Generating Efficient Code from Strictness Annotations

by

Gary Lindstrom
Lal George
Dowming Yeh

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

ABSTRACT

Normal order functional languages {(NOFLs) offer conceptual simplicity. expressive power, and
attractiveness for parallel execution. However, current implementations of NOFLs on conventional von
Neumann machines are not competitive with those of imperative languages. The central reasons for
this poor performance include the high control overhead (e.g. demand evaluation) and fine object code
granularity (e.g. SKI combinators) used in most NOFL implementations. Strictness analysis gathers
information that helps to overcome these inefficiencies through optimized compilation. We propose
here a rule-based strategy for such compilation, working from a new textual representation for
strictness analyzed source programs. This representation offers readability and ease of manipulation,
while expressing all essential sirictness information, including basic block structure and block
dominance and disjunction relationships. The rules presented here show how to compile this
intermediate form into optimized single processor G-machine code. In addition, this representation
appears to be useful for a number of other execution methods, including interpretation, compilation
into conventional Lisp with “promises”, and mapping into "supercombinators” for parallel
architectures.!

1. NOFLs and Strictness Analysis

1.1. Basic Concepts

Most modem functional languages are based on normal order semantics, where divergence of
a program occurs only if the program’s overall result directly depends on a divergent subexpression.
Customary implementations of NOFLs ensure this property by individually operationalizing the
normal order characteristics of each operator, e.g. through demand evaluation or combinator
reduction.

NOFLs offer many advantages in programmiing practice, including clean treatment of 1/0
streams, overlapped production and consumption of large data objects, and the facile representation
of feedback systems. For example, functional modeling of non-trivial hardware systems seems to
require normal order evaluation in a fundamental sense [15].

Another appeal of NOFLs is their suitability for distributed evaluation on innovative
architectures, e.g. via graph reduction. However, a more pressing need exists for efficient NOFL
implementations on today’s machines, to gain (i) experience with large-scale software engineering in
NOFLs, and (ii) a better understanding of what is familiar about their implementation, as well as
what is exotic. In comparison, one must be impressed with the rapid acceptance that has greeted
Prolog, and acknowledge that this has been greatly aided by the early availability of efficient
implementations on conventional computers [17].

One of the most promising avenues currently under investigation for improving the efficiency
of NOFLs is strictness analysis [14]. Under this technique strict subsets of operators, Le. groups
unconditionally executable together, are determined at compile time. The major strictness analysis
research areas at the moment include:

¢ "non-flat” domains [6, 8, 16], and

« higher-order functions [1, 4, 11L.
While strictness analysis theory appears to be developing apace, its application to actual code

MThis material 18 based upon work supperted by the National Science Foundation under Grant No. DCR-8506000.

141

generation seems to be lagging. An exception is the recent paper [3], which uses a finite domain, We
attempt here to fill this gap, by showing a method which relates well to existing corupiler technology,
and sheds light on the similarities and differences in compiling NOFLs for single- and multi-processor
machines.

1.2, Overview of Method
Our method involves four processing steps, from source program to optimized object code:

1. The source program is converted to function graph form, after exhaustive common sub-
expression (CSE) detection and elimination. CSEs are represented via binary output, single
input fork operators, e.g. (i, v) = fork(v).

2. Strictness analysis is performed on the function graph representation, using abstract
interpretation on a "non-flat” infinite domain of predicted patterns of evaluation.

3. The resuliing annotated graph is converted to textual form, which may be viewed as a
semantically attributed abstract syntax tree.

4. Finally, the textual form is translated to object code, optimized by observance of the block
structure, predicted prior evaluation, and type information conveyed by the semantic
attributes.

1.3. Analysis Method
The first two steps of our method are reported in [12] and [13]. We briefly summarize their
essentials here, by way of background for our new results involving steps 3 and 4 above,

1.3.1. Simplified Domain

It is useful to describe our method first via a simplified abstract interpretation domain, and
then an aqugmented domain. The former represents the effects of a single source of hypothesized
demand, while the latter analyzes the effect of all sources of demand throughout the program, on a
"wholesale" basis.

The primitive elements of our simplified domain are as follows:

s | expresses a total lack of compile time information as fo whether an expression will be
evaluated, and if it is, what datatype wil result.

* d represents a compile-time hypothesis or inference that an expression will be subjected to at
least one level of evaluation, ie. to an atom or tuple {possibly with suspended components).

¢ d® conveys the information that an expression will be subjected to an exhaustive evaluation
attempt, L.e. to an atom, or a finite or infinite composition of tuples of atoms or error
indicators, (but with no a priori expectation of which case, if any, will result).

¢ a generically designates all atomic values, including functions. However, a can also be
interpreted as "demand with atomic resulf required.

+ T indicates conflicting information on the value of an expression, ie. values which are
constrained simultanecusly to be atomic and nonatomic. This indicates a rudimentary type
€rTor,

This primitive element set is closed with binary Cartesian cross products, representing pairs
produced by the cons operator. The resulting set, constitutes the domain D used in[12]. The
operators receiving non-1 annotations as a result of a non_l hypothesis on a particular arc is termed
a strictness subset of the graph.

