
HIGHER ORDER GENERALIZATION IN PROGRAM DERIVATION

Alberto Pettorossi
IASI - CNR

Viale Manzoni 30
00185 Roma (Italy)

Andrzej Skowron
Institute of Mathematics

Warsaw University
00-901 Warsaw (Poland)

ABSTRACT

We define and study a particular kind of generalization strategy

for deriving efficient functional programs. It is called higher order

generalization because it consists in generalizing variables or

expressions into functions. That strategy allows us to derive

efficient one-pass algorithms with low timexspace complexity.

Through some examples we show the power of our generalization

strategy and its use together with the tupling strategy. Applying

those strategies one may avoid the introduction of circular programs

[Bir84].

I. INTRODUCTION

A major problem in the derivation of programs by transformation is

the lack of a general theory which guarantees the improvements of

program performances when applying the basic transformation rules.

In some cases, however, it is possible to realize those

improvements by using powerful strategies. Some of them have been

defined and studied in the past, as for instance, the composition

strategy, the tupling strategy, and the generalization strategy. For

a recent survey in this area the reader may refer to [Fea86] ~

We will define a new kind of generalization strategy and we will

study its properties through a couple of examples. That strategy,

together with the composition and the tupling strategy, avoids the

multiple traversal of data structures and it saves time and space

resources. Related work can be found in [Bit84].

We consider recursive equation programs, like the ones presented

in the classical work by Burstall and Darlington [BUD77]. We will not

183

give their formal definition here, but we hope that the reader will

have no difficulties in understanding them. The actual language we

use is a variant of HOPE [BMSS0].

Obviously, the generalization strategy we propose is independent

from the language chosen, and it can also be applied when one derives

programs using different formalisms.

The basic transformation rules for recursive equation programs

include:

- the unfolding rule. It is the replacement of a left hand side of

a recursion equation by its corresponding rigth hand side.

For instance, given the equations:

f (x) =El [g (a)] , g (x) =E2 [x],

where E[e] denotes the expression E with the occurrence of the

subexpression e, the unfolding of g(a) in E1 produces the following

new program version:

f (x) =El [E2 [a/x]], g(x)=E2 [x] .

- the folding rule. It is the inverse of the folding rule by

interchanging the l.h.s, and the r.h.s.

- the definition rule. It is the introduction of a new recursive

equation whose r.h.s, is not an instance of already existing

equations.

Those basic rules have been often described in the literature (see,

for instance, [Fea86]). We will not go into the details here. Let us

only remark that we need to use some strategies, because a naive

sequence of applications of the unfolding and folding rules may take

us back to the initial program version.

In what follows we will apply the higher order generalization

strategy for solving two problems: the first one is a compilation

problem due to Swierstra [Swi85] and the second one is a tree

transformation problem due to Bird [Bit84] . We think that the

programs we will derive have good merits with respect to efficiency

and clarity of derivation. (Their correctness will be given us for

free, as usual in the transformation approach).

2. HIGHER ORDER GENERALIZATION FOR A COMPILATION PROBLEM

We consider a compilation problem for transforming lists of

letters denoting declarations and uses of identifiers into new lists,

where for each use of an identifier we indicate the corresponding

declaration.

184

In order to formally specify our problem, let us introduce the

following data structures atom and prog (short for program):

data atom == decl(letter) ++ use(letter)

data prog == list atom

where letter is a given set, which we may consider to be {a,b,..,z}.

decl, use, and list are type constructors, list atom denotes the type

of nested lists of atoms.

We also assume that together with a data definition we are given

the corresponding discriminators. For instance, in our case we are

given "isuse" and "isdecl". isuse satisfies the following axiom:

isuse(y)=true iff y=use(x) for any xeletter, and analogously for

isdecl.

For simplicity, we also adopt the convention of writing x instead

of use(x) and X instead of decl(x) . we hope that no confusion will

arise between the letter x and the atom use(x), both written as x.

Thus, the set of atoms is {A,a,B,b,...,Z,z}.

Here are two examples of lists of type prog:

[A a c [B b a] C a] and [[A b] a B]. Another one is the list:

pl=[A a b [a c A D b C] B b], which we will use as a running example.

