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ABSTRACT 

We define and study a particular kind of generalization strategy 

for deriving efficient functional programs. It is called higher order 

generalization because it consists in generalizing variables or 

expressions into functions. That strategy allows us to derive 

efficient one-pass algorithms with low timexspace complexity. 

Through some examples we show the power of our generalization 

strategy and its use together with the tupling strategy. Applying 

those strategies one may avoid the introduction of circular programs 

[Bir84]. 

I. INTRODUCTION 

A major problem in the derivation of programs by transformation is 

the lack of a general theory which guarantees the improvements of 

program performances when applying the basic transformation rules. 

In some cases, however, it is possible to realize those 

improvements by using powerful strategies. Some of them have been 

defined and studied in the past, as for instance, the composition 

strategy, the tupling strategy, and the generalization strategy. For 

a recent survey in this area the reader may refer to [Fea86] ~ 

We will define a new kind of generalization strategy and we will 

study its properties through a couple of examples. That strategy, 

together with the composition and the tupling strategy, avoids the 

multiple traversal of data structures and it saves time and space 

resources. Related work can be found in [Bit84]. 

We consider recursive equation programs, like the ones presented 

in the classical work by Burstall and Darlington [BUD77]. We will not 
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give their formal definition here, but we hope that the reader will 

have no difficulties in understanding them. The actual language we 

use is a variant of HOPE [BMSS0]. 

Obviously, the generalization strategy we propose is independent 

from the language chosen, and it can also be applied when one derives 

programs using different formalisms. 

The basic transformation rules for recursive equation programs 

include: 

- the unfolding rule. It is the replacement of a left hand side of 

a recursion equation by its corresponding rigth hand side. 

For instance, given the equations: 

f (x) =El [g (a) ] , g (x) =E2 [x], 

where E[e] denotes the expression E with the occurrence of the 

subexpression e, the unfolding of g(a) in E1 produces the following 

new program version: 

f (x) =El [E2 [a/x] ], g(x)=E2 [x] . 

- the folding rule. It is the inverse of the folding rule by 

interchanging the l.h.s, and the r.h.s. 

- the definition rule. It is the introduction of a new recursive 

equation whose r.h.s, is not an instance of already existing 

equations. 

Those basic rules have been often described in the literature (see, 

for instance, [Fea86]). We will not go into the details here. Let us 

only remark that we need to use some strategies, because a naive 

sequence of applications of the unfolding and folding rules may take 

us back to the initial program version. 

In what follows we will apply the higher order generalization 

strategy for solving two problems: the first one is a compilation 

problem due to Swierstra [Swi85] and the second one is a tree 

transformation problem due to Bird [Bit84] . We think that the 

programs we will derive have good merits with respect to efficiency 

and clarity of derivation. (Their correctness will be given us for 

free, as usual in the transformation approach). 

2. HIGHER ORDER GENERALIZATION FOR A COMPILATION PROBLEM 

We consider a compilation problem for transforming lists of 

letters denoting declarations and uses of identifiers into new lists, 

where for each use of an identifier we indicate the corresponding 

declaration. 
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In order to formally specify our problem, let us introduce the 

following data structures atom and prog (short for program): 

data atom == decl(letter) ++ use(letter) 

data prog == list atom 

where letter is a given set, which we may consider to be {a,b,..,z}. 

decl, use, and list are type constructors, list atom denotes the type 

of nested lists of atoms. 

We also assume that together with a data definition we are given 

the corresponding discriminators. For instance, in our case we are 

given "isuse" and "isdecl". isuse satisfies the following axiom: 

isuse(y)=true iff y=use(x) for any xeletter, and analogously for 

isdecl. 

For simplicity, we also adopt the convention of writing x instead 

of use(x) and X instead of decl(x) . we hope that no confusion will 

arise between the letter x and the atom use(x), both written as x. 

Thus, the set of atoms is {A,a,B,b,...,Z,z}. 

Here are two examples of lists of type prog: 

[A a c [B b a] C a] and [[A b] a B]. Another one is the list: 

pl=[A a b [a c A D b C] B b], which we will use as a running example. 

We assume that the declarations in the lists of type prog obey the 

familiar block discipline, where blocks are identified by square 

brackets. For instance, if we have the following prog: 

r l 
[ . , .  A . .  [ . . .  a ..,  A . . . b  ] ...  B . , .  a ...  ] 

l J l J 

with no other occurrences of A's and B's, the declaration-use 

correspondences are denoted by the arcs we have drawn. 

