
Generat ing Ef f ic ient Code from S t r i c t n e s s A n n o t a t i o n s

by

Gary Lindstrom
Lal George

Dowming Yeh

Department of Computer Science
University of Utah

Salt Lake City. LIT 84112

ABSTRACT

Normal order functional languages (NOFLs) offer conceptual simplicity, expressive power, and
attractiveness for parallel execution. However, current implementations of NOFLs on conventional yon
Neumann machines are not competitive with those of imperative languages, The central reasons for
this poor performance include the high control overhead (e.g. demand evaluation) and fine object code
granularity (e.g. SKI combinators) used in most NOFL implementations. Strictness analysis gathers
information that helps to overcome these inefficiencies through optimized compilation. We propose
here a rule-based strategy for such compilation, working from a new textual representation for
strictness analyzed source programs. This representation offers readability and ease of manipulation.
while expressing all essential strictness information, including basic block structure and block
dominance and disjunction relationships. The rules presented here show how to compile this
intermediate form into optimized single processor G-machine code. In addition, this representation
appears to be useful for a number of other execution methods, including interpretation, compilation
into conventional Lisp with "promises", and mapping into "supercombinators" for parallel
architectures.]

I, NOFLs and Strictness Analysis

1 . 1 . B a s i c C o n c e p t s
Most m o d e m functional languages are based on normal order semantics, where divergence of

a program occurs only if the program's overall result directly depends on a divergent subexpression.
Customary implementations of NOFLs ensure this property by individually operationalizing the
normal order characteristics of each operator, e.g. through demand evaluation or combinator
reduction.

NOFLs offer many advantages in programming practice, including clean treatment of I/O
streams, overlapped production and consumption of large data objects, and the facile representation
of feedback systems, For example, functional modeling of non-trivlal hardware systems seems to
require normal order evaluation in a fundamental sense [15].

Another appeal of NOFLs is their suitability for distributed evaluation on innovative
architectures, e.g. via graph reduction. However, a more pressing need exists for efficient NOFL
implementations on today's machines, to gain (i) experience with large-scale software engineering in
NOFLs, and (ii) a better understanding of what is familiar about their implementation, as well as
what is exot/c. In comparison, one must be impressed with the rapid acceptance that has greeted
Prolog. and acknowledge that this has been greatly aided by the early availability of efficient
implementations on conventional computers [17].

One of the most promising avenues currently under investigation for improving the efficiency
of NOFLs is strictness analysis [14]. Under this technique strict subsets of operators, i.e. groups
unconditionally executable together, are determined at compile time. The major str ictness analysis
research areas at the moment include:

* "non-fiat" domains [6, 8, 16], and

* hlgher-order functions [1.4, 1 I].
While str ictness analysis theory appears to be developing apace, its application to actual code

Fi~ls n m ~ a I ~ based upon work supported by ~ c National Science Foundatie~t under Grant No, DCR-8506000.

141

generation seems to be lagging. An exception is the recent paper [3], which uses a finite domain. We
attempt here to fill this gap, by showing a method which relates well to existing compiler technology,
and sheds light on the similarities and differences in compiling NOFLs for single- and multi-processor
machines.

1.2. Overview o f Method
Our method involves four processing steps, from source program to optimized object code:

1. The source program is converted to function graph form, after exhaustive common sub-
expression (CSE) detection and elimination. CSEs are represented via binary output, single
input f o r k operators, e.g. (~, v) = £ork(~).

2. Strictuess analysis is performed on the function graph representation, using abstract
interpretation on a "non-fiat" infinite domain of predicted pat terns of evaluation.

3. The resulting annotated graph is converted to textual form, which may be viewed as a
semantically attributed abstract syntax tree.

4. Finally, the textual form is translated to object code, optimized by observance of the block
structure, predicted prior evaluation, and type information conveyed by the semantic
attributes.

1.3. Analys i s Method
The first two steps of our method are reported in [12] and [13]. We briefly summarize their

essentials here, by way of background for our new results involving steps 3 and 4 above.

