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A b s t r a c t  

This article presents a theory for multi-scale representation of temporal 
data. Assuming that a real-time vision system should represent the in- 
coming data at different time scales, an additional causality constraint 
arises compared to traditional scale-space theory--we can only use what 
has occurred in the past for computing representations at coarser time 
scales. Based on a previously developed scale-space theory in terms of non- 
creation of local maxima with increasing scale, a complete classification is 
given of the scale-space kernels that satisfy this property of non-creation 
of structure and respect the time direction as causal. It is shown that the 
cases of continuous and discrete time are inherently different. 

For continuous time, there is no non-trivial time-causal semi-group 
structure. Hence~ the time-scale parameter must be discretized, and the 
only way to construct a linear multi-time-scale representation is by (cas- 
cade) convolution with truncated exponential functions having (possibly) 
different time constants. For discrete time, there is a canonical semi-group 
structure allowing for a continuous temporM scMe parameter. It gives rise 
to a Poisson-type temporal scale-space. In addition, geometric moving aver- 
age kernels and time-delayed generalized binomial kernels satisfy temporal 
causality and allow for highly efficient implementations. 

It is shown that temporal derivatives and derivative approximations 
can be obtained directly as linear combinations of the temporal channels in 
the multi-time-scale representation. Hence, to maintain a representation of 
temporal derivatives at multiple time scales, there is no need for other time 
buffers than the temporal channels in the multi-time-scale representation. 

The framework presented constitutes a useful basis for expressing a 
large class of algorithms for computer vision, image processing and coding. 

1 I n t r o d u c t i o n  

The notion of multi-scale representation is essential when dealing with measured 
data, such as images. Philosophically, this need arises from the fact that  we per- 
ceive real-world structures as meaningflfl entities only over certain ranges of 
scale. Traditionally, multi-scale concepts such as pyramids (Burt 1981; Crowley 
1981) and scale-space representation (Witkin 1983; Koenderink 1984; Yuille and 
Poggio 1986; Koenderink and van Doorn 1992; Florack 1993; Lindeberg 1994) 
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have been developed over a spatial domain, in which data are available in all 
directions. Most works have avoided the constraints arising from the fact that 
time runs in a special direction and a genuine real-time vision cannot access the 
future only what has occurred in the past can be used for generating represen- 
tations at different time scales. An early suggestion for how to treat time in a 
mufti-scale context was given by (Koenderink 1988), who proposed to transform 
the time axis so as to map the present moment to the unreachable infinity. In 
the transformed domain, he then applied the traditional scale-space concept by 
Gaussian convolution. The subject of this article is to reconsider the problem of 
constructing a multi-time-scale representation from an axiomatic viewpoint. 

2 C o n t i n u o u s  a n d  d i s c r e t e  s c a l e - s p a c e  k e r n e l s :  R e v i e w  

A fundamental requirement when constructing a multi-scale representation is 
that the transformation from a fine scale to a coarser scale should constitute a 
simplification in the sense that fine-scale image structures should be successively 
suppressed. In the literature on traditional (spatial) scale-space representation, 
this property has been formalized in different ways. A noteworthy coincidence is 
that several different ways of choosing scale-space axioms lead to the Gaussian 
kernel as the unique choice. 

In this article, we shall follow the scale-space formulation in (Lindeberg 1990, 
1994) based on non-creation of local extrema (zero-crossings) with increasing 
scale. As shown in the abovementioned references, the class of convolution oper- 
ators satisfying this requirement can be completely classified based on classical 
results by (Schoenberg 1953) (see also (Karlin 1968)). Besides translation and 
rescaling, there are two primitive types of linear and shift-invariant smoothing 
transformations in the continuous case: 

�9 convolution with Gaussian kernels, 

h(~) = e - ~ ,  (1) 

�9 convolution with truncated exponential functions, 

{ e-Ul~l ~ > 0 ,  { e ~/1~1 ~_<0, 
h(~) = 0 ~ < 0, h(~) = 0 ~ > 0, (2) 

Correspondingly, in the discrete case, there are besides rescaling and translation, 
three primitive types of smoothing transformations (where fo~t = h * fi,~): 

�9 two-point weighted averaging or generalized binomial smoothing, 

fo~t(x) = f i~(x)  + c~i f i~(x - 1) (c~i > 0), (3) 
fo~t(x) -'- f i~(x)  + 5~ f i~(x  + 1) (5i _> 0), 

�9 moving average or first-order reeursive filtering, 

fo~t(x) -- f i~(x) +/3~ f o ~ ( x  - 1) (0 _< j3i < 1), (4) 
fo~,(x) = f i~(x)  + 7i f o ~ ( x  + 1) (0 < 7i < 1), 
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�9 infinitesimal smoothing described by the generating function 

Hsemi-gro~p(z) -- e t(az-l+bz). (5) 

In the symmetric case, a -- b -- a /2 ,  this transformation corresponds to 
convolution with the discrete analogue of the Gaussian kernel, 

T(n; 02) = e - ~ 2 I n ( a a 2 ) ,  (6) 

where IN are the modified Bessel functions of integer order. 