Notice that for any letter x its declaration X may occur after 

(that is, to the rigth of) its first use x. Indeed in pl the 

declaration C occurs after c. 

We also assume that in any given prog, each use of a letter has a 

unique corresponding declaration, which occurs in its block or in one 

of its enclosing blocks. 

In the Appendix we provide the function OK:prog -~ bool, which 

checks that condition. 

For instance, OK([A a a [B b]])=true, OK([A B [b a]])=true, and 

OK([A a a b [a A] B])=true, while OK([A A a])=false (because there 

are two A declarations within the same block) and OK([a B [b A]]) = 

false (because there is no an "active" declaration A for a) . 
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We would like to compile a given nested list of atoms into a 

nested list of pairs of numbers, where each pair corresponds to a 

use-occurrence of an atom in the given list. The first number of each 

pair gives us the level of nesting of the block where the 

corresponding declaration occurs, while the second number gives us 

the sequence order of that declaration within the block where it 

occurs. For instance, for pl we want to obtain the list: 

ll = [ (0,0) (0, Z) [ (1,0) (1,2) (0,1) ] (0,1) ], 

which encodes the use-declaration correspondence shown by the 

following arcs: 

0,i 

I 1,2 I0,i 
I I II I 

pl = [A a b [ a c A D b C ] B b] 
u- I I l I 
0,0 1,0 0,I 

The pair (0,0) which is for the first a from the left, tells us 

that the corresponding declaration A is at level of nesting 0 and it 

is the first declaration (from the left) in that level. Analogously, 

the pair (1,2) for c tells us that the corresponding declaration C is 

at level of nesting 1 and it is the third declaration in it (after A 

and D). 

For obtaining the list ii from pl a possible first step is to 

derive the "decorated list" dpl=[A00 a b [a c AI0 DII b C12] B01 b], 

where we have attached to each declaration the corresponding 

<level-of-nesting, sequence-order> pair. (For simplicity, we wrote 

Xnm instead of X<n,m>). 

Having dpl, it will be easier to compute the list ii, because we 

have available for each declaration the relevant pair of numbers. 

Unfortunately, we have to pay that advantage, because we are forced 

to traverse the list dpl, after the first traversal of the given list 

pl (which was necessary to derive dpl). 

However, the application of the tupling strategy and the higher 

order generalization strategy will avoid that drawback, and it will 

allow us to obtain an efficient one-pass algorithm. The main 

contribution of this paper consists exactly in this point. 

We also show the power of those strategies when we use them 

together, because we obtain the same efficiency results which are 

possible at the expenses of extending our language by allowing 

circular programs [Bit84] . 
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Therefore, for representing the list dpl we need the following 

data structures r where level and order are natural numbers: 

data decoratom == decl(letter) xlevel xorder ++ use(letter) 

d~ta decorprog == list decoratom 

with the discriminators: isddecl and isuse. 

The following function decor produces the decorprog dpl from pl: 

dec decor: prog xlevel xorder -+ decorprog 

--- decor(nil,n,r)=nil 

--- decor(e::l,n,r)=if isuse(e) %h~n e::decor(l,n,r) 

~iseif isdecl(e) ~hen <e,n,r>::decor(l,n,r+l) 

~=!_~_~ decor(e,n+l,0) ::decor(l,n,r) 

We have: dpl=decor(pl,0,0). 

Now we present the function had which computes the new active 

declarations (represented as functions from letters to <level,order> 

pairs) at the top level of a block in a given decorprog. 

had works by taking as a second argument the active declarations in 

the enclosing blocks. As an example, consider the following decorprog 

dpl: 

dpl dp2 dp3 dp4 

[ ... [ ~~- [ ] --- [ 1~~~1 ...] 

nad(dp2,d) computes the declarations valid in the sections with 

tildes, for a given d representing the declarations valid in the 

sections with dots. The declarations valid in dp3 and dp4 can be 

computed by a recursive call of had. 

dec nad: decorprog x (letter --} levelxorder) 

-+ (letter-+level x order) 

--- nad (nil, d) =d 

--- nad(e: :l,d)=if isuse(e) %h@n nad(l,d) 

elseif isddecl(e) ~hen update(e,nad(l,d)) 

~i$~ nad (i, d) 

Given a function f, update(<x,n,r>,f) produces the new function g 

s.t. g(x)=<n,r> and g(y)=f(y) for y~x. 