1.3.2. Augmented Domain

Reference (13] presents an augmentation of this simplified domain, supporting "wholesale”
strictness analysis on an entire function graph. In comparison to the former approach, the analysis
method is extended in two respects:

1. L has been removed from the domain. This reflects the fact that, although prediction of
evaluation causality at compile time is imperfect,

a. code must be compiled for every operator in a function, and

b. when that code is executed, it will certainly be executed under at least simple
demand.

142

Hence the role of 1 in the domain is played by 4.

2. However, the fact that a 4 is placed where a L would previously have appeared on an arc
must not be construed as necessarily extending a strictness subset. Rather, it must indicate
the introduction of a new strictness subset, which might have arisen from an independent
application of the previous method with d asserted instead of | on the arc in question.

To establish such a subset boundary, we augment b to include natural number subscripts on
each denoted level of evaluation. In anticipation of their ultimate use for code generation, we
term such subscripts block numbers.

s Initially, all block numbers are considered to be distinct. As the analysis proceeds,
some block numbers become equivalenced, and their associated striciness subsets are
thereby merged.

» There are also the important notions of block dominance and disjunction, discussed in
section 1.3.3.

In referring to an element of D, it is important at certain times to refer to its outermost block
number; other times, that number is irrelevant. To help make this distinction clear, we adopt the
following notation:

e When the outermost block number of an element of b must be mentioned, that element will be
denoted by a subscripted early alphabet Greek letter, e.g. a,, Bj, Y

e When the outermost block number of an element of b is irrelevant, that element will be denoted
by a non-subscripted late alphabet roman letter, e.g. =, y, =.

Our domain D is as follows:

Dornairu

D = {dil deil 2, Ti} o [ua, V]i i=0,1, ..., and u, vebD
Equality:

o = o (o not a pair) « i=3

fu, vl = [x yl, @ iz=zjAu=xAv=y
Partial Ordering:

di<dej @ i=3

d%; < ay & i=3

di< [x, Y]j & i 3

d°i<[x,y.]j @ i=jadd <xadd <y

[u, vI, = 1%, vyl e i=jaruszAavsy

ais’[‘j @ io= 3

Note that these rules imply:

1. d%, is never a lower bound on any element of b in which an o, appears for some j not
equivalent to i.

2. Similarly, 8%, is never a lower bound on any element of D in which 4, appears for any k.

Failure of either of these properties to hold would indicate a decrease in "commitment” to evaluate
fully the denoted expression within block i, once the eager evaluation indicated by a® has begun.

1.3.3. Dominance and Disjunction

A principal result of the strictness analysis method outlined in [13] is the final equivalence
relation derived among block numbers. However, another important relationship exists among
blocks, reflecting necessary evaluation order.

Definition. A block i dominates a block 3, denoted i £ j, if whenever block j is executed, that
execution is a consequence of block i also being executed.

Dominance among blocks is an important concept that facilitates the generation of efficient
object code. For example, if a CSE is shared between two blocks bearing a dominance relationship,
then evaluation of that CSE can be moved into the dominating block.

Four axioms govern the dominance relationship:
a (Vi, §) i £ § =
(Vm, n) m=iAan=3j=3mdn (equivalence consistency)

b. (Vi) i £ i reflexivity)

143

c. Vi, J,) L L3 A3 4Lk=12k {transitivity)
d (Vi, §) i £33 AF £i=i=3] (antisymmetry).
Lastly, a disjunction relationship among block numbers, denoted i = j v k, s also

determined by our analysis. This too is made consistent over equivalence classes, e.g. ifm = i, n =
j,and p = k, thenm = n v p in the example above. Disjunctions are used to associate blocks that
are related through cond operators. If, for example, a CSE is shared by both arms {then/else parts}
of a conditional, then that expression can be "hoisted” to the surrounding unconditional block.

1.3.4. Sample rules

We denote the strictness annotations of an arc v by x(v). The analysis method proceeds by the
application of strictness rules, expressed in terms of precondition - postcondition pairs. These should
be interpreted as “if the precondition is true, make the postcondition true". Notice from the partial
ordering specified in section 1.3.2 that "making a postcondition true" can mandate block number
equivalencing. For example, suppose v = ident(y), with () = «; and y{y) = By, Then the
posteondition «, < x4} ensures that i is equivalenced to j. This captures the idea that ident is
strict in its argument, and should not constitute a boundary between strictness subsets. Hence
block i is merged with block 5.

Our strictness analysis rules are designed to be monotonic in the sense that:
e If a value in D 1s changed, it is always to a greater value in the partial order.

» If the equivalence relation is changed, it is always through equivalencing two block numbers,
thereby coarsening it.

+ The dominance and disjunction relations are changed only through extension by equivalence
consistency.

Our method terminates when no further annotation changes result from rule application, or
when it is deemed that sufficlent information has been obtained for compilation needs. There is
evidence that uniform termination of our method, and others involving infinite domains, cannot be
guaranteed [10}.

A representative sample of our striciness analysis rules are enumerated in [13]. To suggest
their flavor, we exhibit here the "backward” or "demand flow" rules for a {lazy) tuple constructor and
selector.

