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A b s t r a c t .  We present a technique to extract complex suburban roofs 
from sets of aerial images. Because we combine 2-D edge information, 
photometric and chromatic attributes and 3-D information, we can deal 
with complex houses. Neither do we assume the roofs to be flat or recti- 
linear nor do we require parameterized building models. From only one 
image, 2-D edges and their corresponding attributes and relations are 
extracted. Using a segment stereo matching based on all available im- 
ages, the 3-D location of these edges are computed. The 3-D segments 
are then grouped into planes and 2-D enclosures are extracted, thereby 
allowing to infer adjoining 3-D patches describing roofs of houses. To 
achieve this, we have developed a hierarchical procedure that effectively 
pools the information while keeping the combinatorics under control. Of 
particular importance is the tight coupling of 2-D and 3-D analysis. 

1 I n t r o d u c t i o n  

The extraction of instances of 3-D models of buildings and other man-made 
objects is currently a very active research area and an issue of high importance to 
many users of geo-information systems, including urban planners, geographers, 
and architects. 

Here, we present an approach to extract complex suburban roofs from sets 
of aerial images. Such roofs can neither be assumed to be flat nor to have sim- 
ple rectangular shapes. In fact, their edges may not even form ninety degrees 
angles. They do tend, however, to lie on planes. This specific problem is a typi- 
cal example of the general hnage Understanding task of extracting instances of 
generic object classes that are too complex to be handled by purely image-based 
approaches and for which no specific template exists. 

Because low-level methods typically fail to extract all relevant features and 
often find spurious ones, existing approaches use models to constrain the problem 
[15]. Traditional approaches rely almost exclusively on the use of edge-based 
features and their 2-D or 3-D geometry. Although 3-D information alleviates the 
problem, instantiating the models is eombinatorially explosive. This difficulty 
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is typically handled by using very constrained models, such as flat rectilinear 
roofs or a parameter ized building model, to reduce the size of the search space. 
These models may be appropriate  for industrial buildings with flat roofs and 
perpendicular  walls but not for the complicated suburban houses tha t  can be 
found in scenes such as the one of Fig. 1. 

It  has been shown, however, that  combining photometr ic  and chromatic re- 
gion at t r ibutes  with edges leads to vastly improved results over the use of either 
alone [6, 11]. The houses of Fig. 1 require more flexible models than  the s tandard 
ones. We define a very generic and free-form roof primitive: we take it to be a 3-D 
patch that  is roughly planar and encloses a compact  polygonal area with con- 
sistent chromatic and luminance at tr ibutes.  We therefore propose an approach 
that  combines 2-D and 3-D edge geometry with region attr ibutes.  This is not 
easy to implement because the complexity of the approach is likely to increase 
rapidly with the number  of information sources. Furthermore,  these sources of 
information should be as robust as possible but  none of them can be expected to 
be error-free and this must  be taken into account by the data-fusion mechanism. 

Figure  1 Two of the four registered 1800 • 1800 images that are part of our residential 
dataset (Courtesy of IGP at ETH Ziirich). 

To solve this problem, we have developed a procedure that  relies on hierarchi- 
ca] hypothesis generation, see Fig. 2. The  procedure starts  with a multi-image 
coverage of a site, extracts  2-D edges from a source image, computes  corre- 
sponding photometr ic  and chromatic at t r ibutes,  and their similarity relation- 
ships. Using both  geometry and photometry,  it then computes the 3-D location 
of these edges and groups them to infinite planes. In addition, 2-D enclosures 
are extracted and combined with the 3-D planes to instances of our roof prim- 
itive, that  is 3-D patches. All extracted hypotheses of 3-D patches are ranked 
according to their geometric quality. Finally, the best  set of 3-D patches tha t  
are mutual ly consistent are retained, thus defining a scene parse. This procedure 
has proven powerful enough so that ,  in contrast  to other approaches to generic 
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roof extract ion (e.g. [14, 6, 4, 13, 7, 121), we need not assume the roofs to be  flat 
or rectilinear or use a parameterized building model. 

Note that ,  even though geometric regularity is the key to the recognition of 
man-made  structures,  imposing constraints tha t  are too tight, such as requiring 
that  edges on a roof form n!nety degrees angles, would prevent the detection of 
many  structures that  do not satisfy them perfectly. Conversely, constraints that  
are too loose will lead to combinatorial explosion. Here we avoid bo th  problems 
by working in 2-D and 3-D, grouping only edges that  satisfy loose coplanari ty 
constraints, weak 2-D geometric and similarity constraints on their photometr ic  
and chromatic  at tr ibutes.  None of these constraints is very tight but,  because 
we pool a lot of information from multiple images, we are able to retain only 
valid object candidates. 
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Figure  2 Our hierarchical framework, a feed-forward scheme, where several compo- 
nents in the 2-D scheme mutually exchange data and aggregates with the 3-D modules. 