We assume that the declarations in the lists of type prog obey the

familiar block discipline, where blocks are identified by square

brackets. For instance, if we have the following prog:

r l
[. , . A . . [. . . a .., A . . . b] ... B . , . a ...]

l J l J

with no other occurrences of A's and B's, the declaration-use

correspondences are denoted by the arcs we have drawn.

Notice that for any letter x its declaration X may occur after

(that is, to the rigth of) its first use x. Indeed in pl the

declaration C occurs after c.

We also assume that in any given prog, each use of a letter has a

unique corresponding declaration, which occurs in its block or in one

of its enclosing blocks.

In the Appendix we provide the function OK:prog -~ bool, which

checks that condition.

For instance, OK([A a a [B b]])=true, OK([A B [b a]])=true, and

OK([A a a b [a A] B])=true, while OK([A A a])=false (because there

are two A declarations within the same block) and OK([a B [b A]]) =

false (because there is no an "active" declaration A for a) .

185

We would like to compile a given nested list of atoms into a

nested list of pairs of numbers, where each pair corresponds to a

use-occurrence of an atom in the given list. The first number of each

pair gives us the level of nesting of the block where the

corresponding declaration occurs, while the second number gives us

the sequence order of that declaration within the block where it

occurs. For instance, for pl we want to obtain the list:

ll = [(0,0) (0, Z) [(1,0) (1,2) (0,1)] (0,1)],

which encodes the use-declaration correspondence shown by the

following arcs:

0,i

I 1,2 I0,i
I I II I

pl = [A a b [a c A D b C] B b]
u- I I l I
0,0 1,0 0,I

The pair (0,0) which is for the first a from the left, tells us

that the corresponding declaration A is at level of nesting 0 and it

is the first declaration (from the left) in that level. Analogously,

the pair (1,2) for c tells us that the corresponding declaration C is

at level of nesting 1 and it is the third declaration in it (after A

and D).

For obtaining the list ii from pl a possible first step is to

derive the "decorated list" dpl=[A00 a b [a c AI0 DII b C12] B01 b],

where we have attached to each declaration the corresponding

<level-of-nesting, sequence-order> pair. (For simplicity, we wrote

Xnm instead of X<n,m>).

Having dpl, it will be easier to compute the list ii, because we

have available for each declaration the relevant pair of numbers.

Unfortunately, we have to pay that advantage, because we are forced

to traverse the list dpl, after the first traversal of the given list

pl (which was necessary to derive dpl).

However, the application of the tupling strategy and the higher

order generalization strategy will avoid that drawback, and it will

allow us to obtain an efficient one-pass algorithm. The main

contribution of this paper consists exactly in this point.

We also show the power of those strategies when we use them

together, because we obtain the same efficiency results which are

possible at the expenses of extending our language by allowing

circular programs [Bit84] .

186

Therefore, for representing the list dpl we need the following

data structures r where level and order are natural numbers:

data decoratom == decl(letter) xlevel xorder ++ use(letter)

d~ta decorprog == list decoratom

with the discriminators: isddecl and isuse.

The following function decor produces the decorprog dpl from pl:

dec decor: prog xlevel xorder -+ decorprog

--- decor(nil,n,r)=nil

--- decor(e::l,n,r)=if isuse(e) %h~n e::decor(l,n,r)

~iseif isdecl(e) ~hen <e,n,r>::decor(l,n,r+l)

~=!_~_~ decor(e,n+l,0) ::decor(l,n,r)

We have: dpl=decor(pl,0,0).

Now we present the function had which computes the new active

declarations (represented as functions from letters to <level,order>

pairs) at the top level of a block in a given decorprog.

had works by taking as a second argument the active declarations in

the enclosing blocks. As an example, consider the following decorprog

dpl:

dpl dp2 dp3 dp4

[... [~~- [] --- [1~~~1 ...]

nad(dp2,d) computes the declarations valid in the sections with

tildes, for a given d representing the declarations valid in the

sections with dots. The declarations valid in dp3 and dp4 can be

computed by a recursive call of had.

dec nad: decorprog x (letter --} levelxorder)

-+ (letter-+level x order)

--- nad (nil, d) =d

--- nad(e: :l,d)=if isuse(e) %h@n nad(l,d)

elseif isddecl(e) ~hen update(e,nad(l,d))

~i$~ nad (i, d)

Given a function f, update(<x,n,r>,f) produces the new function g

s.t. g(x)=<n,r> and g(y)=f(y) for y~x.

