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Abs t rac t .  We propose a computational scheme for uncalibrated recon- 
struction of scene structure up to a relief transformation from binocu- 
lax disparities. This scheme, which we call regional disparity correction 
(RDC), is motivated both by computational considerations and by psy- 
chophysical observations regarding human stereoscopic depth perception. 
We describe an implementation of RDC~ and demonstrate its perfor- 
mance experimentally. As an example of applications of RDC, we show 
how it can be used to align a three-dimensional object model with an 
uncalibrated disparity field. 

1 I n t r o d u c t i o n  

The process of stereoscopic depth perception in human and machine vision com- 
prises two major computational steps. First, the correspondence between the 
left and right images of points in three-dimensional space must be established, 
resulting in a disparity map which may be sparse or dense. Then, the disparity 
map must somehow be interpreted in terms of the depth structure of the scene. 
In this paper we consider the second of these two steps, i.e., the problem of 
disparity interpretation. 

The classical approach to interpretation of stereo images is to perform a care- 
ful camera calibration, which is then used to reconstruct the three-dimensional 
structure of the scene by intersecting the left and right visual rays of each point. 
This technique was originally developed and refined by photogrammetrists,  and 
it continues to be an important  and powerful tool in circumstances that  allow 
an accurate calibration to be performed; see e.g. [18]. 

However, in many situations a separate calibration stage is impractical, and 
there has recently been a great interest in approaches that  require no calibration 
at all [6, 11], and there now exists a rich literature on the subject. Typically, these 
methods produce structure up to an arbitrary projective or affine transformation. 
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Another useful approach is possible in applications in which it is known that 
there exists a ground plane (or other surface) in the scene. By computing dispar- 
ities relative to this surface, many computational simplifications are achieved. 
Early applications of the approach were intended for obstacle detection [4], but 
more recently this idea has been put in a more general framework [3, 17]. 

It has also been pointed out that disparities can be useful for segmentation or 
control of attention [10, 23] without attempting to reconstruct anything at all. 
These methods use raw disparity measurements to filter out regions for which 
the depth differs significantly from that of the region of interest, and for this 
purpose uncalibrated horizontal disparities are typically good enough. 

In this paper we propose an alternative approach to disparity interpretation, 
which we call regional disparity correction (RDC). This approach originates from 
our work on modelling certain aspects of human stereoscopic depth perception, 
and it is a generalization of the model proposed in [9]. Like the raw disparity 
approach, RDC avoids explicit estimation of physical viewing parameters such 
as fixation distance. In contrast, however, RDC allows recovery of both general 
projective structure and of the metric depth ordering of the scene, and it is 
therefore potentially useful as a basis e.g. for object recognition and other tasks 
that can be aided by a characterization of the three-dimensional shape of objects 
in the scene. A more detailed account of the present work is given in [8]. 

2 R e g i o n a l  D i s p a r i t y  C o r r e c t i o n  ( R D C )  

In short, RDC comprises the following three steps: 

1. Approximate the vertical component of disparity by a quadratic polynomial 

2. Compute a "correction polynomial" g(x, y) by a certain reshuffling of the 
coefficients of O(x, y). 

3. Compute aJJine nearness p(x, y) = h(x, y) + g(x, y). 

It will be shown that p(x, y) is itself a projective reconstruction of the scene, 
but more importantly, it allows the structure of the scene to be recovered up 
to a relief transformation, which preserves the depth ordering of the scene. Be- 
fore describing the method in detail, we shall briefly discuss the psychophysical 
observations and computational considerations that motivate the approach. 

2.1 Human Stereoscopic Depth Perception 

Two aspects of human stereoscopic depth perception are particularly relevant 
for the RDC model; the role of vertical disparities, and the geometric nature of 
the depth percept. 

The fact that the vertical component of disparity plays a significant role in 
human stereoscopic depth perception was first pointed out by Helmholtz [12]. 
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He found that  an array of vertical threads arranged in the fronto-parallel plane 
appears significantly curved, but that  the perceived curvature can be eliminated 
by attaching beads to the threads. Presumably the beads allow the visual sys- 
tem to estimate vertical disparities, which allows the horizontal disparities of 
the threads to be interpreted correctly. Another well-known demonstration of 
the influence of vertical disparities is due to Ogle [21], who showed that  uni- 
lateral vertical magnification (achieved by inserting a horizontal cylindrical lens 
in front of one eye) induces an apparent slant of the fronto-parallel plane. More 
recently, a number of researchers have investigated the effect of vertical disparity 
manipulations in a variety of circumstances, and there now exists a substantial 
body of empirical data; see e.g. [7] for a review. 