We view the contribution of our approach as the ability to robustly com- 
bine information derived from edges, photometr ic  and chromatic area properties,  
geometry and stereo, to generate well organized 3-D data  structures describing 
complex objects while keeping the combinatorics under control. Of part icular  
impor tance  is the tight coupling of 2-D and 3-D analysis. 

For our experiments,  we use a state-of-the-art  dataset  produced by the Insti- 
tute  of Geodesy and Pho togrammet ry  at E T H  Ziirich. It  consists of a residential 
and an industrial scene with the following characteristics: 1:5,000 image scale 
vertical aerial photography, four-way image overlap, color imagery, geometrically 
accurate  film scanning with 15 microns pixel size, precise sensor orientation, and 
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accurate ground t ru th  including DTM and manually measured building CAD- 
models. The latter are important  to quantitatively evaluate our results. 

Our hierarchical parsing procedure is depicted in Fig. 2. Below we describe 
each of its components: 2-D edge extraction, computat ion of photometric and 
chromatic attributes,  definition of similarity relationships among 2-D contours, 
3-D edge matching and coplanar grouping, extraction of 2-D enclosures, and 
finally, generation and selection of candidate 3-D object models. Last, we present 
and discuss our results. 

2 A t t r i b u t e d  C o n t o u r s  a n d  t h e i r  R e l a t i o n s  

2.1 Edge Detect ion and Edgel Aggregation 

Our approach is based on grouping contour segments. The presented work does 
not require a particular edge detector, however, we believe it is wise to use the 
best operator  available to obtain the best possible results. For this reason we 
use the SE energy operator  (suppression and enhancement) recently presented 
in [8]. The operator produces a more accurate representation of edges and lines 
in images of outdoor scenes than traditional edge detectors due to its superior 
handling of interferences between edges and lines, for example at sharp corners. 

The edge and line pixels are then aggregated to coherent contour segments 
by using the algorithm described in [10]. The result is a graph representation of 
contours and vertices, as shown in Fig. 3B. Each contour has geometric at tr ibutes 
such as its coarse shape, that  is straight, curved or closed. 

Figure 3 (A) a cut-out 350 • 350 from the dataset in Fig.l, (B) The resulting 
attributed graph with all its contours and vertices, (C) the flanking regions with 
their corresponding median luminance attributes. The background is black. 

2.2 Photometric  and Chromatic Contour Attributes 

The contour graph contains only basic information about  geometry and connec- 
tivity. To increase its usefulness, image attr ibutes are assigned to each contour 
and vertex. The attributes reflect either properties along the actual contour 
(e.g. integrated gradient magnitude) or region properties on either side, such as 
chromatic or photometric homogeneity. 

Since we are dealing with fairly straight contours the construction of the 
flanking regions is particularly simple. The flanking region is constructed by a 



89 

translat ion of the original contour in the direction of its normal.  We define a 
flanking region on each side of the contour. When neighboring contours interfere 
with the constructed region, a t runcation mechanism is applied. In Fig. 3C we 
display all flanking regions. For more details we refer to [9]. 

To establish robust photometr ic  and chromatic propert ies of the flanking re- 
gions, we need a color model that  accurately represents colors under a variety 
of illumination conditions. We chose to work with HVC color spaces since they 
separate  the luminant and chromatic components  of color. The photometr ic  at- 
t r ibutes are computed  by analyzing the value component,  whereas the chromatic 
a t t r ibutes  are derived from the hue and chroma components.  As underlying color 
space we use the ClE(l_*a*b*) color space because of its well based psychophysical 
foundation; it was created to measure perceptual color differences [16]. 

Since each flanking region is assumed to be fairly homogeneous (due to the 
way it is constructed),  the data  points contained in each region tend to concen- 
t ra te  in a small region of the color space. As we deal with images of aerial scenes 
where disturbances like chimneys, bushes, shadows, or regular roof texture  are 
likely to be within the defined regions, the computa t ion  of region propert ies must  
take outliers into account. Following the approach in [11] we represent photo- 
metric a t t r ibutes  with the median luminance and the interquartile range (IQR), 
see Fig. 3C. The chromatic region properties are computed analogously from the 
C[E(a*b*) components  and are represented by the center of the chromatic cluster 
and the corresponding spreads. 