Among these scale-space kernels, we recognize the continuous Gauss/an kernel 
g(x; 02) and its discrete analogue T(n; 02), which arise as unique symmetric 
choices if the scale parameter is required to be continuous and a semi-group 
structure is imposed (Lindeberg 1990, 1994). The generalized binomial kernels 
provide a natural  basis for constructing pyramid representations (Burt 1981; 
Crowley 1981), whereas recursive filters can be used for efficient implementations 
of smoothing operations (Deriche 1987). 

3 Time-causal  scale-space kernels 

The review in the previous section is general and does not take the specific 
nature of the time direction into account. For scale-space kernels treating the 
time direction as causal, an obvious requirement is that only function values in 
the past can be accessed. Hence, the kernels must satisfy h(t) = 0 when t < 0. 
Here, we shall analyse the implications of imposing this constraint on scale-space 
kernels in the continuous and discrete domains. 

Continuous time. An immediate consequence of the classification of semi-groups 
of continuous scale-space kernels (the Gauss/an kernel is unique) is that  we can- 
not preserve a continuous semi-group structure with respect to the time-scale 
parameter  if the time direction is to be treated as causal. Hence, the only choice 
is to discretize the time-scale parameter. The only primitive scale-space kernels 
with one-sided support are the truncated exponential functions. After normal- 
ization to unit Ll-norm they can be written 

hexp(t; it) = 1-e-t~" (t > 0). (7) 
# 

By varying #, we obtain first-order filters having different time constants. The 
classification of continuous scale-space kernels implies that a kernel is a time- 
causal scale-space kernel if and only if it can be decomposed into a sequence of 
convolutions with such filters. Hence, the architecture on a time-scale representa- 
tion imposed by this construction is a set of first-order recurs/re filters in cascade, 
each having a (possibly) different time constants it/. Such a filter has mean value 

OO OO 

M(hcomposed('; it)) = E i = i  iti' variance A = V(hcomposed('; it)) = E i = ]  #i, and 
a (bilateral) Laplace transform of the form 

gcomposed(8; it) - ~  ($i=lhexp(t, iti)) e -st dt = 1 + #is" (8) 
- - c o  i =  l 
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If we in analogy with a semi-group requirement, require the transformation from 
any fine-scale representation to any coarser-scale representation to be a scale- 
space transformation, then the only possibility is that all the (discrete) scale 
levels in the multi-time scale representation can be generated by a cascade of 
such truncated exponential filters. 

Discre te  t ime.  For discrete time sampling, the discrete analogue of the trun- 
cated exponential filters are the first-order recursive filters (4). With normaliza- 
tion to uni t / l -norm,  and # = 8 / (1 - t3 ) ,  their generating functions can be written 

1 
Hgeom(Z) = i • # (z  - 1)' (9) 

Computationally, these filters are highly efficient, since only few arithmetic op- 
erations and no additional time buffering are required to compute the output  at 
time t +  1 given the output  at time t. In normalized form, the recursive smoothing 
operation is 

fo~t( t )  - fo=t(t - 1) - 
1 

-- - -  ( f i~( t )  - fou t ( t  - 1)). (10) 
1 + #  

In analogy with the case of continuous time, a natural way to combine these 
filters into a discrete multi-time-scale representation is by cascade coupling. The 

OO 
mean and variance of such a composed filter are M(hgeo,~(.;  It)) = ~ = l  #~ 
and A Y(hg~om(-; #)) ~ 2 = = ~ i=1  tti + tti. In the case of discrete time, we can 
also observe that  the generalized binomial kernels (3) indeed satisfy temporal 
causality, if combined with a suitable time delay. In this respect, there are more 
degrees of freedom in the case of discrete time sampling. 