The active declarations at the top level of a given dpl are

computed by nad(dpl,emptyfunction), because there are no enclosing

blocks.

Given dpl and the active declarations at the top level of dpl, the

187

following function comp (short for compile) computes the desired list

ii.

d@¢ comp: decorprog x (letter -9 level x order) -9 list level x order

--- comp (nil,d) =nil

comp (e : : l, d) =if e=use(x) then d(x) ::comp(l,d)

elseif isddeel(e) then comp(1,d)

else comp(e,nad(e,d)) ::comp(l,d)

Therefore:

ll=comp(dpl,nad(dpl,emptyfunction)) where dpl=decor(pl,0,0), because

we have first to decorate the list pl, and then we have to compute

the new active declarations in dpl for an empty enclosing block.

Finally we have to compile dpl.

The compiling program we have constructed makes multiple

traversals of the data structures involved. It seems very difficult

to produce in this case a one-pass algorithm, because the declaration

of the identifiers may occur after their use. However, we will show

that the higher order generalization strategy, together with the

tupling strategy, allows us to solve that problem.

We do not present here a formal characterization of the power of

those strategies and their synergism, but we hope that the reader may

convince himself that the proposed strategies do work in a large

number of cases.

3. THE TRANSFORMATION PROCESS TOWARDS THE ONE-PASS COMPILATION

A first step towards the derivation of the one pass algorithm we

have specified in the previous Section is the application of the

composition strategy [Pet84a] for the initial expression

comp(dpl,nad(dpl,emptyfunction)), because both comp and had visit

the same data structure, and the latter is an argument of the former.

That is a standard case for applying that strategy, which usually

avoids the generation of intermediate data (see also [Wad85]).

The incorporation into the one-pass algorithm of the function

decor(pl,0,0) which constructs dpl, will be done later.

By composition we define the function:

f(l,d)=comp(l,nad(l,d)) . After a few folding/unfolding steps we get

the following explicit definition:

dec f: decorprog x (letter -9 level × order) -+ list level × order

188

--- f (nil, d)=nil

--- f(e: :l,d)=if e=use(x) then nad(1,d) (x) ::f(l,d)

elseif isddecl(e) then comp (l, update (e, nad (l, d)))

else f(e,nad(l,d)) ::f(l,d)

From the above definition of f we notice that:

i) the functions nad(l,d) and f(l,d) both visit the same data

structure i, and

ii) it is impossible to fold into a recursive call of f the

expression comp(l,update(e,nad(l,d))), because it does not match the

expression comp(l,nad(l,d)) .

As indicated in [Pet84b] the fact i) suggests us to apply the

tupling strategy, while for point ii) we need to use the higher order

generalization strategy, which consists in generalizing an expression

into a function. In our case it works as follows.

We define the function compile(l,g(el,l,d)) defined as:

comp(l,update(el,nad(l,d))) if g=~xyz.update(x, nad(y,z)), and

comp(l,nad(l,d)) if g=lxyz.nad(y,z).

Now the folding step required in point ii) is possible, and we can

use a recursive call of compile with the suitable higher order

argument g. The idea of the higher order generalization is related to

the one in [DarSl], where the author uses the mismatch information

deriving from a forced folding, to find a suitable generalization

step.

We define the function:

H(el,l,d,g)=<nad(l,d), compile(l,g(el,l,d))>.

The functionality of H can be obtained from those of nad and

compile. The latter one is:

(decorprog× (atomxlevelxorder)xdecorprogx (letter-~(levelxorder)

-+ (letter-+(levelxorder))) -~ list level xorder.

After a few folding/unfolding steps we get the recursive equations

for the function H, where we used the following notations:

H(el:e2,l,d, gl) = <nad(l,d), comp(l,update(el,update(e2,nad(l,d))))>,

gl=Ixyz.update(x, nad(y,z)), g2=~xyz.nad(y,z), and

~i<al,...,an> = ai for i=ir._,n.