1.3.1. Simplified Domain
It is useful to describe our method first via a simplified abstract interpretation domain, and

then an augmented domain. The former represents the effects of a slr~le source of hypothesized
demand, while the latter analyzes the effect of all sources of demand throughout the program, on a
"wholesale" basis.

The primitive elements of our simplified domain are as follows:

• ± expresses a total lack of compile time information as to whether an expression will be
evaluated, and if it is, what datatype wfl result.

• d represents a compile-time hypothesis or inference that an expression will be subjected to at
least one level of evaluation, ie. to an atom or tuple (possibly with suspended components).

• d* conveys the information that an expression will be subjected to an exhaustive evaluation
attempt, i.e. to an atom, or a finite or infinite composition of tuples of atoms or error
indicators, (but with no a pr/or/expectation of which case, if any, will result).

• a generically designates all atomic values, including functions. However, a can also be
interpreted as "demand with atomic result required.

• T indicates conflicting information on the value of an expression, i.e. values which are
constrained simultaneously to be atomic and nonatomic. This indicates a rudimentary type
e r r o r ,

This primitive element set is closed with binary Cartesian cross products, representing pairs
produced by the cor~s operator. The resulting set, constitutes the domain I) used in [12]. The
operators receiving non-± annotations as a result of a non_± hypothesis on a particular arc is termed
a strictness subset of the graph.

1.3.2. Augmented Domain
Reference [13] presents an augmentation of this simplified domain, supporting '~holesale"

str ictness analysis on an entire function graph. In comparison to the former approach, the analysis
method is extended in two respects:

1. ± has been removed from the domain. This reflects the fact that, although prediction of
evaluation causality at compile time is imperfect,

a. code mus t be compiled for every operator in a function, and

b. when that code is executed, it will certainly be executed under at least simple
demand.

142

H e n c e t h e role of ± in t h e d o m a i n is p layed by d.

2. However, t h e fac t t h a t a d is p laced w h e r e a k wou ld prev ious ly have a p p e a r e d on a n arc
m u s t n o t be c o n s t r u e d a s neces sa r i l y ex tend /ng a s t r i c t n e s s s u b s e t . Ra the r , it m u s t indica te
t h e i n t r o d u c t i o n of a n e w s t r i c t n e s s s u b s e t , w h i c h m i g h t h a v e a r i s e n f rom a n independent
appl ica t ion of t h e p rev ious m e t h o d wi th d a s s e r t e d i n s t e a d of ± on t h e a rc in ques t i on .

To e s t a b l i s h s u c h a s u b s e t b o u n d a r y , we a u g m e n t D to i nc lude n a t u r a l n u m b e r subscripts on
e a c h deno ted level of eva lua t ion . In an t i c ipa t ion of the i r u l t i m a t e u s e for code genera t ion , we
t e r m s u c h s u b s c r i p t s block numbers.

* Initially, all b lock n u m b e r s are cons ide red to be dis t inct . A s t h e a n a l y s i s proceeds ,
s o m e b lock n u m b e r s b e c o m e equlvatenced, a n d the i r a s s o c i a t e d s t r i c t n e s s s u b s e t s are
t h e r e b y merged .

* The re a re a l so t h e i m p o r t a n t n o t i o n s of b lock dominance a n d disjunction, d i s c u s s e d in
s ec t ion 1.3.3.

In refer r ing to a n e l e m e n t of D, it is i m p o r t a n t a t ce r t a in t i m e s to refer to i ts o u t e r m o s t b lock
n u m b e r ; o t h e r t imes , t h a t n u m b e r is i rrelevant . To he lp m a k e t h i s d i s t inc t ion clear, we adopt t he
following no ta t ion :

• W h e n t h e o u t e r m o s t b lock n u m b e r of a n e l ement of D m u s t be m e n t i o n e d , t h a t e l emen t will be
deno ted b y a s u b s c r i p t e d ear ly a l p h a b e t Greek letter, e.g. a i , ~j, ?~.

• W h e n t h e o u t e r m o s t b lock n u m b e r of a n e l emen t of D is i r relevant , t h a t e l e m e n t will be deno ted
by a n o n - s u b s c r l p t e d late a l p h a b e t r o m a n letter, e.g. x, y, z.