2.3 Contour  Similarity  Relat ions  

Although geometric regularity is a major  component  in the recognition of man- 
made structures,  neglecting other sources of information that  can assert the 
relatedness among straight contours imposes unnecessary restrictions on the ap- 
proach. We propose to form a measure that  relate contours based on similarity 
in position, orientation, and photometr ic  and chromatic properties. 

For each straight contour segment we define two directional contours pointing 
in opposite directions. Two such directional contours form a contour relation 
with a defined logical interior. For each contour relation we compute  four scores 
based on similarity in luminance, chromaticity, proximity, and orientation and 
combine them to a single similarity score by summation.  

Three consecutive selection procedures are applied, retaining only the best  
non-conflicting interpretations. The first selection involves only two contours 
(resp. four directional contours) and aims at reducing the eight possible inter- 
pretat ions to less or equal to four. The  second selection procedure removes short- 
cuts among three directed contours. The final selection is highly data-driven and 
aims at reducing the number  of contour relations from each directed contour to 
only include the locally best ones. All three selection procedures are based on 
analysis of the contour similarity scores. Due to lack of space we refer to [11] for 
more details. 
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3 Segment Stereo Matching 

Many methods for edge-based stereo matching rely on extracting straight 2-D 
edges from images and then matching them [1]. These methods, although fast 
and reliable, have one drawback: if an edge extracted from one image is occluded 
or only partially defined in one of the other images, it may not be matched. 
In outdoor scenes, this happens often, for example when shadows cut edges. 
Another class of methods [2] consists of moving a template along the epipolar line 
to find correspondences. It is much closer to correlation-based stereo and avoids 
the problem described above. We propose a variant of the latter approach for 
segment matching that  can cope with noise and ambiguities. Edges are extracted 
from only one image (the source image) and are matched in the other images 
by maximizing an "edginess measure" along the epipolar line. The source image 
is the nadir (most top-view) image because it is assumed to contain few (if 
any) self-occluded roof parts. Geometric and photometric constraints are used 
to reduce the number of 3-D interpretations of each 2-D edge. We outline this 
approach below and refer the interested reader to [3] for further details. 

Figure 4 (A) Matched 3-D segments. Notice the false matches. 
(B) Manually measured 3-D CAD model. 

For a given edge in the source image we want to find the location of its cor- 
respondences in the other image. A segment is described by the position of its 
middle point, its orientation and length. We use the epipolar geometry to con- 
strain the location in the second image so that  only 2 parameters are required 
to describe its counterpart: sin, the position along the epipolar line, and 8 the 
orientation. The length l, in the other images, is predicted by using (Sm, 8) and 
the epipolar geometry. For a given Sm and 8, we evaluate its probability of being 
correct by measuring the edginess f. It is a function of the image gradient: 

~ = ,  
_ le-eI,')) 2 

llC(r)ll'e 

where G(r) is the image gradient at r, 8(r) its orientation. The function f is 
maximum when (A, B) lies on a straight edge and decreases quickly, when (A, B)  
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is not an edge or is poorly located. Further,  f can be large even if if the edge is 
only partially visible in the image, tha t  is occluded or broken. 

The search for the most  likely counterparts  for the source edge now reduces 
to finding the max ima  of f by discretizing 0 and Sm and performing a 2-D search. 
In the presence of parallel structures, the edginess typically has several max ima  
tha t  cannot  be distinguished using only two images. However, using more than  
two images, we can reduce the number  of matches and only keep the very best 
by checking for consistency across image pairs. 

We can further  reduce the hypothesis set by using the photometr ic  edge at- 
t r ibutes of section 2.2 after photometr ic  equalization of the images. We compute  
the 2-D projections of each candidate 3-D edge into all the images. The  image 
pho tomet ry  in areas that  pertains to at least one side of the 2-D edges should be 
similar across images. Figure 4 shows all matched 3-D segments as well as the 
manually measured CAD model for the house in Fig. 3A. 

4 Coplanar Grouping of 3-D Segments 

To group 3-D segments into infinite planes, we propose a simple and determinist ic 
method  that  accounts for outliers in the data. It  proceeds in two steps: 

- E x p l o r e :  We first find an initial set of hypotheses using a RANSAC style 
approach [5]: Given the relationships of section 2.3 and the 3-D geometry  
of the segments, we fit planes to pairs of related contours that  are roughly 
coplanar. We then extend the support  of those planes by iteratively including 
segments that  are related to the hypothesis and that  are close enough to the 
plane. After each iteration the plane parameters  are re-approximated.  