Concerning the geometric aspects of stereoscopic depth perception, several 
studies (e.g. [14, 27]) have found that  human performance in tasks involving 
estimation of metric structure from binocular disparities is remarkably poor, 
even in the presence of a richly structured disparity field. We interpret this as 
an indication that  metric reconstruction is not the primary purpose of human 
stereopsis. 

2.2 Computational Motivation 

The RDC model takes an intermediate position between fully calibrated metric 
recovery and weakly calibrated recovery of projective structure. 

We believe that  it is beneficial to use as much knowledge about the viewing 
geometry as is available, without relying on unrealistic assumptions or computa- 
tionally demanding calibration procedures. In this sense, the calibrated approach 
uses too much information, whereas the weakly calibrated approach uses too lit- 
tle. The RDC model is based on fixating binocular vision, typical of both human 
vision and anthropomorphic robot vision systems [23, 24]. In such systems the 
viewing geometry is constrained in a number of ways. The extrinsic geometry 
has essentially only three degrees of freedom if Donder's law is assumed, and it 
seems reasonable to assume that  most of the intrinsic parameters are relatively 
stable or change only slowly over time (perhaps with the exception of the focal 
length). Nevertheless, it would be unrealistic to assume perfect fixation with zero 
cyclovergence etc., so we explicitly incorporate small-angle deviations from the 
idealized geometry in the RDC model. 

Concerning the end result of the disparity interpretation process, there are 
good computational reasons for considering alternatives to metric reconstruction. 
It has been shown [22, 10] that the quality of metric reconstruction depends 
crucially on an accurate estimate of the fixation distance d (or equivalently the 
vergence angle between the two optical axes). RDC avoids this difficulty by not 
attempting to recover metric depth, and hence not having to estimate d. Instead, 
RDC recovers depth up to a relief transformation by computations performed 
only in the disparity domain, i.e., by adding small corrections to the horizontal 
disparities. This means that  errors in the estimated disparity vectors are never 
magnified e.g. by division by small scale factors or by non-linear operations, in 
contrast to the case of recovery of metric structure. 
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3 Description and Analysis of RDC 

The RDC method described here extends the model proposed in [9] in several 
ways, notably by allowing unknown fixation errors, unknown cyclovergence :and 
unknown focal length. 

A schematic representation of the binocular viewing geometry is shown in 
Figure 1. We represent visual space with respect to a virtual cyclopean eye, 
constructed such that the cyclopean visual axis (the Z axis) bisects the left and 
right visual axes. We explicitly model deviations from this idealized model by 
including (small) rotation angles (w~, wz), where os= is a relative rotation around 
the X axis and hence represents a vertical fixation error, and wz is a relative 
rotation around the Z axis, representing cyclovergence. 
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Cyclopean eye 

Fig. 1. Idealized representation of the viewing geometry. The plane of the draw- 
ing is referred to as the fixation plane. The Vieth-M/iller circle (dotted) through 
the fixation point and the eyes indicates a part of the point horopter, i.e., the 
locus of points that yield zero disparity�9 # is the vergence half-angle, and "y is 
the angle of asymmetric gaze. 

We use a standard pinhole projection model, i.e., for each camera 

where (x, y) are image coordinates, f is the focal length 3 and (X, Y, Z) are (left- 
handed) camera coordinates with the Z axis pointing toward the scene. 

We use a flow approximation of disparity. This is equivalent to assuming that 
the angles w~ and wz as well as # (vergence) are small enough to be represented 

3 We assume the f is unknown but equal in the left and right images. 
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by a first-order approximation. As shown in [9], the error in this approximation 
is negligible for realistic viewing distances. 

To simplify the notation, we define the inverse distance function A(x, y) = 
1/Z (x, y ). We relate the translation and rotation parameters (tz, t u , tz; wz, wu, wz) 
to the viewing geometry by 

OJy = tx /d  = txA0. 

(tx, t u, t=) = - / ( c o s  7, 0, sin 7). 