O u r d o m a i n D is a s follows:

Domain:
D = {di, dei , ai, Ti} ~ [u, v] i i = 0, 1, and u, v • D

Equality:
a i = ~j (~ not a pair) ¢~ i -= j

[u, vii = [x, ylj ¢~ i =- j A u = x A V = Y

Partial Ordering:
d i < dej <~ i -= j

del < aj ¢~ i ~ j

d i < [x, y]j ~ i -= j

del < [x, y]j ~ i -= j ^ dei < x A dei -< y

[u, v]i <- [x, y]j ¢=~ i =- j A U -< x A V _< y

~i<Tj ¢~ i~ j

Note t h a t t h e s e r u l e s imply:

i . de± is n e v e r a lower b o u n d o n a n y e l e m e n t of D in w h i c h a n a j a p p e a r s for s o m e j no t
equ iva len t to i .

2. Similarly, d e i i s n e v e r a lower b o u n d on arty e l emen t of D in wh ich d~ a p p e a r s for a n y k .
Fa i lure o f e i the r of t h e s e p roper t i e s to ho ld would indica te a dec rease in "commitment '* to eva lua te
fully the deno ted e x p r e s s i o n wi th in b lock i , once t h e eager eva lua t ion ind ica ted by dei h a s b e g u n .

1.3.3. Dominance and Disjunct ion
A pr inc ipa l r e s u l t of t h e s t r i c t n e s s a n a l y s i s m e t h o d ou t l ined in [13] is t h e f inal equ iva lence

re la t ion der ived a m o n g b lock n u m b e r s . However, a n o t h e r i m p o r t a n t r e l a t ionsh ip ex i s t s a m o n g
b locks , ref lect ing n e c e s s a r y eva lua t ion order.

Definition. A block i dominates a block J, denoted i Z J, If whenever block j is executed, that
execution is a consequence of block i also being executed.

D o m i n a n c e a m o n g b locks is a n i m p o r t a n t concep t t h a t faci l i ta tes t h e g e n e r a t i o n of efficient
object code, For example , ff a CSE is s h a r e d b e t w e e n two b locks bea r ing a d o m i n a n c e re la t ionship ,
t h e n eva lua t ion of t h a t CSE c a n be m o v e d into t h e d o m i n a t i n g block.

F o u r a x i o m s gove rn t h e d o m i n a n c e re la t ionshlp:

a. (Vi, j) i Z j
(Vm, n) m -= i A n ~ j ~ m Z n (equivalence consistency)

b. (Vi) i / i (reflexivity}

143

C. (V i , j , k) i / j ^ j L k ~ i L k (transitivity)

d. (V i , j) i L j ^ j L i ~ i -= j (antisymmetry).

Lastly, a d i s j u n c t i o n re la t ionsh ip a m o n g block n u m b e r s , deno ted i = j v k, is also
d e t e r m i n e d b y o u r ana lys i s . T h i s too is m a d e c o n s i s t e n t over equiva lence c l a s se s , e.g. i fm =- i , n ~-
J, a n d p - k, t h e n m = n v p in t h e example above. D i s j u n c t i o n s are u s e d to a s soc i a t e b locks t ha t
are re la ted t h r o u g h c o n d opera tors . If, for example , a CSE is s h a r e d b y b o t h a r m s (t h e n / e l s e par ts)
of a condi t ional , t h e n t h a t e x p r e s s i o n c a n be "hoisted" to t h e s u r r o u n d i n g uncond i t i ona l block.