- M e r g e :  We now have a set of plane hypotheses. Because all the edges belong- 
ing to the same physical plane may not be related in the sense of section 2.3, 
this plane may give rise to several hypotheses that  must be merged. This is 
done by performing an F-test on pairs of parallel planar hypotheses to check 
whether or not they describe the same plane. 

F igure  5 Selection of planes extracted from the 3-D segments of the house in Fig. 3A. 
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Each plane in Fig. 5 consists of a number  of 3-D segments, some of which 
are correctly matched and do belong to a planar object part .  However, quite a 
few 3-D segments are incorrectly matched and accidentally lie on the plane and 
other segments, such as the contours on the ground aligned with the roof plane, 
are correctly matched but do not belong to the object part .  

5 Extracting and Selecting 2-D Enclosures 

In the preceding section we presented an approach to group 3-D segments into 
infinite planes. However, only a subset of all segments on each plane actually 
belong to valid 3-D patches, see Fig. 5. To obtain an ordered list of 2-D con- 
tours describing a 3-D patch, we propose to group contours in 2-D where more 
complete data  is available and subsequently merge the extracted enclosures with 
the corresponding planes. The tight coupling between the 2-D and 3-D processes 
plays an impor tant  role; the extracted planes tha t  are not vertical initialize the 
enclosure finding algorithm. We therefore do not need to find all possible 2-D 
enclosures, only those that  overlap with non-vertical planes. 

We use the edge and region based approach described in [11] since it allows to 
group contours on other grounds than  geometric regularity. The method consists 
of defining contour similarity relations (section 2.3), which are then used to build 
a relations graph, in which each cycle define a 2-D enclosure. At last, all extracted 
2-D enclosures are ranked according to simple geometric shape criteria. 

5.1 Extract ing 2-D Enclosures 

Instances of 2-D roof-primitives can be found by grouping related contours to 
polygonal shaped structures. A computat ional ly a t t ract ive approach is to build 
a relations graph and use it to find these structures [6, 12]. By construction each 
cycle in the relations graph describe an enclosure. Each contour relation define 
a node in the graph and two nodes are linked together if they have a compat ibly  
directed contour. We use a s tandard depth-first search algorithm to find cycles 
in the directed relations graph. 

The procedure work as follows: select a not already used node that belongs 
to the plane and find all valid cycles in the graph given this s tar t  node. Pick the 
next not already used node on the same plane and i terate the procedure until 
there are no more nodes left. A valid cycle is a set of directed contours tha t  
have a boundary  length not exceeding a large value and that  does not form a 
self-loop; the boundary  of the enclosure must  be compact .  

5.2 Selecting 2-D Enclosures 

The above algorithm produces for each plane a set of 2-D enclosure hypotheses. 
To al leviate the fusion of enclosures and planes, we rank the enclosures within 
each plane according to simple geometrical shape criteria. We assume that  each 
roof par t  has a compact  and simple polygonal shape. In addition we require a 
large overlap between the contours in the 2-D enclosure and the corresponding 
3-D segments of the plane. We propose the following criteria: 
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S h a p e  s i m p l i c i t y  Shape simplicity is defined as number of straight contours 
required to represent the enclosure boundary (including missing links). Given 
an error tolerance, we use a standard polygon approximation algorithm to 
compute the required number of straight lines. The simpler the description 
of a 2-D enclosure is, the more likely it is that  it will describe a roof part.  

S h a p e  c o m p a c t n e s s  Compactness is defined as the squared length of the bound- 
ary of the enclosure divided by the enclosed area. 

3-D c o m p l e t e n e s s  The 3-D completeness is defined as the ratio of the length 
of the 3-D contours tha t  lie on the enclosure boundary and on the plane, 
with respect to the total length of the enclosure boundary. This measure 
will be high whenever a large portion of the extracted 2-D contours have 
correctly matched 3-D segments that  lie on the same infinite plane. 

Figure 6 shows a few representative 2-D enclosures for the larger planes of the 
house in Fig. 3A. Two thresholds are applied, one for shape simplicity (_< 10) 
and one for 3-D completeness (> 0.4). Together with the 3-D patch consistency 
test in next section these thresholds preclude highly unlikely hypotheses of 2-D 
enclosures before fusing them with planes to hypotheses of 3-D patches. 

Figure 6 A few representative 2-D enclosures for the larger planes. 