Time-causa l  semi-group s tructure  exists only for  discrete t ime.  The case of 
discrete time it also special in the sense that a semi-group structure is, indeed, 
compatible with temporal causality. If we let q-1 = 0 and ql = A in (5) and 
multiply by the normalization factor exp(-A),  we obtain a generating function 
of the form P ( z ;  A) = e A(z-1) (Lindeberg 1996) with associated filter coefficients 

A n 

p(n;  A ) = e  - x -  (11) 
n ! '  

This filter corresponds to a Poisson distribution and the kernel p will be referred 
to as the Poisson  kernel .  Intuitively, it can be interpreted as the limit case of 
repeated convolution of kernels of the form (9) with time constants # = A/m: 

A ))m 
li~moo Hge~ m = 

1 
lira ( 1 -  A z = P ( z ;  A). (12) 

m-.o~ ~ (  - i ) ) m  

Such a kernel has mean M(p(.; A)) = A, and variance V(p(.; A)) = A. From the 

ratio p(n+l;v(n; ~) ~) ---- n+l~, it can be seen for A < 1 the filter coefficients decrease 
monotonically for n > O, while for A > 1 there is a local maximum at the 
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smallest integer less than ~: n = [),] > 0. Similarly, there are two inflexion 
1 + (A + �88 Concerning the qualitative behaviour, it also points at n ~ /k  + $ - . 

well-known from statistics that the Poisson distribution approaches the normal 
distribution with increasing standard deviation (see figure 1). 

~ 
Figure 1: Graphs of the Poisson kernels for )~ = 0.9, 3.9 and 15.9. 

Under variations of A, the Poisson kernel satisfies Oap(n; A) = - (p (n ;  A) - p ( n -  
1; A)). Thus, if we define a multi-time-scale representation L: It( x II~ --4 I~ of a 
discrete signal f :  ]R --~ ]R, having a continuous time-scale parameter, by 

L(t; A) = f i  p(n; A) f ( t -  n), (13) 
n z - - o o  

this representation satisfies the first-order semi-differential equation 0~ L = - 5 _  L, 
where 5_ denotes the backward difference operator 5_L(t; ~) = L(t; ;~) - L(t  - 
1; ~). Hence, in contrast to multi-scale representations of the spatial domain, 
for which derivatives with respect to scale are related to second-order deriva- 
tives/differences in the spatial domain, temporal scale derivatives are here re- 
lated to first-order temporal differences. 

Note that a corresponding time-causal structure does not exist for continuous 
signals. If we apply the same way of reasoning and compute the limit case of 
primitive kernels of the form (8) for which all hi are equal, we obtain the trivial 
semi-group corresponding to translations of the time axis by a time delay )~. 

4 T e m p o r a l  s c a l e - s p a c e  a n d  t e m p o r a l  d e r i v a t i v e s  

So far,  we have shown how general constraints concerning non-creation of local 
extrema with increasing scale combined with temporal causality restrict the 
class of operations that can be used for generating multi-scale representations 
corresponding to temporal integration over different time scales. When to use 
these results in practice, an obvious issue concerns how to distribute a (finite) 
set of discrete scale levels over scales and how to compute temporal derivatives 
(or derivative approximations) at different time scales. 

Distribution of scale levels. A useful property of the Poisson-type scale-space 
(13) is that  there is no need for selecting scale levels in advance. If we have access 
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to all data  in the past, we can compute the temporal scale-space representation 
at any scale. Assuming that a vision system is to operate at a set of K temporal 
scales, a natural a priori distribution of these scale levels s between some 
minimum scale ~ , ~  and some maximum scale )~ ,~  is according to a geometric 
series )~k = ~/k Ami~ where 7 K = A,~/Ami~.  

Concerning the multi-time scale representations having a discrete time-scale 
parameter, let us assume that  a minimal design is chosen, in the sense that  
the transformation between adjacent scales is always of the form (7) or (9). 
Since variances are additive under convolution, it follows that the time constants 
between adjacent scales should satisfy ;~k -- Ak-1 + #k for continuous signals and 
Ak = Ak-1 + #k +/t~ for discrete signals. 

Temporal scale-space derivatives in the continuous case. Given a continuous 
signal f ,  assume that a level k in a time-scale representation 

L(.; )~k) = (*~=lh~p(t; tti)) * f ( 1 4 )  

has been computed at some temporal scale Ak by cascade filtering with a set of 
k truncated exponential filters with time constants #i. From this representation, 
a temporal scale-space derivative of order r at scale s is defined by 

Lt~('; s = OraL(.; )~k) = (O~(*~=lh~p(t; ~)))  * f ,  ( 1 5 )  

and the Laplace transform of the composed (equivalent) derivative kernel is 

k 

H(~) ""  )~k) s ~ 1 (16) 
~o-*po~d (s' = I I  1 + #i s" 

i=1  

For this kernel to have a net integration effect (well-posed derivative operators), 
an obvious requirement is that the total order of differentiation should not exceed 
the total order of integration. Thereby, r < k is a necessary requirement. As a 
consequence, the transfer function must have finite L2-norm. 