1.3.4. Sample rules
We deno te t h e s t r i c t n e s s a n n o t a t i o n s of a n a rc v by Z(v). The a n a l y s i s m e t h o d p roceeds by the

appl ica t ion of strictness rules, e x p r e s s e d in t e r m s of precondition - postcondition pairs . T h e s e s h o u l d
be in t e rp re t ed a s "if t h e precondition is t rue , m a k e the postcondition t rue". Notice f rom the par t ia l
o rder ing specif ied in s ec t ion 1.3.2 t h a t " m a k i n g a pos t cond i t i on t rue" c a n m a n d a t e b lock n u m b e r
equiva lencing . For example , s u p p o s e v = ident (~t), wi th g(v) = ct i a n d X{~t) = ~y T h e n t h e
p o s t c o n d i t i o n ct£ _< X(li) e n s u r e s t h a t i is equ iva lenced to j . T h i s c a p t u r e s t h e idea t h a t i d e n t is
s t r ic t in i t s a r g u m e n t , a n d s h o u l d n o t c o n s t i t u t e a b o u n d a r y b e t w e e n s t r i c t n e s s s u b s e t s . Hence
b lock i i s m e r g e d wi th b lock j .

O u r s t r i c t n e s s a n a l y s i s r u l e s are des igned to be monotonic in t he s e n s e tha t :

• If a va lue in D is c h a n g e d , it is a lways to a greater va lue in the par t ia l order.

* If t h e equ iva lence re la t ion is c h a n g e d , it i s a lways t h r o u g h equ iva lenc lng two b lock n u m b e r s ,
t h e r e b y coarsening it.

• T h e d o m i n a n c e a n d d i s j u n c t i o n re la t ions a re c h a n g e d on ly t h r o u g h e x t e n s i o n by equiva lence
cons i s t ency .

O u r m e t h o d t e r m i n a t e s w h e n n o f u r t h e r a n n o t a t i o n c h a n g e s r e su l t f rom ru le appl icat ion, or
w h e n it is d e e m e d t h a t suff ic ient i n fo rma t ion h a s b e e n ob ta ined for compi la t ion needs . There is
evidence t h a t u n i f o r m t e r m i n a t i o n of o u r m e t h o d , a n d o the r s involving inf ini te d o m a i n s , c a n n o t be
g u a r a n t e e d [I0].

A r e p r e s e n t a t i v e s a m p l e of o u r s t r i c t n e s s a n a l y s i s r u l e s a re e n u m e r a t e d in [13]. To s u g g e s t
the i r flavor, we exhibi t h e r e t h e 'q)ackward" or " d e m a n d flow" r u l e s for a [lazy} tup le c o n s t r u c t o r a n d
selector.

v 0 = c o n s (v 1 , v2) , w h e r e ;((v o) = ct± ^ X(v I) = ~j ^ X (v 2) = 8 k

Precondi t ion 1:
[u, v] i < a±

Pos tcond i t i on I:
U ~ Z(V|) A v ~ Z(V2)

Precondition 2:

de l _< Cci
Pos tcond i t ion 2:

de l ~ ~(Vl) A de i -< Z(V2)

v 0 = c a r (v l) , w h e r e X(v o) = a i

Precondi t ion:
(none)

Postcondi t ion:
[a i , dk] £ < ~(V1)

(laziness; j and k not made =- i)

(eagerness; j and k made =- i)

(new k, cf. ±)

2. R e s u l t i n g Graph S t r u c t u r e

Given a f u n c t i o n g r a p h wi th f inal a n n o t a t i o n s a n d the i r a s s o c i a t e d equiva lence relat ion, bas ic
b locks c a n be formed. We collect t oge the r all ope ra to r s v = OP (. . .) , whe re X(v) = a± for equiva len t
i . F o u r var le t ies of b a s i c b locks resul t :

* F u n c t i o n bodies ,

* Condi t iona l a r m s .

* A c t u a l p a r a m e t e r s .

• Tup le c o m p o n e n t s .

B
1

The first two syntac t ic occu r rences a lways cause block b o u n d a r i e s to be formed. The last two m a y or
m a y no t occur a t b lock boundar i e s , depend ing on the s t r eng th of t h e s t r i c tnes s analys is resul ts . To
i l lustrate, we s h o w a n a n n o t a t e d g raph t a k e n f rom [13].

t44

Dominanc~

Disjunction

Figure 2-1: Sample anno ta t ed func t ion graph.

2.1. Bas ic B lock Structure

The bas ic b locks tha t resu l t have several impor tan t propert ies:

1. They nes t in a m a n n e r cons i s t en t with t he dominance relat ion previously obtained.

2. Within a block, the arc anno ta t ions convey only da ta type informat ion (i.e. a tomic vs. pair
value predict ions) . Hence the s u b s c r i p t s u sed to accompl ish block par t i t ioning m a y now be
discarded.