Vo = cons (v, Vy), where x{vy) = oy A 3{v)) = Bj A xlvy) = By

Precondition 1:
[u, v]i <oy

Postcondition 1: laziness; § and k not made = i}
u s vyl Av < %Avy)

Precondition 2:
a £ oy

Postcondition 2: feagerness; § and k made = i)
d®; £ x(v) A d% £ x(vy)

vg = car{v;}, where 1{vy) = a;

Precondition:

fnone)
Postcondition:

[og, d1; < x(vy) fnew k, cf. 1)

2. Resulting Graph Structure

Given a function graph with final annotations and their associated equivalence relation, basic
blocks can be formed. We collect together all operators v = OP(...), where (V) = o, for equivalent
i. Four varieties of basic blocks result:

* Function bodies.
* Conditional arms.
e Actual parameters.

¢ Tuple components.

144

The first two syntactic occurrences always cause block boundaries to be formed. The last two may or
may not occur at block boundaries, depending on the strength of the striciness analysis results. To
llustrate, we show an annotated graph taken from [13].

fa, d; @————— Hypothesized
1 2 Demand

Dominance relation

2 L

Disjunction refation 2 = 12 \/ 22

Figure 2-1: Sample annotated function graph.

2.1. Basic Block Structure

The basic blocks that result have several important properties:
1. They nest in a manner consistent with the dominance relation previously obtained.
2. Within a block, the arc annotations convey only datatype information (l.e. atomic vs. pair

value predictions). Hence the subscripts used to accomplish block partitioning may now be
discarded.

3. The arcs crossing block boundaries represent values produced in one block and consumed in
another.

We categorize arcs crossing block boundaries into three kinds, depending on the transition in
block level that each represents (see figure 2-2):

1. Ascending: arguments to nonstrict operators, €.g. cons, cond and apply.

2. Descending: a CSE usage, e.g. [vq, v|) = forklvy), where ylvg} = a;. xlv)} = Bj, and x{vo) = %
withiZjork=4ivj.

3. Lateral: a CSE as above, but with i and j incomparable.

Ascending Descending Lateral
Figure 2-2: Arcs between basic blocks.

145

2.2, Applicative Order Interpretation of Basic Blocks

As remarked in section 2.1, the outcome of our strictness analysis method has two
components: {i) determination of basic blocks, and (il) atom/list type annotation of the result value
denoted by each arc. This information is used in compilation for two distinct purposes: (i}
conversion to applicative order evaluation, and (i) generation of code in which redundant expression
evaluation and type checking operations are omitted. We first consider conversion to applicative
order, and return to redundant operation suppression in section 2.3.

In fact, once isolation of basic blocks in a NOFL program has been accomplished, the program
has in a sense already been converted to applicative order form. This statement will be given sharper
meaning in section 3, where a textual representation for a derived applicative order language is
specified. However, intuitive support for this claim can be offered as follows:

1. We informally define applicative order evaluation on this "blocked” graph representation as
follows:

e Whenever the result of a block is needed at run time, all the operators local to the block
are evaluated in bottom up manner. This can be done by unconditional code executing
in any order that observes data dependencies, i.e. systematically left fo right, in some
other order optimizing register usage, or even in parallel,

* The need for the result of an inner block is a run time event not predictable by the
compile time analysis. As noted in section 2, there are four types of blocks, but only
three can occur as inner blocks. We consider each in turn.

« Conditional arms: The predicate and any CSE’s shared across sibling conditional
arms are evaluated in the surrounding block. Once the predicate is evaluated,
the then or else part is selected as appropriate, and its block is evaluated in
applicative order.

+ Actual parameters: Isolation of an actual parameter into a separate block
indicates compile time uncertainty of the need for its evaluation. In our
applicative order interpretation, we view such a block as evaluating at function
call tirne to a suspension, encapsulating the block’s code and values entering
through descending arcs.

* Tuple components: Tuple components appearing as separate blocks indicate
similar evaluation uncertainty at compile time. These are also compiled into
suspensions, for subsequent evaluation as needed by an appropriate selector.

2. This applicative interpretation has many advantages:

» Evaluation order is outermost-first with respect to block nesting. This, together with
our data dependency based evaluation order within blocks, means that all arcs
descending into an inner block carry values which are necessarily pre-evaluated when
accessed from within.

» Since inner block nesting is static, these values will be located in known registers or
stack locations when compiled code is used. Such values are used directly within
conditional arms; for actual parameters and tuples, the values are speedily accessed at
suspension creation time, as follows.

+ Formal parameter accesses may trigger the evaluation of an actual parameter,
existing as a suspension. These can be represented as function applications,
closed with a full parameter set conveying environment values (i.e. those on
descending arcs entering the corresponding actual parameter block). Hence
normal apply operaior semantics and implementation techniques can be
employed.

* Selector accesses behave similarly.

2.3. Datatyping Information

The datatype information in arc annotations provides reliable datatype information, in the
sense that if an arc is annotated with a datatype indicator t, we may be sure that (i) any value v
conveyed by that arc at run time will be consistent with t, and {if} all usages of v will be consistent
with t, or will check the type more specifically.

This means that many operators, e.g. car, can be applied to values without run time type

148

testing if the value’s type annotation, e.g. [d,, dyly SO indicates. If the type annotation is stmply 4,
then we know the value will be prior evaluated, but {o an unknown type. In this case the car can be
compiled with type testing, but without an internal eval providing for the case when the value is a
suspension.