A useful observation in this context is that  these temporal scale-space deriva- 
tives can be equivalently computed from differences between the temporal chan- 
nels. Assume, for simplicity, that  all #i are different in (16). Then, a decompo- 

sition of r-r(~) into a sum of r such transfer functions at finer scales ~ composed  

k 

omposed~8 ,  ---- 

i = k - r  

shows that  the weights Bi are given as the solution of a triangular system of 
equations provided that the necessary condition r < k is satisfied 

( -1) r  ,i~. + 1 ~ /+ iB .  ,~i+ 1 ( k - r < i < k ) .  
(1  - = + (1 - 

# i  3 
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Hence, each temporal derivative can be computed as a linear combination of 
the representations at finer time scMes. Moreover, the Laplace transforms of the 
equivalent derivative computation kernels satisfy the recurrence relation 

H(~) ~s" ~ k ) =  1 ,,(~-1) , ~ k - l ) ) .  (18) ~o~o~o~,, - ~  (H~::~o~(s; ~ ) -  ~ o ~ o ~ ;  

In other words, higher-order temporal derivatives can be computed as finite 
differences of lower-order derivatives (analogous to finite difference operators in 
the spatial domain). Derivative computations will thus be highly efficient. 

Temporal derivative approximations in the discrete case. In (Lindeberg and 
FagerstrSm 1996) it is shown that  a corresponding structure holds in the discrete 
case, for multi-scale temporal derivative approximations obtained by applying 
(either symmetric or non-symmetric) central difference operators to the discrete 

A = 1 6 ,  k = l  A=16 ,  k = 4  

I/2 
A----16, k~16 

i ii I A  ............ i i ........... if 

if v 
Figure  2: Graphs of equivalent smoothing kernels and first-order derivative (approxi- 
mation) kernels in the continuous and discrete cases, respectively, for k cascade coupled 
smoothing steps in which all the primitive time constants #~ are equal. (Here, /~ have 
been determined from k such that the variance A is the same for all smoothing kernels.) 
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multi-time-scale representation constructed by cascade convolution with first- 
order recursive filters of the form (10). 

Temporal derivatives from linear combinations of temporal channels This spe- 
cial structure is highly useful for practical purposes, since it makes explicit con- 
struction of temporal derivative kernels unnecessary. In other words, no other 
time buffers are necessary for computing temporal scale-space derivatives than 
the actual channels in the multi-time-scale representation. An intuitive explana- 
tion of why this is possible is that the different temporal channels, which repre- 
sent the incoming data at different time-scales, have different effective temporal 
delays. Besides the primary effect of producing an integrated representation over 
a certain time-scale, each such channel serves as a temporal buffer. 

Kernel graphs and trade-off issues. Figure 2 shows graphs of equivalent (con- 
tinuous and discrete) convolution kernels for a few combinations of the number 
of recursive filters in cascade, k, and the individual time constants, #~. 

The parameter values have been chosen such that the variance )~ of the 
smoothing kernel is the same for all filters. Hence, they represent different ways 
of computing the representation at a certain scale. 

As can be seen, the kernels are discontinuous if r > k - 1, whereas the 
degree of smoothness increases with k. To guarantee a certain minimum degree 
of temporal smoothness at the finest temporal scale, it can therefore (depending 
on the external sampling conditions) be useful to precede the recursive temporal 
multi-scale representations by a common pre-smoothing step (such as a few steps 
of recursive filtering or time-delayed binomial smoothing). For a more detailed 
analysis, including frequency properties, see (Lindeberg and Fagerstr5m 1996). 

5 S p a t i o - t e m p o r a l  s c a l e - s p a c e  

When to combine these multi-time-scale representations with a spatial repre- 
sentation for dealing with time-varyingimages, let us first treat space and time 
as separable dimensions. This is a natural assumption in the absence of further 
information (such as velocity information). The spatio-temporal scale-space rep- 
resentation we then obtain is the Cartesian product of the spatial and temporal 
scale-space representations, and is parameterized by a spatial scale parameter 
~2 and a temporal scale parameter ~. 

