available for each 

%+6 
120 6O 

150 3O 

270 

Fig. 5. The plot of VAD defined by 
Eq. (5) for the PIG sequence. 

pair of neighbouring reference views. For that, we used the binocular stereo 
matcher [CHMR92]. This algorithm provides correspondence as well as occlusion 
maps. The algorithm requires that the epipolar lines be parallel to scanlines 
in the matched image pair, which is ensured by our experimental setup (the 
projection is close to orthographic) without additional rectification. 

For the VAD, we used only the first term of Eq. (1). The reason for this 
simplification is that the interpolated views have always slight geometrical dis- 
tortion in our current implementation, which degrades the result of the direct 
pixelwise image comparison (as in Eq. (1)). Thus we used 

VAD(v,i) = I0{I (5) 
I I' 

where Oi is the set of pixels in the interpolated image i that cannot be computed 
due to occlusion, and Af~ is the set of all pixels in the interpolated image i. This 
function is very simple, e.g., the primary view v does not occur explicitly in it. In 
most cases, the function is almost constant while i moves from the first reference 
view to the second one. The VAD (more accurately, its mean value over the 
interval between the pair of reference views) for our object is plotted in Fig. 5. 
Here, the interpolated views were constructed from a pair of reference views 
using correspondence obtained by the stereo matcher [CHMR92]. The angle in 
the plot in polar coordinates represents the angle of the first view of the reference 



533 

view pair. Each curve was obtained for different angular distance between the 
two reference views (the most inner curve corresponds to the distance 1 ~ the 
most outer one to 30 ~ the step is 1~ The radius represents the mean value of 
the VAD over the interpolated interval. 

PVIs were built, starting independently from each primary view (see sec- 
tion 2.2). The merging process was limited by the condition VAD < 0.05. Then, 
in the selection procedure, the optimal set of PVIs was found as it is described 
in the section 2.3. The parameters in the objective function (Eq. (3) and (4)) 
were chosen V~ = 3 (the data  volume needed for storing the correspondence was 
approximately equal to the data volume needed for storing one image), K1 = 1, 
K~ = 1, and K~ = 1. We observed that  the results remain the same even for 
large variations of the parameters. To find a solution of Eq. (2), the tabu search 
was used. 

120 aO s~  

(a) 

{/ 
I I 

\ 

l I 

\xx // 

(d) 

(b) (c) 
go s goo.~ 

210 27e 

(e) (f) 

Fig. 6. The results of building PVIs (a, b, c) and selecting the optimal set of the built 
PVIs (d, e, f).  

The result of the process is shown in Fig. 6. Subfigures (a, b,c) show the 
result of the growing process, subfigures (d, e, f )  show the results of the selection 
process. The intervals are depicted as arcs in (a, d). The radius coordinate has 
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no other meaning here than to help visualizing the overlapping intervals. The 
top view of the object is superimposed. The length of the PVIs is plotted in 
(b, e). The intervals are depicted as dots. The radius represents the numbers of 
views the PVI covers. The VAD for each PVI is plotted in (c, f).  

4 G e n e r a l i z a t i o n  t o  t h e  C a s e  o f  the  Whole  V i e w  S p h e r e  

The automatic selection of reference views for image-based scene representations 
has been demonstrated for the 1-DOF viewing directions (view circle). There is 
no principal obstacle to generalize the paradigm to more difficult 2-DOF case, 
where possible viewpoints lie on a view sphere. The selection procedure remains 
the same. The only difference is in creating plausible view patches (analogous to 
current PVIs). The plausible view patches can be created from primary views 
independently using similar approaches like in region-growing based segmenta- 
tion. 

The growing process becomes very computationally intensive. Therefore, 
more attention should be paid to utilizing Build(intervals)-and-Select control 
strategy, where the selection procedure is started already before the patches are 
fully grown. This rules out apparently redundant regions before they are fully 
grown. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

The contribution of this paper is the paradigm formulation that allows to au- 
tomatically obtain the optimal set of 2-D reference views. This is relevant to 
currently frequently studied image-based scene representations. 