H (el, nil, d, g) =<d, nil>

H(el,e::l,d,g)=if e=use(x) then

<u, (if g=gl then update(el,u)(x) else u(x)) :: v>

where <u,v> = H (el, l, d, g)

elseif isddecl(e) then <update (e,u) ,v>

189

where <u,v> = if g=gl~hen H(el:e,l,d, gl)

else H(e,l,d,gl)

else <u, (if g=gl then ~2 H(el,e,update(el,u),g2)

else ~2 H(el,e,u,g2)) :: v>

where <u,v> = H(el,l,d,g)

Therefore, for producing the list ii from dpl we compute:

Z2 H(0, dpl,emptyfunction,g2) = comp(dpl,nad(dpl,emptyfunction))

definition), where 0 satisfies this equality: update(0, d)=d.

(by

Notice that during the computation, the function H visits its

second argument e::i only once. Indeed, H(...,e::l,...) is computed in

terms of H(_.,e,_.) and H(..,I,...).

Therefore, by using the tupling strategy and the higher order

generalization strategy we avoided the multiple traversals of e::l.

On the contrary, they would have been necessary if we used the

functions had and comp. We will come back to this point later.

Testing the equality of functions when computing H is easy,

because it amounts to check syntactical identities only. (Indeed one

could simply code gl and g2 using the numbers 1 and 2.)

A final step remains to be done. We need to avoid the visit of the

given prog pl for producing the corresponding decorated prog dpl.

In order to do so, we have to redo the steps we have presented

above for the derivation of H from comp(l,nad(l,d))o

We will replay that derivation using as a starting point suitable

variants of the functions nad and comp. We call those variants Nad

and Comp. They are produced by applying again the composition

strategy. Their inputs are prog's, not decorprog's. By that process

we realize the promised incorporation of the function decor into nad

and comp.

We have: Nad(p,d,n,r)=nad(decor(p,n,r),d) . Its definition is:

dec Nad: prog x (letter -) level x order) x level x order

-~ (letter -~ level x order)

--- Nad(nil,d,n,r)=d

--- Nad(e::l,d,n,r)=if isuse(e) then Nad(l,d,n,r)

elseif isddecl(e) then update(<e,n,r>,Nad(l,d,n,r+l))

else Nad(l,d,n,r) •

The call nad(decor(pl,0,0),emptyfunction) is replaced by:

Nad(pl,emptyfunction, 0,0).

We also have: Comp(p,d,n)=comp(decor(p,n,0),d) . Its definition is:

190

d@¢ Comp: prog × (letter -9 level × order) × level

-9 list level × order

--- Comp (nil, d, n) =nil

--- Comp(e::l,d,n)=if e=use(x) then d(x) ::Comp(l,d,n)

elseif [&decl(e) then Comp(l,d,n)

else Comp(e,Nad(e,d,n+l,0),n+l) ::Comp(l,d,n)

Notice that, in analogy to Nad, we could have defined the function

Comp(p,d,n,r)=comp(decor(p,n,r),d), but a simple analysis of the

resulting equations would have shown that the argument r is not

necessary.

The call comp(decor(pl,0,0),emptyfunetion) is replaced by:

Comp (pl, emptyfunction, 0) .

NOW, as for nad and comp, the tupling and generalization strategies

suggest us the definition of the following function L (analogous to H) :

L(el,l,d,g,n,r)=<Nad(l,d,n,r), Compile (l, g (el, l,d,n,r),n)>, where:

Compile(l,g(el,l,d,n,r),n)=Comp(l,update(el,Nad(l,d,n,r)) in) if g=gl,

=Comp(1,Nad(l,d,n,r),n) if g=g2.

The types of the arguments of L are:

el:atom×level×order, l:prog, d:letter-~levelxorder,

g: (atom × level x order) ×progx (letter-9 level x order) x level×order

-9 (letter -9 level ×order), n:level, r:order, and the type of

the output of L is: (letter-9 level×order)x (list level×order).