Depending on whether the spatial domain S is continuous or discrete, and 
correspondingly for the temporal domain T as well as the domains E and A of 
the spatial and temporal scale parameters, we then obtain one out of twelve 
possible types of spatio-temporal scale-space representations (see figure 3). 

Denote the transfer function of the spatial smoothing kernel by Hs(u; a2) 
and the transfer function of the temporal smoothing kernel by Hv(v; ~). Then, 
the transfer function for mapping a spatio-temporal signal f :  S g • ~ ~ ]I~ to its 
spatio-temporal scale-space representation L: S g • T • E x A --* ll~ is given by 

H(u, v; a 2, ~) = Hs(u; a2) HT(v; )~). (19) 
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Spatial domain S 

Continuous 

Continuous Gaussian 

+ Trunc. exp. 

Discrete 

Discrete Gaussian 

+ Binom. and geom. averaging 

Temporal scale A Continuous 

Discrete 

Temporal domain 7~ 

Continuous 

Trunc. exp. 

Discrete 

Poisson kernel 

+ Binom. and geom. averaging 

Figure  3: Scale-space kernels satisfying non-creation of local extrema with increasing 
scale in the cases of a continuous/discrete domain, a continuous/discrete scale param- 
eter, and a spatial/temporal domain without or with preferred direction. 

When implementing this operation in practice, the linearity implies that the spa- 
tim and temporal smoothing operators commute. For time-recursive temporal 
smoothing, it will therefore be more efficient to compute the spatial scale-space 
representation at the finest temporal scale, and then apply subsequent temporal  
smoothing to each spatial scale layer in this representation. If there is a common 
temporal smoothing component for all temporal scales (such as time-delayed bi- 
nomial smoothing to reduce temporal aliasing due to poor temporal sampling), 
it will be computationMly more efficient to apply such filters before constructing 
the spatial scale-space representation. Concerning temporal derivatives, it was 
shown that these can be computed by linear combinations of the temporal chan- 
nels at each spatial scale. Before or after this step, finite difference operators can 
be applied to compute spatiM derivative approximations (see figure 4). 

In summary, this spatio-temporal scale-space concept leads to a visual front- 
end model, which at every time moment outputs a set of spatio-temporal deriva- 
tives at different spatio-temporal scales. Concerning time buffering, there is es- 
sentially no need for the visual front-end to represent the past in any other ways 
than as the temporal channels in the multi-time-scale representation. Hence, 
for two-dimensional image data, we obtain a visual front-end, which over time 
maintains a four-dimensional representation of the current (delayed) moment. 
This data  set constitutes one time slice of the five-dimensional spatio-temporal 
representation of the complete history of the visual observer. 

Figure 5 shows an example of multi-scale spatio-temporal image descriptors 
computed in this way. It shows second-order temporal derivatives computed 
from an image sequence for a number of different values of the spatial and 
temporal scale parameters. Observe how qualitatively different types of responses 
are obtained at the different spatio-temporal scales. 

A more extensive treatment of this subject is presented in (Lindeberg 1996), 
including scale-space properties, necessity results and the non-separable case. 
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O~L O~tL 
/ \ / \ 

OtL OtL OtL 

Figure  4: The composed architecture of the resulting spatio-temporal visual front-end 
consists of the following types of processing steps�9 (i) Optional temporal preprocessing. 
(ii) Spatial multi-scale representation, e.g. a pyramid or a scale-space representation. 
(iii) One set of recursive temporal smoothing stages associated with each spatial scale. 
(iv) Temporal derivatives from linear combinations of temporal channels. (v) Spatial 
derivative approximations from finite spatial differences (not shown in this figure). 

6 Summary a n d  d i s c u s s i o n  

We have presented a theory for how the linear scale-space concept can be ex- 
tended to the temporal domain. The theory is complete in the sense that it 
provides a complete catalogue of all linear scale-space concepts that Satisfy tem- 
poral causality in the cases of continuous vs. discrete time as well as continuous 
vs. discrete scale. Essentially, there are three main categories. 

The construction started from similar scale-space axioms as have been used 
for deriving the uniqueness of the Gaussian kernel in the spatial domain, namely 
linearity, shift invariance, symmetry and non-creation of maxima (zero-crossings) 
with increasing scale. In the case of a continuous scale parameter,  the latter 
assumption corresponds to a semi-group structure. Then, we replaced the sym- 
metry condition by the essential requirement that the time direction should be 
treated as causal, and only what has occurred in the past may be used as input 
for computing representations at coarser time scales. 