Experiments on real data have demonstrated the result of using our algo- 
rithm for a set of 180 primary views. Yet how should the quality of the results 
be evaluated? The problem is that this evaluation is closely related to VAD. 
Although we are aware that our current VAD is probably inadequate for real 
requirements and thus opened for further research, the main idea of this paper 
can be separated from the specific dissimilarity measure. 

In the future, we would like to dedicate more attention to VAD. The difficulty 
is the discrepancy between the expected visual appearance of the interpolated 
views (complicated and not well understood process studied in cognitive sciences) 
and extremely simplified dissimilarity function used for comparing interpolated 
and primary views. If we had better VAD, we would just incorporate it in the 
current framework. More extensive quantitative comparisons will be necessary 
as well as further improvements of geometrical validity of interpolated views. In 
fact, the latter is another separate track of our current research. 

The extension to 2-DOF (view hemisphere) is the step we plan to do next. 
Using the Build(intervals)-and-Select control strategy, we would like to lower 
the computational demands so that the 2-DOF case would become practical. 



535 

References  

[CW93] 

[GL93] 

[Cha89] 

[CHMR921 

[KNR95] 

[Leo93] 

[LF94] 

[SD951 

[Shag4] 

[SL95] 

[UB91] 

[WHH95] 

S.E. Chen and L. Williams. View interpolation for image synthesis. In 
Proceedings of the SIGRAPH'93, pages 279-288, 1993. 
F. Glover and M. Laguna. Tabu search. In C. R. Reeves, editor, Modern 
heuristic techniques for combinatorial problems, pages 70-150. Blackwell 
Scientific Publications, 1993. 
Shi-Kuo Chang. Principles of Pictoral Information Systems Design. 
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1989. 
Ingemar J. Cox, Sunita Hingorani, Bruce M. Maggs, and Satish B. Rao. 
Stereo without disparity gradient smoothing: a Bayesian sensor fusion so- 
lution. In British Machine Vision Conference, pages 337-346, Berlin, 1992. 
Springer-Verlag. 
T. Kanade, P.J. Narayanan, and P.W. Rander. Virtualized reality: Con- 
cepts and early results. In Proceedings of the Visual Scene Repre- 
sentation Workshop, Boston, MA., USA, June 24, page 8. available via 
http:/ /www.cis.upenn.edu/~ero/VisSceneRep95.html, 1995. 
A. Leonardis. Image Analysis Using Parametric Models. PhD thesis, Uni- 
versity of Ljubljana, Slovenia, March 1993. 
St~phane Laveau and Olivier Faugeras. 3-D scene representation as a collec- 
tion of images. In Proc. of 12th International Conf. on Pattern Recognition, 
Jerusalem, Israel, pages 689-691, October 9-13 1994. Also the technical re- 
port, available on ftp.inria.fr. 
S.M. Seitz and C.R. Dyer. Physically-valid view synthesis by im- 
age interpolation. In Proceedings of the Visual Scene Representation 
Workshop, Boston, MA., USA, June 24, page 8. available via http: 
//www.cis.upenn.edu/~ero/VisSceneRep95.html, 1995. 
A. Shashua. Trilinearity in visual recognition by alignment. In Proceedings 
of the 3rd European Conference on Computer Vision, Stockholm, Sweden, 
volume 1, pages 479 484. SV, 1994. 
M. Stricker and A. Leonardis. ExSel++: A general framework to extract 
parametric models. In V. Hlavs and R. Ss editors, 6th CAIP'95, num- 
ber 970 in Lecture Notes in Computer Science, pages 90-97, Prague, Czech 
Republic, September 1995. Springer. 
S. Ullman and R. Basri. Recognition by linear combination of mod- 
els. IEEE Transactions of Pattern Analysis and Machine Intelligence, 
13(10):992-1005, October 1991. 
T. Werner, R.D. Hersch, and V. Hlav~. Rendering real-world objects using 
view interpolation. In ICCV95, pages 957-962, Boston, USA, June 1995. 
IEEE Press. 