This generalized definition of the fixation distance d = l/A0 in terms of t= and 
oa u makes sense even if the optical axes do not cross. The only assumption made 
here is thus that  t u = 0, i.e., that  there is no vertical displacement between the 
cameras. Applying these definitions to the standard image flow equations [19], 
we obtain the disparity as 

h = x ~ - x z  ~ ~ = p +  ( I s i n 7 ) A x + ( I c o s T ) A o x 2 / f + w z y + w ~ x y / f ,  

v = - uz y = (IsinT)  y + (:co 7)Ao x y / / -  x + (/+ 

where we have defined the affine nearness 

p(x, y) = f I  cos7 (A0 - A(x, y)). (2) 

For reasons which will be elaborated in Section 4, the purpose of RDC is to 
estimate p(x, y). The key to achieving this aim is the observation that  the vertical 
disparity depends very weakly on A(x, y), i.e., the depth structure of the scene. In 
fact, for symmetric vergence this small dependency vanishes completely, so that  
v(x, y) encodes only the camera geometry. The idea is therefore to use v(x, y) 
to "calibrate" h(x, y) in order to estimate p(x, y). We do this by approximating 
v(x, y) in some region by the vertical disparity field corresponding to the average 
plane 7r : Z -- P X  + Q Y  + R in that  region. Due to the weak dependency on 
depth, the error in this approximation can be expected to be significantly smaller 
than what would be the case if we had instead at tempted to approximate h(x, y). 
In this way RDC is different from methods based on subtracting the disparity 
of a reference surface [3, 17]. 

In terms of the image coordinates, we have 

1 f - P x  - Qy (3) 
,X~(x , y ) -  Z ( z , y )  - I n  

The corresponding disparity field can be expressed as 

h , ( x , y )  = f l c o s 7  (A0 - A, (x , y ) )  - g ~ ( x , y ) ,  (4) 

v~ (x, y) = A + B x  + Cy + Exy  + Fy 2, (5) 

where 

g~ -- - C x  + By - Ex  2 - Fxy ,  
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and (A, B, C, E, F) are constants depending on the viewing geometry and the 
parameters (P, Q, R) of the plane. They are estimated directly from v(x, y) by 
linear least squares. Affine nearness can now be estimated by computing 

~(x,y) = h (x , y )+g~(x , y ) .  

By substituting (4), we can express this estimate as 

where 

~(x, y) = p(x, y) + e(~, y), 

e(x, y) = I sin 7 (A(x, y) - A~ (x, y))x 

(6) 

(7) 

is the estimation error. This error is the product of three factors which are 
generally small: the deviation from symmetric vergence, the deviation from the 
average plane, and the horizontal image eccentricity. Consequently, ~(x, y) is 
typically a good estimate of p(x, y). 

4 A t t l n e  N e a r n e s s  a n d  R e l i e f  T r a n s f o r m a t i o n s  

The affine nearness p(x, y) contains important and useful information about the 
structure of the world. From (2) and (1) we can solve for the relation between 
(x, y, p(x, y)) and 3D-points (X, Y, Z). In homogeneous coordinates, we obtain 
the invertible relation 

(i) (i ~176176 0~ (i) = 0 0 / , (8) 
0 -I/L fA0 

where L = I cos 7, and the symbol -~ denotes equality up to an arbitrary scale 
factor. This relation demonstrates that the surface in •3 with homogeneous 
coordinates (x ,y ,p(x ,y) ,  1) is in fact a projective reconstruction of the scene. 
Hence, if for example p(x, y) is flat, then so is the corresponding physical surface 
in the scene. 

However, p(x, y) is distinctively different from the physical surface in other 
ways, and there is no choice of parameters (Ao,L, f )  for which they become 
identical. It is therefore more useful to consider the equivalence class of surfaces 
( X ( x, y ) , Y ( x, y ) , Z ( x, y ) ) that can be reconstructed from p( x, y) by "guessing" 
the parameters (Ao, L, f).  From (8) we see that two such surfaces, corresponding 
to (Ao, L, f)  and (A~, L', f ' )  respectively, are related by the transformation 

(!) Y~ ,.. 1 0 O| 
' - -  0 c 0 ~  ' (9 )  

O b a ]  
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where 

a = L / L '  > O, b = f 'A'~ - f A o L  
f L '  , c -= f / f '  > O. 

In the following, the matrix in (9) will be denoted by Ta,b,c. It is easily verified 
that  Ta,b,c defines a transformation group, which in turn defines an equivalence 
class of 3-D shapes compatible with a given affine nearness p(x,  y). 