The active declarations at the top level of a given dpl are 

computed by nad(dpl,emptyfunction), because there are no enclosing 

blocks. 

Given dpl and the active declarations at the top level of dpl, the 
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following function comp (short for compile) computes the desired list 

ii. 

d@¢ comp: decorprog x (letter -9 level x order) -9 list level x order 

--- comp (nil,d) =nil 

comp (e : : l, d) =if e=use(x) then d(x) ::comp(l,d) 

elseif isddeel(e) then comp(1,d) 

else comp(e,nad(e,d)) ::comp(l,d) 

Therefore: 

ll=comp(dpl,nad(dpl,emptyfunction)) where dpl=decor(pl,0,0), because 

we have first to decorate the list pl, and then we have to compute 

the new active declarations in dpl for an empty enclosing block. 

Finally we have to compile dpl. 

The compiling program we have constructed makes multiple 

traversals of the data structures involved. It seems very difficult 

to produce in this case a one-pass algorithm, because the declaration 

of the identifiers may occur after their use. However, we will show 

that the higher order generalization strategy, together with the 

tupling strategy, allows us to solve that problem. 

We do not present here a formal characterization of the power of 

those strategies and their synergism, but we hope that the reader may 

convince himself that the proposed strategies do work in a large 

number of cases. 

3. THE TRANSFORMATION PROCESS TOWARDS THE ONE-PASS COMPILATION 

A first step towards the derivation of the one pass algorithm we 

have specified in the previous Section is the application of the 

composition strategy [Pet84a] for the initial expression 

comp(dpl,nad(dpl,emptyfunction)), because both comp and had visit 

the same data structure, and the latter is an argument of the former. 

That is a standard case for applying that strategy, which usually 

avoids the generation of intermediate data (see also [Wad85]). 

The incorporation into the one-pass algorithm of the function 

decor(pl,0,0) which constructs dpl, will be done later. 

By composition we define the function: 

f(l,d)=comp(l,nad(l,d)) . After a few folding/unfolding steps we get 

the following explicit definition: 

dec f: decorprog x (letter -9 level × order) -+ list level × order 
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--- f (nil, d)=nil 

--- f(e: :l,d)=if e=use(x) then nad(1,d) (x) ::f(l,d) 

elseif isddecl(e) then comp (l, update (e, nad (l, d) ) ) 

else f(e,nad(l,d)) ::f(l,d) 

From the above definition of f we notice that: 

i) the functions nad(l,d) and f(l,d) both visit the same data 

structure i, and 

ii) it is impossible to fold into a recursive call of f the 

expression comp(l,update(e,nad(l,d))), because it does not match the 

expression comp(l,nad(l,d)) . 

As indicated in [Pet84b] the fact i) suggests us to apply the 

tupling strategy, while for point ii) we need to use the higher order 

generalization strategy, which consists in generalizing an expression 

into a function. In our case it works as follows. 

We define the function compile(l,g(el,l,d)) defined as: 

comp(l,update(el,nad(l,d))) if g=~xyz.update(x, nad(y,z)), and 

comp(l,nad(l,d)) if g=lxyz.nad(y,z). 

Now the folding step required in point ii) is possible, and we can 

use a recursive call of compile with the suitable higher order 

argument g. The idea of the higher order generalization is related to 

the one in [DarSl], where the author uses the mismatch information 

deriving from a forced folding, to find a suitable generalization 

step. 

We define the function: 

H(el,l,d,g)=<nad(l,d), compile(l,g(el,l,d))>. 

The functionality of H can be obtained from those of nad and 

compile. The latter one is: 

(decorprog× (atomxlevelxorder)xdecorprogx (letter-~(levelxorder) 

-+ (letter-+(levelxorder))) -~ list level xorder. 

After a few folding/unfolding steps we get the recursive equations 

for the function H, where we used the following notations: 

H(el:e2,l,d, gl) = <nad(l,d), comp(l,update(el,update(e2,nad(l,d))))>, 

gl=Ixyz.update(x, nad(y,z)), g2=~xyz.nad(y,z), and 

~i<al,...,an> = ai for i=ir._,n. 