Even more important are guarantees of prior evaluation as shown by equivalence of
subscripts across type descriptor levels. For example, [d;, 4], indicates that when the pair is
computed in block i, its first component will also be computed, to at least an atom or pair (possibly
of suspensions). The exhaustive demand indicator d®, signalling full applicative order, is particularly
useful since call by value implementation may be used in thoroughly this case.

2.4. Soundness

Formal proof of the soundness of our applicative order interpretation is beyond the scope of
this paper. However, it can be informally argued as follows:

* Will we evaluate ernough? Yes, because all assumptions of prior evaluation are validated by our
method observing outermost-first evaluation order among blocks {observing dominance} and
bottom up evaluation order within blocks {observing data dependencies).

e Will we evaluate too much? No, because the only dangers are infinite data construction
(protected by tuple suspensions), and non data producing runaway recursions (which, in
keeping with [14], can only occur earlier in our method).

3. Textual Representation

We now turn to the new program representation developed since the preparation of our
previous two papers.

3.1, Why a Textual Representation?

The graphical representation of strictness information is conceptually pleasing, but poses
some practical difficulties. These include awkwardness of transmission through input and output
devices, and unfamiliarity as a programming notation. As an alternative, we have developed a textual
notation which captures all the essential information in an annotated graph, while facilitating
subsequent processing, especially code generation.

3.2. Intermediate Representation

We require an intermediate representation that captures both the annotations placed on the
arcs of the graph and the dominance relation between basic blocks. Typically function application
will be represented by the intermediate form (expr (£ R(el)..%N{em)) sr) where £ is the function
being applied to arguments also represented in our intermediate form. R{ei) is the intermediate
representation of the ith argument and sr is the strictness pattern expected from the function
applcation. sr is expressed as a list structure representing values in our simplified domain (see sec.
1.3.1). Often, sr will be stronger than the pattern to which the function in the expression has been
compiled to produce, so appropriate eval and type checking instructions will be compiled on the
result. The dominance relation between blocks derived by our strictness analysis is used to place the
susp form defined in section 3.3.

The individual varieties of expressions are represented as follows.

Constants: Unstructured literals are represented directly, since no strictness information is
required, e.g. 1, 2.34, nil, true, false etc.

CSEs: Common subexpressions are introduced via a let construct. Each newly
introduced variable names a CSE represented in our intermediate form. The let is
placed local to the expr forming the basic block Rfen} local to which the CSE
appears.

(expr (let {({varl R{el))

(varm Si(em)))
R(en))

sr)

Local variables and formal parameters:

147

These are represented as {var x sr sx), where x is the formal parameter or
local variable, and sr is as explained above. sx is the degree to which the formal
parameter x has currently been evaluated. Again, sr may be stronger than sx, if
for example a CSE is used in a conditional context that is stronger than its
unconditional prior evaluation.

User defined function applicatiorn:
When all arguments are present in a function application, the representation is
as explained above, namely (expr (£ R(el) .. R(en)) sr).

Functional argument and higher order functions:
A full treatment regarding functions as first class objects would be beyond the
space limits of this paper. However, our an intermediate representation and
compilation techniques aim at full laziness as defined by Hughes [5], and thus
avoid recomputation as much as possible.

Suspended Results: This is represented as (susp (£ x,..x)} sx); see section 3.3.

3.3. Suspended results

In this paper only suspended results for function applications with all arguments will be
considered, On the G-machine as presented by Johnsson |7], the creation of a graph for a function
application is extremely costly, both in execution time and heap space. We shall see how to optimise
this here. A suspended result for a function application (£ el..en) with all arguments present is
represented through our analysis as a block boundary enclosing this application. All the arcs info the
block represent imports required to build the suspension ie. the descending arcs as per figure 2-2.
We then construct a suspension for a new function g, whose actual parameters are these very
imports. Thus the new function g is defined as g x1..xm = £ el..en, where x1..xm correspond to
the imported variables. Creating a suspension in this case now simply involves building a graph for a
much simpler application. The sr in the susp expression represents the resuit produced when the
suspension is demanded. This information is not utilized in this paper.

3.4. Example

We illustrate our representation on the familiar append function. In figure 3-1, we assume
that the strictness signature of append is {d, d) — 4, indicating that append is a function of two
arguments, both of which will be prior evaluated to either an atom or a {possibly suspended} tuple.
Similarly, the result of append is to be delivered already evaluated as an atom or tuple.

{fun append {x y)
(expr (if {expr (null (var x d d)) a)

(var y d d)

(expr (cons
(expr (hd (var x [L, 1] (L, 11)) 1)
(susp (appendl x y) d))

L, L1
d))

Figure 3-1: Textual representation of annotated append.
Notes:

» The definition for appendl is appendl x y = append (tl x) vy, and its strictness signature
isappendl: {([l,1] d) —» 4.

o With the strictness information available for x, it is not necessary to create a suspension for
the expression (hd x).

4. Compilation Rules

In {13}, hand generated code for figure 2-1 is given to suggest the quality of code that might be
generated using the strictness information our method gathers. Our prototype compiler is being
written in Prolog [2] mainly for the power of pattern matching provided by unification, and the ease of
adding optimisations as new clauses to the compiler. We now formalize the G-code generation as a
set of Prolog clauses.