3. The a rcs c ross ing block bounda r i e s r ep resen t values p roduced in one b lock and c o n s u m e d in
another .

We categorize a rcs c ross ing b lock b o u n d a r i e s into th ree kinds , depend ing on the t rans i t ion in
block level t ha t each r e p r e s e n t s (see figure 2-2):

1. Ascending: a r g u m e n t s to nons t r i c t operators , e.g. cons , c o n d and a p p l y .

2. Descending: a CSE usage, e.g. {v o, v I) = fork{v2), where Z(Vo) = c~ i, Z(vl) = J)j, and Z(v2) = 7k,
w i t h i Z j o r k = i v j .

3. Lateral: a CSE as above, b u t with i and j incomparable .

Ascending Descending Laterat
Figure 2-2: Arcs be tween bas ic blocks.

145

2.2. Applicative Order Interpretation of Basic Blocks

A s r e m a r k e d in s e c t i o n 2.1, t h e o u t c o m e of o u r s t r i c t n e s s a n a l y s i s m e t h o d h a s two
c o m p o n e n t s : (i) d e t e r m i n a t i o n of b a s i c b locks , a n d (il) a t o m / l i s t type a n n o t a t i o n of t h e r e s u l t va lue
deno ted b y e a c h arc. T h i s i n fo rma t ion is u s e d in compi la t ion for two d i s t inc t pu rpose s : (i)
conve r s ion to appl icat ive order eva lua t ion , a n d (il) g e n e ra t i on of code in w h i c h r e d u n d a n t exp re s s ion
eva lua t ion a n d type c h e c k i n g ope ra t i ons are omit ted. We first cons ide r conve r s ion to applicat ive
order, a n d r e t u r n to r e d u n d a n t opera t ion s u p p r e s s i o n in sec t ion 2.3.

In fact , once i so la t ion of bas i c b locks in a NOFL p r o g r a m h a s b e e n accompl i shed , t he p r o g r a m
h a s in a s e n s e a l r eady b e e n conver ted to appl icat ive order form. Th i s s t a t e m e n t will be given s h a r p e r
m e a n i n g in s ec t ion 3, w h e r e a t ex tua l r e p r e s e n t a t i o n for a derived appl icat ive order l a n g u a g e is
specified. However, in tui t ive s u p p o r t for t h i s c l a im c a n be offered a s follows:

1. We informal ly def ine a p p l i c a t i v e o r d e r eva lua t ion o n th i s '~blocked" g r a p h r e p r e s e n t a t i o n a s
follows:

* W h e n e v e r t h e r e su l t of a b lock is n e e d e d at r u n t ime, all t h e ope ra to r s local to t h e block
are eva lua t ed in b o t t o m u p m a n n e r . T h i s c a n be done by u n c o n d i t i o n a l code execu t ing
in a n y o rder t h a t obse rves d a t a d e p e n d e nc i e s , i.e. sy s t ema t i ca l l y left to r ight , in s o m e
o t h e r o rder opt imiz ing reg is te r u s a g e , or even In parallel .

* The n e e d for t h e r e s u l t of a n i n n e r b lock is a r u n t ime event no t predic tab le by the
compi le t ime ana lys i s . A s no ted in s ec t ion 2, t he re are four t y p e s of b locks , b u t only
t h r e e c a n o c c u r a s i n n e r b locks . We c o n s i d e r e ach in t u rn .

• C o n d i t i o n a l a r m s : The predica te a n d a n y CSE 's s h a r e d a c r o s s s ib l ing condi t iona l
a r m s are eva lua t ed in t h e s u r r o u n d i n g block. Once t he pred ica te is eva lua ted ,
t h e t h e n or e l s e pa r t is se lected a s appropr ia te , a n d i ts b lock is eva lua ted in
appl icat ive order.