As we did for H, we then derive the equations for L, where

L(b:c,...,gl,_.) stands for <.., Comp(._,update(b,update(c,..)),...)>:

L (el, nil, d,g, n, r) =<d, nil>

L(el,e::l,d,g,n,r)=if e=use(x) %h@n

<u, (~_~ g=gl ~h~n update (el,u) (x) el~e u(x)) : : v>

<u,v> = L(el,l,d,g,n,r)

elseif ~decl(e) then <update(<e,n,r>,u),v>

where <u,v>= if g=gl ~beD L(el:<e,n,r>,l,d,gl,n,r+l)

else L (<e, n, r>, i, dr gl, n, r+l)

else <u, (if g=gl then ~2 L(el,e,update(el,u),g2,n+l,0)

else ~2 L(el,e,u,g2,n+l,0)) :: v>

whet@ <u,v> = L(el, l,d,g,n,r)

Thus the required list Ii is equal to K2 L(0, pl,emptyfunction,g2,0t0),

which is equal to Comp(pl,emptyfunction, 0) .

As usual, for 0 we have: update (0, d) =d.

191

The derivation process is now completed and we derived a one-pass

algorithm as required.

Let us clarify the notion of one-pass in our context. It is a

notion relative to a particular argument of the function being

defined. In our case it is the second argument of L, which is the

given list of atoms to be "compiled". We say that L is one-pass

because for each branch of its conditional definition, the recursive

calls of L have as arguments disjoint substructures of the relevant

argument. Indeed, L(...,e::l,...) is defined in terms of L(.... e,..) and

L(...,I,_.) only.

One could doubt whether it is actually convenient to use one-pass

algorithms at the expenses of having functions with higher order

parameters. For that respect let us remark that: i) the initial

versions of our programs may already have higher order parameters

(like had, in our case) and ii) the higher order generalization may

result in the use of a low order parameter only (g = 1 or 2, in our

case).

For our derivation computer experiments showed that for progs of

length 40 or more, the one-pass algorithm is indeed faster than the

initial multi-pass version. (Obviously, those performances depend

also on how fast parameters are passed among recursive calls in the

available machine.)

The transformation steps we have shown, are quite tedious to be

made by hand. A transformation system like the one described in

[BaP77, Fea79] can be of great help.

A final remark concerns the readability of the derived versions.

Indeed, it is difficult to understand the definition of the function

L. That fact should not be regarded as a drawback of the

transformation method. One only need to understand the initial

program versions. The application of the basic rules and strategies

will guarantee that correctness is preserved and performances are

improved.

An alternative solution to our compilation problem is presented in

[Swi85]. Also in that case higher order functions are used, and the

solution is found by applying a method based on attribute grammars

evaluation.

192

4. A TREE TRANSFORMATION PROBLEM

Let us consider a second example of application of the higher

order generalization strategy. It is taken from a problem described

in [Bir84]. We are asked to replace the value of all leaves in a

given tree by their minimal value. For instance:

3 4 3 3

The obvious solution of the problem requires two traversals of the

tree: the first one for computing the minimal leaf value and the

second one for performing the replacement. We get the program:

data tree(num) = = niltree ++ tip(num) ++ tree(num)Atree(num)

dec transform: tree(hum) -+ tree(num)

--- transform(t) = replace(t,minv(t))

d@¢ minv: tree(hum) -~ num

--- minv(niltree) = +~

--- minv(tip(n)) = n

--- minv(tlAt2) = min(minv(tl),minv(t2))

dec replace: tree(num) x num -} tree(num)

replace(niltree,m) = niltree

--- replace(tip(n),m) = tip(m)

--- replace(tlAt2,m) = replace(tl,m) A replace(t2,m)

A way of avoiding a second traversal of the given tree is to

remember its structure when computing the minimum leaf value. If one

does so, a second visit for replacing the leaf values is not

necessary. Remembering the tree structure and finding the minimum

leaf can be done at the same time by defining a higher order function

and using the tupling strategy as follows.

dec struct min: tree(num) -~ ((num -9 tree(num)) x num)

--- struct_min(niltree)=<Ix.niltree,+~>

struct_min(tip(n))=<~x.tip(x),n>

--- struct_min(tlAt2)=<~x.strlAstr2, min(ml,m2)>

wh@r@ <~x.strl,ml>=struct_min(tl), <~x.str2,m2>=struct_min(t2) .