We shall refer to Ta,b,c as a generalized 4 relief transformation. Transforma- 
tions of this type have a long history in vision, and have been considered e.g. in 
[12, 15, 16]. Perhaps the most important property of a relief transformation is 
tha t  it preserves the depth ordering of the scene. 5 Hence, knowing the structure 
of the scene up to T~,b,c entails knowing what is in front of what, in addition to 
the general projective properties such as coplanarity and eollinearity. 

5 Experimental  Evaluation 

In this section we shall give some quantitative examples of the performance of 
RDC, using the following procedure: 

1. Choose the binocular camera geometry (f, d, I,  7, ~x, Wz) 

2. Generate a random cloud of points in space around the fixation point 

3. For each 3-D point, generate its left and right projection using the pinhole 
camera model (i.e., not the flow approximation) 

4. Perform RDC, i.e., fit a quadratic function to the vertical disparity field, and 
use this function to compute the estimate ~(x, y) of affine nearness 

5. Reconstruct the 3-D points from ~(x ,y )  by resolving the relief ambiguity, 
i.e., by applying (8) using the true values of (d, L, f )  

6. Compute the difference between the reconstructed points and the true 3-D 
points. 

The reason for performing the metric 3-D reconstruction is to obtain a quanti- 
tative and geometrically intuitive measure of the quality of the estimate iS(x, y). 

As shown in Table 1, in the noise-free case the reconstruction errors from 
RDC, which originate from the flow approximation of disparity and the error 
term e(x,y),  are on the order of a millimeter or less with a viewing geometry 
representative of human vision. It is perhaps more interesting to consider what 
happens under the more realistic assumption that  the disparity vectors are noisy. 
The columns labeled a = 1 show the corresponding data  obtained after adding 
Gaussian noise to each disparity vector. It is evident that  RDC handles this 
noise level relatively gracefully. 

4 The definition of a relief transformation given in [9] corresponds to Ta,b,1, i.e., the 
case of known focal length. 

5 Strictly speaking, the depth order is preserved on either side of the singularity 
a -4- bZ = O, but not across it. However, any physically valid relief reconstruction 
( X I , Y  ', Z t) must satisfy Z' > 0 for all points, which implies a d-bZ > O. 



Viewing geometry n 

Symmetric vergence; 5 
~/= co~ = Wz = 0 10 

100 
Asymmetric vergence 5 
with cyclovergence; 10 
3' = 25 ~ oJz = 5 ~ 100 
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R D C  error Raw disparity error 
a = 0  a = l  a = 0  a = l  
0.037 2.681 2.437 2.412 
0.041 1.002 2.416 2.726 
0.043 0.929 2.812 2.848 
0.385 1.682 5.096 5.240 
0.400 1.249 9.033 9.796 
0.464 1.257 1 0 . 8 7 9  10.875 

Table 1. Average distances (in cm) between reconstructed and true 3-D points, 
for two different viewing geometries and varying number n of points. The fixation 
distance was 50cm, the interocular baseline was 6cm, and the 3-D points were 
randomly distributed in a box 40cm wide and 20cm deep centered around the 
fixation point. The columns labelled R D C  error indicate the result when depth 
was reconstructed from estimated affine nearness/~(x, y). As a comparison, the 
columns labelled Raw disparity error show the result of neglecting the vertical 
disparities and using ~(x, y) ~ h(x ,y ) ,  a indicates the standard deviation (in 
pixels) of Ganssian noise, which was added independently to the horizontal and 
vertical components of each disparity vector (in a 512 x 512 image). 

6 M o d e l  A l i g n m e n t  

In applications such as object recognition, the need often arises to align an ob- 
ject model with image or 3-D data using hypothesized correspondences between 
model and data features [13, 28]. When only a monocular image is available, the 
alignment is by necessity done from 3-D model features to 2-D image features. A 
binocular image pair, however, opens the possibility of performing the alignment 
in 3-D [20], if the binocular system can be calibrated with high enough accuracy. 

In this section we propose an intermediate approach which combines the 
strengths of both 2-D and 3-D methods, namely model alignment based on 
afflne nearness. This approach provides more information and hence better dis- 
ambiguation than monocular data, while avoiding the need for accurate camera 
calibration. 

We assume that the model consists of a list of 3-D points, and that there 
exists a hypothesized correspondence between each model point (Xi, Yi, Zi) and 
a point on the affine nearness surface (&, Y, P) which has been estimated by RDC. 
In order to align the object we need to estimate (i) the pose (R, t) of the object 
relative to the cyclopean coordinate system, and (ii) the parameters (d, L, f )  
needed for resolving the relief ambiguity (Section 4). 