• A c t u a l p a r a m e t e r s : Iso la t ion of a n ac tua l p a r a m e t e r into a s e p a r a t e b lock
ind ica te s compi le t ime u n c e r t a i n t y of t he n e e d for i t s eva lua t ion . In ou r
appl icat ive order in te rpre ta t ion , we view s u c h a b lock a s eva lua t ing at func t ion
call t ime to a s u s p e n s i o n , e n c a p s u l a t i n g t he b lock ' s code a n d v a l u e s en te r ing
t h r o u g h d e s c e n d i n g arcs .

• T u p l e c o m p o n e n t s : Tuple c o m p o n e n t s appea r ing a s s e p a r a t e b locks indicate
s imi la r eva lua t ion u n c e r t a i n t y a t compi le t ime. T h e s e a re a lso compi led into
s u s p e n s i o n s , for s u b s e q u e n t eva lua t ion a s n e e d e d by a n appropr ia te selector,

2. T h i s appl icat ive i n t e rp re t a t i on h a s m a n y advan tages :

• Eva lua t ion order is ou t e rmos t - f i r s t wi th r e spec t to b lock nes t ing . This . t oge the r wi th
o u r d a t a d e p e n d e n c y b a s e d eva lua t ion order w i th in b locks , m e a n s t h a t all a rc s
d e s c e n d i n g into a n i n n e r b lock ca r ry v a l u e s wh ich are necessa r i ly p re - eva lua t ed w h e n
a c c e s s e d f rom within .

• Since i n n e r b lock n e s t i n g is s tat ic , t h e s e v a l u e s will be located in k n o w n reg i s t e r s or
s t a c k loca t ions w h e n compi led code is u sed . S u c h v a l u e s are u s e d directly wi th in
condi t iona l a r m s ; for a c t u a l p a r a m e t e r s a n d tup les , t he v a l u e s a re speedi ly a c c e s s e d at
s u s p e n s i o n c rea t ion t ime, a s follows,

• F o r m a l p a r a m e t e r a c c e s s e s m a y tr igger t he eva lua t ion of a n ac tua l pa rame te r ,
ex is t ing a s a s u s p e n s i o n . T h e s e c a n be r e p r e s e n t e d a s f u n c t i o n appl ica t ions ,
c losed wi th a full p a r a m e t e r se t conveying e n v i r o n m e n t v a l u e s (i.e. t h o s e on
d e s c e n d i n g a rcs en te r ing t h e c o r r e spond ing ac tua l p a r a m e t e r block). Hence
n o r m a l apply opera to r s e m a n t i c s a n d i m p l e m e n t a t i o n t e c h n i q u e s c a n be
employed.

. Selector a c c e s s e s b e h a v e similarly.

2.3. Datatyping Information

The dataty-pe i n fo rma t ion in arc a n n o t a t i o n s provides reliable da t a type informat ion , in t he
s e n s e t h a t if a n a rc Is a n n o t a t e d wi th a da t a type ind ica tor t , we m a y be s u r e t h a t (i) a n y va lue v
conveyed b y t h a t a rc a t r u n t ime will be c o n s i s t e n t wi th t , a n d (it} all u s a g e s of v will be c o n s i s t e n t
wi th t . o r will c h e c k t h e type m o r e specifically.

T h i s m e a n s t h a t m a n y opera tors , e.g. c a r , c a n be appl ied to v a l u e s w i t h o u t r u n t ime type

146

testing ff the value's type annotation, e.g. [d±, dj] k, so indicates. If the type annotation is simply dl,
then we know the value will be prior evaluated, ISut to an unknown type. In this case the c a r can be
compiled with type testing, but without an internal eva1 providing for the case when the value is a
suspension.

Even more important are guarantees of prior evaluation as shown by equivalence of
subscripts across type descriptor levels. For example, [di, j] ± indicates that when the pair is
computed in block i , its first component will also be computed, to at least an atom or pair (possibly
of suspensions}, The exhaustive demand indicator d e, signalling full applicative order, is particularly
useful since call by value implementation may be used in thoroughly this case.

2.4. S o u n d n e s s

Formal proof of the soundness of our applicative order interpretation is beyond the scope of
this paper. However, it can be informally argued as follows:

• Will w e evaluate enough? Yes, because all assumptions of prior evaluation are validated by our
method observing outermost-first evaluation order among blocks (observing dominance) and
bottom up evaluation order within blocks (observing data dependencies).