H (el, nil, d, g) =<d, nil> 

H(el,e::l,d,g)=if e=use(x) then 

<u, (if g=gl then update(el,u)(x) else u(x)) :: v> 

where <u,v> = H (el, l, d, g) 

elseif isddecl(e) then <update (e,u) ,v> 
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where <u,v> = if g=gl~hen H(el:e,l,d, gl) 

else H(e,l,d,gl) 

else <u, (if g=gl then ~2 H(el,e,update(el,u),g2) 

else ~2 H(el,e,u,g2)) :: v> 

where <u,v> = H(el,l,d,g) 

Therefore, for producing the list ii from dpl we compute: 

Z2 H(0, dpl,emptyfunction,g2) = comp(dpl,nad(dpl,emptyfunction)) 

definition), where 0 satisfies this equality: update(0, d)=d. 

(by 

Notice that during the computation, the function H visits its 

second argument e::i only once. Indeed, H(...,e::l,...) is computed in 

terms of H(_.,e,_.) and H(..,I,...). 

Therefore, by using the tupling strategy and the higher order 

generalization strategy we avoided the multiple traversals of e::l. 

On the contrary, they would have been necessary if we used the 

functions had and comp. We will come back to this point later. 

Testing the equality of functions when computing H is easy, 

because it amounts to check syntactical identities only. (Indeed one 

could simply code gl and g2 using the numbers 1 and 2.) 

A final step remains to be done. We need to avoid the visit of the 

given prog pl for producing the corresponding decorated prog dpl. 

In order to do so, we have to redo the steps we have presented 

above for the derivation of H from comp(l,nad(l,d))o 

We will replay that derivation using as a starting point suitable 

variants of the functions nad and comp. We call those variants Nad 

and Comp. They are produced by applying again the composition 

strategy. Their inputs are prog's, not decorprog's. By that process 

we realize the promised incorporation of the function decor into nad 

and comp. 

We have: Nad(p,d,n,r)=nad(decor(p,n,r),d) . Its definition is: 

dec Nad: prog x (letter -) level x order) x level x order 

-~ (letter -~ level x order) 

--- Nad(nil,d,n,r)=d 

--- Nad(e::l,d,n,r)=if isuse(e) then Nad(l,d,n,r) 

elseif isddecl(e) then update(<e,n,r>,Nad(l,d,n,r+l)) 

else Nad(l,d,n,r) • 

The call nad(decor(pl,0,0),emptyfunction) is replaced by: 

Nad(pl,emptyfunction, 0,0). 

We also have: Comp(p,d,n)=comp(decor(p,n,0),d) . Its definition is: 
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d@¢ Comp: prog × (letter -9 level × order) × level 

-9 list level × order 

--- Comp (nil, d, n) =nil 

--- Comp(e::l,d,n)=if e=use(x) then d(x) ::Comp(l,d,n) 

elseif [&decl(e) then Comp(l,d,n) 

else Comp(e,Nad(e,d,n+l,0),n+l) ::Comp(l,d,n) 

Notice that, in analogy to Nad, we could have defined the function 

Comp(p,d,n,r)=comp(decor(p,n,r),d), but a simple analysis of the 

resulting equations would have shown that the argument r is not 

necessary. 

The call comp(decor(pl,0,0),emptyfunetion) is replaced by: 

Comp (pl, emptyfunction, 0) . 

NOW, as for nad and comp, the tupling and generalization strategies 

suggest us the definition of the following function L (analogous to H) : 

L(el,l,d,g,n,r)=<Nad(l,d,n,r), Compile (l, g (el, l,d,n,r),n)>, where: 

Compile(l,g(el,l,d,n,r),n)=Comp(l,update(el,Nad(l,d,n,r)) in) if g=gl, 

=Comp(1,Nad(l,d,n,r),n) if g=g2. 

The types of the arguments of L are: 

el:atom×level×order, l:prog, d:letter-~levelxorder, 

g: (atom × level x order) ×progx (letter-9 level x order) x level×order 

-9 (letter -9 level ×order), n:level, r:order, and the type of 

the output of L is: (letter-9 level×order)x (list level×order). 