Simple equation counting tells us that three point correspondences may suf- 
fice, but we shall generally use more points and perform a least squares estima- 
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tion. More precisely, we wish to minimize the goal function 

au (10) 

where (xi, Yi,/~i) are the estimated data  features, (ax, a u, ap) their associated 
covariances, and 

Xi Yi f L Zi 
f Zi+d'  Y i = f Z i + d ,  p i -  d Zi+d" 

(Xi, Yi, Zi) are the coordinates of a model point rotated to be parallel to the 
cyclopean system and translated such that  the model point (0, 0, 0) coincides 
with the fixation point. These coordinates are related to the given model points 
by a rotation R and a translation t. 

To simplify this minimization problem, we use an iterative procedure in which 
we in each iteration first minimize 5 2 with respect to the viewing parameters 
(d, L, f) only, and then use these estimated parameters to reconstruct the 3D 
points and to perform a 3D-to-3D pose estimation. To obtain an initial pose 
estimate, we use a simple monocular method based on a scaled orthography 
approximation [5]. 

The computations performed in each iteration are relatively simple. For the 
pose estimation the optimal estimate can be computed by singular value decom- 
position of a 3 x 3 matrix [2]. For the viewing parameter estimation it is easily 
shown (by differentiating 5 2 with respect to L and f )  that  for a given estimate 
of d, the optimal estimates of f and L are given by 

1 ~iXi 1 ~iYi 

s = + z,  + d , (11) 
1 X~ 1 Yi 2 

and 

Pi Zi 
d E Z i + d  

L - (12) 

f E (Zi + d) 2 

Hence, the problem of estimating the viewing parameters for a given pose esti- 
mate can be reduced to a 1-D minimization problem in d, which can be solved 
numerically with a very limited computational effort. 

We have found that  the scheme typically converges in 2-5 iterations, after 
which the estimates change very slowly. Numerical values obtained with the data  
set corresponding to the second viewing geometry and n = 10, ~ = 1 in Table 1 
are shown in Table 2. 

Since this alignment method produces explicit estimates of the parameters 
(d, L, f )  needed to resolve the relief ambiguity, it is of course possible to apply 



Iteration 
Initial 

1 
2 
3 
5 

10 
50 

True 
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d L f 
100 10.59 2.21 

55.9 6.02 1.19 
51.8 5.65 1.06 
49.4 5.45 1.00 
47.5 5.36 0.95 
47.1 5.43 0.94 
47.2 5.48 0.93 
49.8 5.44 1.00 

52 

3.8- 10 -~ 
3.0- 10 -4 
1.2- 10 -4 
8.4.10 -5 
7.0.10 -5 
6.4.10 -5 
6.2.10 -~ 

Table 2. Estimation of viewing parameters by first applying RDC to a noisy 
disparity field and then aligning five model points. The cyclovergence is 5 ~ and 
the remaining true parameter values are shown in the bottom row. The other 
rows show the estimates after each iteration. 

the resulting transformation to the entire disparity field. Figure 2 shows a stereo 
image pair of a calibration cube, in which the intersections of the white rulings 
were matched to produce a sparse disparity field. A model containing the seven 
visible points of the top corner of the cube was used in the procedure described 
above, and the estimated parameters were then used to reconstruct the entire 
cube. The result is shown in Figure 3. 

Fig. 2. Stereo pair showing a calibration cube (arranged for cross-eyed fusion). 

7 F u t u r e  W o r k  

F~ature work includes integration of RDC with the stereo matching stage; the 
matching and the construction of the parametric representation ~(x, y) of the 
vertical disparity field should be performed in parallel, so that early estimates 
of ~3(x, y) can be used to constrain the epipolar geometry which reduces the 
matching ambiguity and hence allows more matches to be found, which in turn 
can be used to improve the estimate ~(x, y), and so on. 
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Fig .  3. Three different views of a cube reconstructed from affine nearness by 
aligning seven model points around the central corner of the cube. 

Moreover, in this paper  we have not explored the "R" in RDC, i.e., we have 
always used the vertical disparity field in the entire image as a reference. There 
are, however, indications [26, 25, 1] that  the human visual system may use more 
localized representations, which would also make sense from a computat ional  
point of view. 
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