A kernel satisfying these properties was termed a time-causal scale-space 
kernel, and a complete classification was given for continuous and discrete time 
domains. For continuous time, the only primitive time-causal kernels are trun- 
cated exponential kernels corresponding to first-order integration over time. The 
discrete correspondences to these are geometric moving average kernels. In the 
discrete domain, also time-shifted binomial kernels satisfy temporal causality. 

In the case of discrete time, and only in this case, there is a non-trivial time- 
causal semi-group structure. It corresponds to convolution with Poisson kernels, 
and can be regarded as the canonical model of a temporal scale-space, since it 
is the only time-causal scale-space having a continuous scale parameter. 



239 

tic~rls c~" s l ,a( ia l  s<'ah's ~md t<.mp,~r~l scah,s .  T h , '  lx)p row sh~>ws thr~.~ ~ Cram,,: fr,~m lh, ,  

imag~, :.,,qm,nc~,. wh, . roas  ~h," t)~ll~wing rt~ws sh<~w sl~al.i,~ I.~,mi~c>ral d:~(~t f~r cr ~ 2, Ill 
an,I  12N ( f rom t.h,:, b o t t o m  t<) t h e  t.op) a n d  A --  2, 8 a n d  :g2 (frtm~ t h e  l(?ft, t.o t.h~. r ich1) .  
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We analysed derivative operators and derivative approximations with respect 
to their scale-space properties. Specifically, we made the important observation 
that the temporal channels themselves contain sufficient information for com- 
puting temporal derivatives at the current moment. Hence, there is no  need for 
additional time buffering as would be needed if computing temporal derivative 
approximations by explicit finite differences. 

More generally, the time recursive properties of the smoothing kernels corre- 
sponding to a discrete scale parameter imply that it is sufficient for the visual 
front-end to maintain a representation over time that  corresponds to a four- 
dimensional slice of the entire five-dimensional spatio-temporal scale-space. This 
dimensionality reduction is of crucial importance, since it substantially reduces 
computational and hardware requirements. 

An attractive property of the presented theory is that  it leads to a concep- 
tually very simple architecture (illustrated in figure 4) and allows for computa- 
tionally highly efficient implementations. To update the temporal information to 
the next time moment (according to equation (10)) it is sufficient to perform one 
multiplication and two additions per pixel and spatio-temporal channel. Whereas 
recursive filters are common in signal processing and constitute a natural choice 
on an ad hoc basis, an important  result of this treatment is that  this design can 
be derived by necessity from first principles. 

References 
P. J. Burr. Fast filter transforms for image processing. CVGIP, 16:20-51, 1981. 
J. L. Crowley. A Representation for Visual Information. PhD thesis. Carnegie-Mellon 

University, Robotics Institute, Pittsburgh, Pennsylvania, 1981. 
R. Deriche. Using Canny's criteria to derive a recursively implemented optimal edge 

detector. IJCV, 1:167-187, 1987. 
L. M. J. Florack. The Syntactical Structure of Scalar Images. PhD thesis. Dept. Med. 

Phys. Physics, Univ. Utrecht, NL-3508 Utrecht, Netherlands, 1993. 
N. L. Johnson and S. Kotz. Discrete Distributions. Houghton Mifflin, Boston, 1969. 
S. Karlin. Total Positivity. Stanford Univ. Press, 1968. 
J. J. Koenderink and A. J. van Doom. Generic neighborhood operators. IEEE-PAMI, 

14(6):597-605, 1992. 
J. J. Koenderink. The structure of images. Biol. Cyb., 50:363-370, 1984. 
J. J. Koenderink. Scale-time. Biol. Cyb., 58:159-162, 1988. 
T. Lindeberg. Scale-space for discrete signals. IEEE-PAMI, 12(3):234-254, 1990. 
T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer, Netherlands, 1994. 
T. Lindeberg. Linear spatio-temporal scale-space, in preparation, 1996. 
T. Lindeberg and D. FagerstrSm. Scale-space with causal time direction. Tech. rep. 

ISRN KTH/NA/P-96/04-SE, NADA, KTH, Stockholm, Sweden, jan 1996. 
I. J. Schoenberg. On smoothing operations and their generating functions. Bull. Amer. 

Math. Sot., 59:199-230, 1953. 
A. P. Witkin. Scale-space filtering. In 8th IJCAI, pages 1019-1022, 1983. 
A. L. Yuille and T. A. Poggio. Scaling theorems for zero-crossings. IEEE-PAMI, 

8:15-25, 1986. 