Thus, transform(t) becomes: al(a2) where <al,a2>=struct_min(t) .

One may object that in the above program the given tree has been

193

copied when constructing the first component of the output of

struct_min, and therefore the program is not space efficient.

However, since struct min visits the tree only once, one may

discard the leaves of the tree after their visit. A destructiveness

analysis can be helpful in this case [Pet84c] . Thus, given a tree t,

for constructing the first component of struct_min(t) we can reuse

the memory cells which were needed for storing t.

The computation evoked by struct min(t) when producing the output

<al,a2> and the subsequent application of al to a2 can be seen as

follows: first, the given tree is visited to find the minimum leaf

and pointers to the leaf positions are recorded, and then, the

pointed positions are filled with the value which has been found.

Thus, the generalization strategy can be applied also for avoiding

the use of pointers. They will be represented by parameters of

suitable functions, and then function applications, that is, passing

actual parameters, realize the required manipulations.

The higher order generalization strategy is used in this example

for generalizing a data structure into a function which manipulates

it (not for allowing a folding step, as in the previous compilation

problem). From a tree t we indeed obtained the tree transformer:

Kl(struct_min(t)) .

The use of a higher order object, like the first component of

struct_min, allows us to achieve in our tree transformation problem

the same performances obtained by using circular programs and lazy

evaluation in [Bit84].

5. CONCLUSIONS

We defined a higher order generalization strategy, and we

illustrated through examples its important role in the derivation of

efficient programs by transformations. That role has been already

recognized in the area of automated deduction and theorem proving for

the invention of suitable lemmas [Aub76, BoM75, Cha76].

We want to stress that the mismatch information for a forced folding

was crucial for suggesting our generalization steps. Related work has

been done by [AbV84, HUH82, MAW79] for proving properties of

recursively defined functions and various approaches to program

synthesis.

A point for further investigation is the generalization technique

194

for obtaining data structure transformers, which we presented in the

previous Section. It can be viewed as realizing communications among

agents [Pet84a].

A final point to be underlined is the synergism between the

generalization strategy and the tupling strategy. Neither of them, if

used separately, could have been powerful enough to solve with the

required efficiency the transformation problems we considered. Their

joint use was essential for our derivations.

6. ACKNOWLEDGEMENTS

Many thanks to the members of the IFIP WG.2.1 for their

stimulating conversations. R. Bird, R. Paige, D. Swierstra, and the

referees madevaluable suggestions.

This work was supported by the IASI Institute of the National

Research Council in Rome (Italy) and the Institute of Mathematics of

Warsaw University (Poland).

7. REFERENCES

[AbV84] Abdali, K.S. and Vytopil, J.: "Generalization Heuristics for
Theorems Related to Recursively Defined Functions" Report Buro
Voor Systeemontwikkeling. Postbus 8348, Utrecht, Netherlands
(1984).

[Aub76] Aubin, R.: "Mechanizing Structural Induction" Ph.D. Thesis,

Dept. of Artificial Intelligence, University of Edinburgh (1976).
[BaP77] Bauer, F.L., Partsch, H., Pepper, P. and W~ssner, H.: "Notes

on the Project CIP: Outline of a Transformation System"
TUM-INFO-7729 Tech. Report Institut for Informatik, der
Technischen Universit~t M~nchen, Germany (1977).

[Bir84] Bird, R.S.: "Using Circular Programs to Eliminate Multiple
Traversal of Data" Acta Informatica 21 (1984), 239-250.

[BMS80] Burstall, R.M., MacQueen, D.B., and Sannella, D.T.: "HOPE: An
Experimental Applicative Language" Proc. LISP Conference 1980
Stanford USA (1980), 136-143.

[BoM75] Boyer, R.S. and Moore, J.S.: "Proving Theorems About LISP
Functions" J.A.C.M. 22, 1 (1975), 129-144.

[BUD77] Burstall, R.M. and Darligton, J.: "A Transformation System
for Developing Recursive Programs" J.A.C.M. VOI.24, 1 (1977)
44-67.