As we did for H, we then derive the equations for L, where 

L(b:c,...,gl,_.) stands for <.., Comp(._,update(b,update(c,..)),...)>: 

L (el, nil, d,g, n, r) =<d, nil> 

L(el,e::l,d,g,n,r)=if e=use(x) %h@n 

<u, (~_~ g=gl ~h~n update (el,u) (x) el~e u(x)) : : v> 

<u,v> = L(el,l,d,g,n,r) 

elseif ~decl(e) then <update(<e,n,r>,u),v> 

where <u,v>= if g=gl ~beD L(el:<e,n,r>,l,d,gl,n,r+l) 

else L (<e, n, r>, i, dr gl, n, r+l) 

else <u, (if g=gl then ~2 L(el,e,update(el,u),g2,n+l,0) 

else ~2 L(el,e,u,g2,n+l,0)) :: v> 

whet@ <u,v> = L(el, l,d,g,n,r) 

Thus the required list Ii is equal to K2 L(0, pl,emptyfunction,g2,0t0), 

which is equal to Comp(pl,emptyfunction, 0) . 

As usual, for 0 we have: update (0, d) =d. 
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The derivation process is now completed and we derived a one-pass 

algorithm as required. 

Let us clarify the notion of one-pass in our context. It is a 

notion relative to a particular argument of the function being 

defined. In our case it is the second argument of L, which is the 

given list of atoms to be "compiled". We say that L is one-pass 

because for each branch of its conditional definition, the recursive 

calls of L have as arguments disjoint substructures of the relevant 

argument. Indeed, L(...,e::l,...) is defined in terms of L( .... e,..) and 

L(...,I,_.) only. 

One could doubt whether it is actually convenient to use one-pass 

algorithms at the expenses of having functions with higher order 

parameters. For that respect let us remark that: i) the initial 

versions of our programs may already have higher order parameters 

(like had, in our case) and ii) the higher order generalization may 

result in the use of a low order parameter only (g = 1 or 2, in our 

case). 

For our derivation computer experiments showed that for progs of 

length 40 or more, the one-pass algorithm is indeed faster than the 

initial multi-pass version. (Obviously, those performances depend 

also on how fast parameters are passed among recursive calls in the 

available machine.) 

The transformation steps we have shown, are quite tedious to be 

made by hand. A transformation system like the one described in 

[BaP77, Fea79] can be of great help. 

A final remark concerns the readability of the derived versions. 

Indeed, it is difficult to understand the definition of the function 

L. That fact should not be regarded as a drawback of the 

transformation method. One only need to understand the initial 

program versions. The application of the basic rules and strategies 

will guarantee that correctness is preserved and performances are 

improved. 

An alternative solution to our compilation problem is presented in 

[Swi85]. Also in that case higher order functions are used, and the 

solution is found by applying a method based on attribute grammars 

evaluation. 
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4. A TREE TRANSFORMATION PROBLEM 

Let us consider a second example of application of the higher 

order generalization strategy. It is taken from a problem described 

in [Bir84]. We are asked to replace the value of all leaves in a 

given tree by their minimal value. For instance: 

3 4 3 3 

The obvious solution of the problem requires two traversals of the 

tree: the first one for computing the minimal leaf value and the 

second one for performing the replacement. We get the program: 

data tree(num) = =  niltree ++ tip(num) ++ tree(num)Atree(num) 

dec transform: tree(hum) -+ tree(num) 

--- transform(t) = replace(t,minv(t)) 

d@¢ minv: tree(hum) -~ num 

--- minv(niltree) = +~ 

--- minv(tip(n)) = n 

--- minv(tlAt2) = min(minv(tl),minv(t2)) 

dec replace: tree(num) x num -} tree(num) 

replace(niltree,m) = niltree 

--- replace(tip(n),m) = tip(m) 

--- replace(tlAt2,m) = replace(tl,m) A replace(t2,m) 

A way of avoiding a second traversal of the given tree is to 

remember its structure when computing the minimum leaf value. If one 

does so, a second visit for replacing the leaf values is not 

necessary. Remembering the tree structure and finding the minimum 

leaf can be done at the same time by defining a higher order function 

and using the tupling strategy as follows. 

dec struct min: tree(num) -~ ((num -9 tree(num)) x num) 

--- struct_min(niltree)=<Ix.niltree,+~> 

struct_min(tip(n))=<~x.tip(x),n> 

--- struct_min(tlAt2)=<~x.strlAstr2, min(ml,m2)> 

wh@r@ <~x.strl,ml>=struct_min(tl), <~x.str2,m2>=struct_min(t2) . 