148

4.1, Major Rule Groups
The major clauses are defined below,

£(AST, G_CODE) Cenerates G_CODE for a function definition from the intermediate form, AsT. The
clause assumes that actual parameters will have been pre-evaluated to the
degree predicted by our analysis before a call to the function is made.

t (AST, MAP, SDEPTH, G_CODE)
This clause attempts to perform tail recursion optimisation, for the expression
represented in AST. MAP and SDEPTH are the mapping of parameters and local
variables to positions on the stack, and the current depth of the evalnation stack
respectively.

e(AST, MAP, SDEPTH, G CODE)
This clause will evaluate the expression represented by AST and leave a pointer
to the result on top of the evaluation stack - the s_stack.

b{AST, MAP, SDEPTH, G_CODE)
Generates code for arithmetic operations. This scheme is an optimization to
conserve on the utilization of heap space during the generation of intermediate
results. The result of evaluating AST is left on top of an arithmetic stack - the
a-stack.

susp (AST, MAP, SDEPTH, G_CODE}
Create a graph. AST represents an instance of our susp intermediate form.

s(PAT1, PAT2, G_CODE)
Generates code to raise the strictness pattern of a result from PAT1 to be PAT2.
This is typically required when the result produced by a function application is
weaker than that required.

4.2. Language Subset
For expository reasons and to demonstrate the use of strictness information during code
generation, we shall restrict ourselves to a very small language defined below.

D (Definitions) ::= Funx;.x,=E

E (Expressions) = Constants | nMfOpEE | RelOpEE
consEE | ListOpE | FunE.E I {EEE

Constants ;= Integers | Booleans | nil

IntOp 1= add | sub | mult | div

RelOp = gtlgellt!leieqg!lne

ListOp :i= hd | tl | null

Fun ;= Identifier

Functions are applied with all arguments present. We now present each of the rule groups in turmn.
All the clauses have been extracted from our existing compiler. However they are presented here in a
simplified form omitting parameters required for later phases of the code generation. Also, most of
the error checking clauses and clauses to terminate recursion have been omitted for brevity. The
clauses below are written in the DEC10 Prolog syntax [2]. L is denoted by ? in the clauses.

4.3. F-scheme: Function Compilation
F-1. £([fun, Fname, Parm, Body], GCocde) :~

length(Paxrm, Lp), Lpl is L + 1, /* Compute stack depth */
args map (Parm, PMap, Lpl), /* mapping of params onto stack */
t(Body, PMap, Lpl, GCode). /* try Tail Recursion Optimisation */

Given a function definition we attempt to perform tail recursion optimisation via the
t-scheme. args_map returns the mapping of formal parameters to positions on the stack. The default
is handled by rule T-3.

4.4. T-scheme: Tail Recursion Optimization
T-1. t{[expr, [FlArgs], Sxl, Map, Depth, GCode} :-

type(F, FormalPrm, Sf), /* database lookup */
length{Args, L), length(FormalPrm, L}, /* sufficient args? */
reverse (Args, RArgs), /* not relevant here */
eArgs (RArgs, Map, Depth, EArgs), /* evaluate args */

s(Sf, Sxr, Strict), /* refine result pattern*/

149

(Strict == [] ->
append (EArgs, [[move, M}, [ifun,¥]}, GCode):;
flattenl ([EArgs, [[move,M], [feall,F1], Strict], GCode))

T-2. t{lexpr, [if, E1l, E2, E3], Sr], Map, Depth, GCode) :-

b(El, Map, Depth, ElCode), /* result on a-stack*/
t(E2, Map, Depth, E2Code), /* then part */
t{(E3, Map, Depth, E3Code}, /* else part */

{flattenl{[ElCode, [[jtrue,11]], E3Code,
[{label, 11]], E2Codel],

GCode)) .
T-3. t(E, Map, Depth, GCode) :~ /* default case */
e(E, Map, Depth, ECode)}, /* evaluate and update */

flatenl ([ECode, [[update]l, ([ret]]], GCode) .

T-4. eArgs([A| Args], Map, Depth, GCode) :-

e (A, Map, Depth, ElCode), /* evaluate axg */
Depthl is Depth + 1, /* position for next arg*/
eArgs (Args, Map, Depthl, ArgsCode), /* rest of args */

append (ElCode, ArgsCode, GCode).

When a user defined function culminates in a call to another user defined function, tail
recursion optimisation is possible. In Rule T.1 we check that the function has been supplied with
sufficient arguments, and evaluate them via the eargs clause. The eArgs evaluates each of the
arguments using the e-scheme. Note that the degree to which each of the arguments is to be
evaluated is contained in our abstract representation. The s-scheme is used to raise the pattern
produced by the function, namely Sf, to the level sr. Tail recursion optimisation (via the jfun
instruction} is only possible if this refinement code is absent. The newly created arguments are
moved in place of the old via the [move, M] instruction. Rule T.2 propagates the recursion scheme
into the branches of the conditional, with the default rule being T.3. The t~scheme is extended
naturally to the let construct by evaluating the common subexpressions to the degree required, and
propagating the t-scheme into the expression to be evaluated. The default rule evaluates the
expression and updates the result application node.

4.5, E-scheme: Evaluate Expression

E-1. e(I, _, _, [[pushint, I]1]) :- integer(I). /* no evaluation required*/
likewise for boolean constants and nil.