[Cha76] Chatelin, P.: "Program Manipulation: to Duplicate is not to
Complicate" Report Universit@ de Grenoble, CNRS Laboratoire
d'Informatique (1976).

[Dar81] Darligton, J.: "An Experimental Program Transformation and
Synthesis System" Artificial Intelligence 16, (1981), 1-46.

[Fea79] Feather, M.S. : "A System for Developing Programs by
Transformations" Ph.D. Thesis, Dept. of Artificial Intelligence,
University of Edinburgh (1979).

[Fea86] Feather, M.S.: "A Survey and Classification of Some Program
Transformation Techniques" Proc. TC2 IFIP Working Conference on
Program Specification and Transformation. Bad T61z, Germany (ed.

195

L. Meertens) (1986).
[HUH82] Huet, G. and Hullot, J.M.: "Proofs by Induction in Equational

Theories with Constructors" JCSS 25, 2 (1982), 239-266.

[MAW79] Manna, Z. and Waldinger, R.: "Synthesis: Dreams --~Programs"

IEEE Transactions of Software Engineering SE-5, 4 (1979), 294-328.
[Pet84a] Pettorossi, A.: "Methodologies for Transformation and

Memoing in Applicative Languages" Ph.D. Thesis, Computer Science
Department, Edinburgh University, Edinburgh (Scotland) (1984).

[Pet84b] Pettorossi, A.: "A Powerful Strategy for Deriving Efficient
Programs by Transformation" ACM Symposium on Lisp and Functional
Programming, Austin, Texas (1984), 273-281.

[Pet84c] Pettorossi, A.: "Constructing Recursive Programs which are
Space Efficient" in: Computer Program Synthesis Methodologies
(Biermann, Guiho, and Kodratoff, eds.) Macmillan Publ. Co., New
York (1984), 289-303.

[Swi85] Swierstra, D.: "Communication 513 SAU-15". IFIP WG.2.1,
Suasalito, California, USA (1985).

[Wad85] Wadler, P.L.: "Listlessness is Better than Laziness" Ph. D.
Thesis, Computer Science Department, CMU-CS-85-171, Carnegie
Mellon University, Pittsburgh, USA (1985)

8. APPENDIX

The following function OK tests whether or not a given prog has

exactly one declaration occurrence for each letter.

dec OK: prog -+ bool

--- OK(p) = 1@% <b,v> = activedecl(p,~) in

~ b ~h@n OKdecl(p,v) else false

OK calls the function OKdecl(p,v) tests whether or not in a given

context there is at least one declaration for each use of a letter.

OKdecl takes as a second argument a set v of letters, which includes:

i) the definitions occurring in the blocks enclosing the prog p, and

ii) the definitions which are active at the top level of p (not in

subblocks, i.e. sublists of p). It is defined as follows:

dec OKdecl: prog × set letter -9 bool

--- OKdecl(nil,v) =true

--- OKdecl(e::l,v)=if e=use(x) ~h~n (decl(x)Ev and OKdecl(l,v))

@l~@if isdecl(e) ~h@n OKdecl(l,v)

@i~@ ~@% <b,u> = activedecl(e,#) in

i__[f b th@n (OKdeel(e, u Uv) and OKdecl(l,v))

else false

OK and OKdecl call the following function activedecl which given a

prog p, tests the existence of at most one declaration for each

letter. In the case of a positive answer, that is the first component

of the answer is true, the second component gives us the active

196

declarations for the top level of p. (The second argument for

activedecl is used only for collecting the declarations encountered

so far while visiting p.)

d~¢ activedecl: prog x set letter -~ bool × set letter

--- activedecl(nil,v)=<true,v>

activedecl(e::l,v)=if isdecl(e) then

(if eEv then <false,~> else activedecl(l, v u {e}))

else activedecl(l,v)

The function OK requires multiple visits of the prog p. We leave

to the reader the task of deriving a one-pass algorithm as we did in

Sections 2. and 3. That derivation requires again the application of

the strategies we have described in the paper.

It will not be difficult (although a bit cumbersome to do by hand)

to incorporate also that program into the compilation algorithm of

Section 3.