6 F i n d i n g  C o h e r e n t  3 - D  P a t c h e s  

Each 2-D enclosure describes a possible boundary description of the correspond- 
ing 3-D plane. It is reasonable to assume that, roofs are usually constructed of 
adjoining planes. For this reason, only hypotheses of 3-D patches that  mutually 
adjoin with other 3-D patches along their boundaries are retained. In addition 
we require that  the 2-D contours belonging to the adjoining boundary of the 3-D 
patches are collinear in 2-D. Those 3-D patches that  fulfill these constraints are 
consistent. 
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The iterative procedure initially selects a subset of 3-D patches and verifies 
the mutual  consistency along the boundaries. If one or more 3-D patches do 
not fulfill this consistency, they are rejected and a new' subset of  3-D patches 
is selected. Moreover the subset of 3-D patches should be maximally consistent, 
i.e. maximum number of mutually consistent boundaries. The order of selection 
is initially based on shape simplicity, and in a second step on the product  of the 
normalized compactness and 3-D Completeness. To obtain the 3-D coordinates of 
those contours tha t  are contained in the 2-D enclosure but  not on the plane, we 
project their endpoints onto the plane. The result is a complete 3-D boundary 
for each plane that  is likely to describe a roof. 

7 R e s u l t s  

We use the presented framework to extract complex roofs of houses in suburban 
scenes, see Fig. 1. The process is initialized by selecting a rectangular window 
enclosing the same house in all four images. It has been demonstrated [7] that  
this initialization procedure can be automated by locating elevation blobs in the 
digital surface model. After this initialization, the roof is automatically extracted. 

The roof depicted in Fig. 7A is complex because it consists of several ad- 
joining non-planar and non-rectangular shapes. The feature extraction finds 171 
straight 2-D edges. The segment stereo matching produces 170 3-D segments, 
and the coplanar grouping extracts 33 infinite planes of which 7 are mutually 
adjoining and non-vertical. Given these 7 non-vertical planes, the algorithm finds 
373 valid 2-D enclosures (resp. 3-D patches). The five 3-D patches in Fig. 7B are 
finally selected since they maximizes the geometrical shape score and mutual  
consistency among all 3-D patches. The result is a 3-D CAD model with 3-D 
segments, 3-D planes and their topology. This procedure yields the main parts 
of the roof, however, 3-D patches that  are not mutually consistent with the final 
set of 3-D patches, but nevertheless belongs to the house, are not included. One 
such example is the 3-D patch describing the dormer window in Fig. 7A. 

Figure  7 (A) cut-out from the aerial image in Fig.lA, (B) the recon- 
structed house roof in 3-D. 

In Fig. 8 we demonstrate the performance of our approach on the entire 
scene in Fig. 1. To the automatically extracted CAD models of the roofs we 
add artificial vertical walls. The height of the vertical walls is estimated through 
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the available digital terrain model (DTM). Ten of the twelve house roofs are 
extracted,  nine of them with a high degree of accuracy and completeness. The  
marked house to the right is not complete, since the algorithm fails to extract  
the two tr iangular shaped planes, however, the corresponding 2-D enclosures are 
correctly extracted. The algorithm fails to extract  the two upper  left houses. 
The  lower of the two is under construction and should not be included in the 
performance analysis. Even manual measuring this house is troublesome. The 
upper  house is complicated because a bunch of trees cast large shadows on 
the right roof part .  Because of these shadows the algorithm fails to find the 
corresponding plane, however, the left roof par t  is correctly reconstructed. 

Figure  8 The result of running the algorithm on all houses in the scene of 
Fig.1. The artificial vertical walls are added and projected down to the ground. 
The ground height is estimated through the digital terrain model (DTM). 

8 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have addressed the problem of delineating complex objects in real images 
for which no specific template  exists. We have implemented a working frame- 
work for the purpose of extracting complicated and generic roofs from sets of 
aerial images. The framework successfully performs the following tasks: hierar- 
chical integration of multiple data  sources, generic shape extraction, and efficient 
hypothesis generation and selection. 

We combine geometry, photometry,  chromaticity and stereo information about  
edges and their flanking regions. We thus make effective use of much of the avail- 
able 2-D and 3-D information present in several images of a given site. As a result, 
our procedure is more robust than one that  uses only partial  information. We 
further  use weak coplanarity constraint together with a generic extract ion of 2-D 
enclosures allow us to effectively find instances of 3-D patches. The  polygonal 
shape of these 3-D patches can be arbitrari ly complex. 

Future work will concentrate on: improvement  of each individual module 
(whenever possible), be t ter  exploitation of existing knowledge, e.g. DSMs and 
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color, be t te r  interaction between 2-D and 3-D information, further  tests with 
other data,  and improving the selection of 2-D enclosures by also modelling the 
color homogeneity of the enclosed area with for example MDL encoding, see [6]. 
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