E-2. e{[var, X, Sr, Sx], Map, Depth, [[push, OFFSET]} STRICT]) :-
assoc (X, Map, [X, OFFSET]),
s{8x, Sr, STRICT). /* refinement possible*/

E-3. e{l[expr, [2add,E1,E2],S8xr], Map, Depth, GCode) :- /* arithmetic */
{Sr==d; Sr==a; Sr==de)},
b([expr, [add,El,E2],a], Map, Depth, BCode},
append (BCode, [[mkint]], GCode).
likewise for sub, div, mult.

E-4. e([expr, [eq,El,E2],Sr], Map, Depth, GCode) :- /* relational */
(Sr==d; Sr==a; Sr==de),
b([expr, [eq,El,E2], 8xr], Map, Depth, BCode),
append (BCode, [[mkbool}]l, GCode).

E-5. e([expr, [if,El,E2,E3],8r], Map, Depth, GCode) :- /* conditional */
b(El, Map, Depth, ElCode),
e(E2, Map, Depth, E2Code),
e(E3, Map, Depth, E3Code),
flattenl{[ElCode, {{jtrue,1L1]l, E3Code, [[jmp,L2]1],
[[label, 1111, E2Code, [[label,L211],
GCode) .

E-6. e{[expr, [null,E],Sr], Map, Depth, GCode) :- /* null operator */
e({E, Map, Depth, ECode),
append (ECode, [[null]], GCode).

150

E-7. e{[expr, [hd, [var, X, ,[B,_11],A], Map, Depth, /* (hd x) */
[[push,oFF}, [hd]| STRICT]) :-
assoc{X, M, [X, OFF]),
s(B, A, STRICT). /* refinement possible */
Likewise for tl function /* after direct access */

E-8. e{[expr, [hd, [var,X,_,d]],Al], Map, Depth,
[[push,oFF], [hd_check] | STRICT]) :-
assoc (X, M, [X, OFF]), /* test required */
s(?, A, STRICT). /* refinement possible */
Likewise for tl

E-9. e([expr, [bd, [var,X, ,del]l,A], Map, Depth,
[[push, oFF], [hd_check] | STRICT]) :~

assoc (X, M, [X, OFF]), /* test required */
s{de, A, STRICT). /* further tests possible */
Likewise for tl

E-10. e{[expr, [hd, [expr, [F|Args],_1]1,A]l, Map, Depth, GCode) :-
type(F, P, [B,_ 1),

length (P, L), length(Args, L), /* sufficient args */
e([expr, [F|Args], [B,?]], Map, Depth, FCode), /* call function */
s(B, A, STRICT), /* refine result */
flattenl ([FCode, [hd], STRICT], GCode).

Likcewise for tl

E-11. Rule 8 is extended to handle function application in a fashion similar
to rule 10.

E-12. Rule 9 extended to handle function application in a fashion similar to
rule 10.

E-13. e([expr, [hd,E],_], Map, Depth, GCode) :- /* default case*/
e(E, Map, Depth, ECode),
append (ECode, [[hd_check]], GCode).

E-14. e([expr, [cons, El,E2],_], Map, Depth, GCode) :-

e(El, Map, S84, Vd, ElCode), /* head part */
sdl is sd +1,
e(E2, Map, 8dl1, vd, E2Code), /* tail part */
flattenl ([E1lCode, E2Code, [[cons]]], Code).
E-15. e([susp|S], Map, Depth, GCode) :- /* graph creation */
susp ([susp|S], Map, Depth, GCode).
E-16. e([expr, [F|Args],Sx], Map, Depth, GCode) : /* function application */
type(F, P, Sf),
length (P, M), length(Args, M), /* sufficient args */

reverse (Args, Raxgs),

Depthl is Depth + 1,

eArgs (RArgs, Map, Depthl, EArgs), /* evaluate args*/
s(Sf, Sr, STRICT), /* refine result */
flattenl ([[[mkholel], EArgs, [[fcall,F11, STRICT], GCode).

E-17. e(E, _, _, _, llerror]ll) :-
error ("Cannot compile expression”).

The e-scheme leaves a pointer to a result on top of the evaluation stack. Rule E-2 refines a
formal parameter to the degree required. Rules E-3 and E-4 transfer the code generation task to the
B-scheme which computes all temporaries on the arithmetic stack, until the result is to be finally
transferred to the s-stack via the mkbool or mkint instructions. In Rule E-6, the instruction null
leaves a boolean result on the a-stack. Rules E-7 to E-13 are optimisations on the head and tail
functions, which take advantage of the specific situation to generate better code. The default rule is
E-13. The instruction hd_check accesses the head component of the list after a type check has been
performed. In Rule E-14 we handle function application. The degree of evaluation required by each of
the arguments will be manifest in our intermediate representation. The mkhole instruction makes
space for the result on the heap, and the feall instruction performs the context switch. This rule

151

under fully strict conditions generates code that follow the call-by-value semantics of parameter
passing.

4.6. B-scheme; Compute Basic Value

B-1. b{I, _, _, [[pushbasic,I]]) :- integer(I}.
Likewise for boolean constants.

B-2. b{[var,X,Sr,a], Map, Depth, {[[getv,OFF]]) :-
{(8r==d; Sr==a),
agsoc (X, Map, [X, OFF]).