Thus, transform(t) becomes: al(a2) where <al,a2>=struct_min(t) . 

One may object that in the above program the given tree has been 
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copied when constructing the first component of the output of 

struct_min, and therefore the program is not space efficient. 

However, since struct min visits the tree only once, one may 

discard the leaves of the tree after their visit. A destructiveness 

analysis can be helpful in this case [Pet84c] . Thus, given a tree t, 

for constructing the first component of struct_min(t) we can reuse 

the memory cells which were needed for storing t. 

The computation evoked by struct min(t) when producing the output 

<al,a2> and the subsequent application of al to a2 can be seen as 

follows: first, the given tree is visited to find the minimum leaf 

and pointers to the leaf positions are recorded, and then, the 

pointed positions are filled with the value which has been found. 

Thus, the generalization strategy can be applied also for avoiding 

the use of pointers. They will be represented by parameters of 

suitable functions, and then function applications, that is, passing 

actual parameters, realize the required manipulations. 

The higher order generalization strategy is used in this example 

for generalizing a data structure into a function which manipulates 

it (not for allowing a folding step, as in the previous compilation 

problem). From a tree t we indeed obtained the tree transformer: 

Kl(struct_min(t)) . 

The use of a higher order object, like the first component of 

struct_min, allows us to achieve in our tree transformation problem 

the same performances obtained by using circular programs and lazy 

evaluation in [Bit84]. 

5. CONCLUSIONS 

We defined a higher order generalization strategy, and we 

illustrated through examples its important role in the derivation of 

efficient programs by transformations. That role has been already 

recognized in the area of automated deduction and theorem proving for 

the invention of suitable lemmas [Aub76, BoM75, Cha76]. 

We want to stress that the mismatch information for a forced folding 

was crucial for suggesting our generalization steps. Related work has 

been done by [AbV84, HUH82, MAW79] for proving properties of 

recursively defined functions and various approaches to program 

synthesis. 

A point for further investigation is the generalization technique 
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for obtaining data structure transformers, which we presented in the 

previous Section. It can be viewed as realizing communications among 

agents [Pet84a]. 

A final point to be underlined is the synergism between the 

generalization strategy and the tupling strategy. Neither of them, if 

used separately, could have been powerful enough to solve with the 

required efficiency the transformation problems we considered. Their 

joint use was essential for our derivations. 
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8. APPENDIX 

The following function OK tests whether or not a given prog has 

exactly one declaration occurrence for each letter. 

dec OK: prog -+ bool 

--- OK(p) = 1@% <b,v> = activedecl(p,~) in 

~ b ~h@n OKdecl(p,v) else false 

OK calls the function OKdecl(p,v) tests whether or not in a given 

context there is at least one declaration for each use of a letter. 

OKdecl takes as a second argument a set v of letters, which includes: 

i) the definitions occurring in the blocks enclosing the prog p, and 

ii) the definitions which are active at the top level of p (not in 

subblocks, i.e. sublists of p). It is defined as follows: 

dec OKdecl: prog × set letter -9 bool 

--- OKdecl(nil,v) =true 

--- OKdecl(e::l,v)=if e=use(x) ~h~n (decl(x)Ev and OKdecl(l,v)) 

@l~@if isdecl(e) ~h@n OKdecl(l,v) 

@i~@ ~@% <b,u> = activedecl(e,#) in 

i__[f b th@n (OKdeel(e, u Uv) and OKdecl(l,v)) 

else false 

OK and OKdecl call the following function activedecl which given a 

prog p, tests the existence of at most one declaration for each 

letter. In the case of a positive answer, that is the first component 

of the answer is true, the second component gives us the active 
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declarations for the top level of p. (The second argument for 

activedecl is used only for collecting the declarations encountered 

so far while visiting p.) 

d~¢ activedecl: prog x set letter -~ bool × set letter 

--- activedecl(nil,v)=<true,v> 

activedecl(e::l,v)=if isdecl(e) then 

(if eEv then <false,~> else activedecl(l, v u {e})) 

else activedecl(l,v) 

The function OK requires multiple visits of the prog p. We leave 

to the reader the task of deriving a one-pass algorithm as we did in 

Sections 2. and 3. That derivation requires again the application of 

the strategies we have described in the paper. 

It will not be difficult (although a bit cumbersome to do by hand) 

to incorporate also that program into the compilation algorithm of 

Section 3. 