B-3. b{[expr, [add,El,E2],8r], Map, Depth, GCode) :-
b(El, Map, Depth, BiCode),
b(E2, Map, Depth, B2Code},
flattenl ([BlCode, B2Code, [[addl]], GCode).
Likewise for sub, mult, div, eq, ne, gt, ge, lt, le

B-4. b([expr, [if, El, E2, E3], Sr], Map, Depth, Code) :-
{Sr == d ; 8Sr == a)},
b(El, Map, Depth, ElCode),
b{E2, Map, Depth, E2Code),
b (83, Map, Depth, E3Code),
flattenl ([ElCode, [[jtrue,L1]], E3Code, [[jmp, 1L2],
(label, L11], E2Code, [[label, 12111,
Code) .

B-5. b{E, Map, Depth, GCode) :-
@{E, Map, Depth, Vd, ECode)},
append (ECode, [[get]], GCode).

The B-scheme rule does the standard bottom up evaluation of entirely strict expressfons on
the arithmetic stack. Rule B-5, needs to resort to the e~scheme to compute the value of the
expression E, and get its result on the a-stack.

4.7. Susp-scheme: Create Graph

susp ([susp, [F|Freel,_], Map, Depth, [[pushfun,F]| FreeC]) :-
Depthl is Depth + 1,
susp param(Free, Map, Depthl, FreeC).

susp_param{[X| Free], Map, Depth, [[push,OFF], [mkap]| FreeC]) :-
assoc{X, Map, [¥, OFF]),

Depthl is Depth + 1,
susp_param(Free, Map, Depthl, FreeC).

This scheme constructs the graph for the susp intermediate form. We merely need to
determine the offset of the free variables required in the graph and connect them together via the
mkap instruction.

4.8. S-scheme: Strictness Pattern Refinement
s-1. s(X, X, [1).

s-2. s(?, 4, [[evall]l).

s-3. s(?, a, [[eval], [atomicpl]).

s-4. s(?, [a,B]l, [leval], [listp]| GCode]) :- s([?,?], [A,B], GCode).
8-5. s(d, a, [[atomicpll).

$-6. s({d, [A,8], [[listp]!| Codel} :- s([?, 71, [a, B], Code).

152

8-7. s{a, [A, B]l, [lerrorl]) :- error("Atomic value where list expected"}.
s-8. s(de, a, [[atomicpl]l).

s-8. s({de, [A,B], [[listp]| Codel} :-
s{[de,de], [A,B], Code).

5-10. s([A,B], [C,D], Code) :-
s{(A, C, Codel),
s_head (Codel, Codel head),
8 (B, D, Code2),
s_tail (Code2, Code2 tail),
append (Codel_head, Code2 tail, Code).

s-11. s(_, _,).
s-12. s_head([], [1).
$-13. s_head(Code, Code head) :-
flattenl ([[[push_topl, [hd]]l, Code, [[popll], Code_ head).

§-14. s_tail([], [1).
§-15. s_tail(Code, Code tail) :-
flattenl{[[{push_top], [£l]]1, Code, [[pop]]ll, Code tail).

s (Patl, Pat2, GCode) generates code to refine Patl to be Pat2.

4.9. Peephole Optimisations

Direct short cuts are made when updating the application node with the result. Instead of
forming the result structure on top of the stack and then copying the result into the application node
to be updated, we directly create the result on the application node. Thus the following optimisations
result:

[cons] [update] — [update cons]
[mkint] [update] — [update int]
[mkbool] [update] - [update bool}
[mkap] [update] — [update appll]

In the same spirit there is no need to create a boolean value on the a-stack if it is going to be
immediately tested and removed in the next instruction. Therefore we get the following optimisation:

[eq] {jtrue,Label] — [jeq, Label}]
[1t] [jtrue,Label] — [jlt, Label]
[null]} [jtrue,Label] — [jnull, Label) etc.

5. Sample Code Generated
Below we give the code generated for the £rom function defined below.

from x y = if x > y then nil else cons x (from (x + 1) y);

The intermediate representation assuming a strictness signature of (a a) — de is shown
below. This was used to generate the first column in figure 5-1. The second column in figure 5-1 was
generated assuming a strictness signature of (1 1) -» 4. This is a convenient example to hand test
the rules given in this paper.

(fun from (x y) (expr (if El1 E2 E3) de))

where
El = (expr (gt2 (var x a a) {(var y a a)) a)
E2 = nil
E3 = (expr (cons (var x de a)

(expr {from (expr (add2 (var x a a) 1) a)
(vaxr y a a})
de)
{de de}))

Several differences should be noted when comparing the code generated in the two cases,
referred to as the strict version (SV) and the non strict version (NSV).

153

1. getv(3) /* a_stack = x */ 1. push(3) /* s_stack = x */
2. getv(2) /* a_stack =y */ 2. eval /* evaluate */
3 jgt2(g0001) /* test */ 3. atomicp /* atom test */

4. get /* a_stack := x */
4. push{3) /* s_stack = x */ 5. push(2) /* s_stack = y */
5. mkhole /* result node */ 6. eval /* evaluate */
6. push(2) /* s_stack =y */ 7. atomicp /* atom test */
7 getv(3) /* a_stack := x */ 8. get /* a_stack := y */
8. pushbasic(l) /* a_stack := 1 */ 9. 3jgt2(g0002) /* tast */
9. add2
10. mkint /* s_stack := x+l */ 10. push(3) /* param x */
11. fcall{from) /* call from */ 11. pushfun{froml}/* new function*/
12. update cons /* make result */ 12. push(3) /* s_stack:= x */
13. ret 13. mkap /* make graph */

14. push /* s_stack:=y */
14. label({g0001) 15. mkap /* make graph */
15. pushnil /* s_stack := nil */ 16. update_cons /* make result */
16. update 17. ret
17. ret

18. label{g0002)

19. pushnil

20. update

21. ret

Figure 5-1: Sample Code For Function from

« In the 8§V, the parameters are directly accessed and moved to the arithmetic stack whereas in
the N8V, evaluation and type checking is performed.

* The SV implements call-by-value parameter passing semantics whereas the NSV creates a
suspended result to be later evaluated upon demand.

One would expect that in a fully strict version of a function, the G-code generated would be
comparable to that produced by any LISP compiler. Indeed our preliminary timing tests seem to
confirm this notion.

Our analysis method is currently under development. To be able to test our compiler we have
developed an annotated user language, with type declarations, where the type information is
propagated into the subexpressions of a function definition. The resulting intermediate form is not as
rich as the one we expect from the analysis due to the simple nature of the pattern propagation. The
resulting G-code is macro expanded to form a C program [9]. This has enabled us to perform some
valuable comparisons, the results of which are summarized below. All timings were measured on a
VAX 8600 running UNIX™,

SV NsvZ ML3® Miranda PSLY C Pascal
fib 20 07 14 1 26.3 07 01 0.1
tak 18 12 6 21 72 11 87.0 14 03 08
sieve 2..500 (10 times) 32 7.0 13 43.0 32 - -
insertion sort® 43 13.0 23 51.08 2.8 - -

References

1} Bumn, G. L., C. L. Hankin, and S. Abramsky.
Theory and practice of strictness analysis for higher order functions.
April 1985.
Dept. of Computing, Imperial College of Science and Technology.

[2] Clocksin, W.F. and Mellish, C.S.
Programming in Prolog.
Springer-Verlag, 1984.
2nd Edition.

A small amount of atrictness mformation was used in defining seme of the functions to avoid the tedtum tnvolved in our annotated source language
¥standard ML, Timing Resolution = 1 sec

*Comptled Portable Standard LISP without fast integers

BSorted a list of 50O elements in reverse order

fSorted a st of 250 elements in reverse order

154

31 Fairbairn, Jon, and Stuart C. Wray.
Code generation techniques for functional languages.
In Proc, Symp. on Lisp and Func, Pgmming., pages 94-104. ACM, 1986.

{4} Hudak, P., and J. Young
A set-theoretic characterization of function strictness in the lambda calculus.
In Proc. Workshop on Implementations of Functional Languages. Chalmers Univ., Aspenas,
Sweden, February, 1985.

[5] Hughes, R. J. M.
Super Combinators.
In Lisp and Functional Programming Conference, pages 1-10. ACM, 1982.

6] Hughes, J.
Strictness detection in non-flat domains.
Programming Research Group, Oxford.

71 Johnsson, T.
Efficient compilation of lazy evaluation.
In Proc. Symp. on Compiler Const. ACM SIGPLAN, Montreal, 1984.

[8] Kieburtz, R. B., and M. Napierala.
A studied laziness -- strictness analysis with structured data types.
1985,
Extended abstract, Oregon Graduate Center.

{9l Kernighan, B.W. and Ritchie, D.M.
Software Sertes: The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1978,

[10] Kieburtz, R. B.
Abstract interpretations over infinite domains cannot terminate uniformly.
February 17, 1986.
Unpublished note, Dept. of Computer Science, Oregon Graduate Center.

[11] Kuo, T.-M., and P. Mishra,
On Strictness and its Analysis,
In Proc. Symp. on Princ. of Pgmming. Lang.. ACM, Munich, West Germany, March, 1987.
To appear.

[12] Lindstrom, Gary.
Static evaluation of functional programs.
In Proc. Symposium on Compiler Construction, pages 196-2068, ACM SIGPLAN, Palo Alto, CA
June, 1986.

[18] Lindstrom, Gary, Lal George and Dowming Yeh.
Optimized compilation of functional programs through strictness analysis.
August 4, 1986.
Technical summary.

{14] Mycroft, A.
The theory and practice of transforming call-by-need into call-by-value.
In Int. Symp. on Prgmming. Springer, April, 1980.
Lecture Notes in Computer Science, vol. 83.

[15] Sheeran, Mary.
Designing regular array architectures using higher order functions.
In Proc. Conf. on Functional Programming Languages and Computer Architectures, pages
220-237. Springer Verlag, 1985.
Lecture Notes in Computer Science, vol. 201.

[16] Wadler, Phil,
Strictness analysis on non-flat domains {by abstract interpretation over finite domains).
November 10, 1985.
Unpublished note, Programming Research Group, Oxford Univ.

{171 Warren, David H. D.
Applied logic: its use and implementation as a programming tool.
Technical Report, SRI, Inc., 1983.
Note 290.