• Will w e evaluate too much? No, because the only dangers are infinite data construction
[protected by tuple suspensions), and non data producing runaway recursions (which, in
keeping with [14], can only occur earlier in our method}.

3. T e x t u a l R e p r e s e n t a t i o n

We now turn to the new program representation developed since the preparation of our
previous two papers.

3.1. Why a Tex tua l R e p r e s e n t a t i o n ?
The graphical representat ion of strictness information is conceptually pleasing, but poses

some practical difficulties. These include awkwardness of t ransmission through input and output
devices, and unfamiliarity as a programming notation. As an alternative, we have developed a textual
notation which captures all the essential information in an annotated graph, while facilitating
subsequent processing, especially code generation.

3.2. In termedia te R e p r e s e n t a t i o n
We require an intermediate representation that captures both the annotations placed on the

arcs of the graph and the dominance relation between basic blocks. Typically function application
will be represented by the intermediate form (expr (f 9{ (e l) . .9I (era)) s t) where f is the function
being applied to arguments also represented in our intermediate form. ~ (e i) is the intermediate
representation of the ith argument and sr is the str ictness pat tern expected from the function
application, s r is expressed as a list structure representing values in our simplified domain (see see.
1.3.1). Often, s r will be stronger than the pattern to which the function in the expression has been
compiled to produce, so appropriate e v a l and type checking instructions will be compiled on the
result. The dominance relation between blocks derived by our str ictness analysis is used to place the
susp form defined in section 3.3.

The individual varieties of expressions are represented as follows.

Constants: Unstructured literals are represented directly, since no strictness information is
required, e.g. 1, 2.34, nil, true, false etc.

CSEs: Common subexpressions are introduced via a let construct. Each newly
introduced variable names a CSE represented in our intermediate form. The let is
placed local to the expr forming the basic block 91(en) local to which the CSE
appears.

(expr (let ((varl 9~ (el))

(varm 3i (era)))
9~ (en))

st)

Local variables and formal parameters:

147

These are represented as (var x s r s x) , where x is the formal parameter or
local variable, and s r is a s explained above, s x is the degree to which the formal
pa ramete r x h a s currently been evaluated. Again, s r ma y be s t ronger t h a n sx. ff
for example a CSE is used in a conditional context tha t is s t ronger t h a n its
uncondi t ional prior evaluation.

User dejqned function application:
When all a rgumen t s are present in a funct ion application, the representat ion is
as explained above, namely (expr (f ~ (e l) . , ~ (en)) s t) .

Functional argument and higher order functlons:
A full t r ea tment regarding funct ions as first c lass objects would be beyond the
space limits of th is paper. However, our a n intermediate representat ion and
compilation techniques a im at full laziness as defined by Hughes [5], and t h u s
avoid recompnta t lon as m u c h as possible.

Suspended Results: This is represented as (susp (f x I . .x ,) s=) ; see section 3.3.

3.3. Suspended results
In th is paper only suspended resul ts for funct ion applications with all a r g u me n t s will be

considered. On the G-machine as presented by J o h n s s o n [7], the creation of a graph for a funct ion
application is extremely costly, both in execution time and heap space. We shall see how to optimise
th is here. A s u s p e n d e d resul t for a function application (f e l . . e n } with all a r g u me n t s present is
represented th rough our analys is as a block boundary enclosing this application. All the arcs into the
block represent /reports required to build the s u s p e n s i on ie. the descending arcs as per figure 2-2.
We t h e n cons t ruc t a s u s p e n s i o n for a new funct ion g, whose actual paramete rs are these very
imports. T h u s the new funct ion g is defined as g x l . . ~ a a = f e l . . e n , where x l . . x m correspond to
the imported variables. Creating a s u s p e n s i o n in this case now simply involves building a graph for a
m u c h simpler application. The s= in the susp expression represents the resul t produced when the
s u s p e n s i o n is demanded. This information is not utilized in this paper.

3.4. Example
We illustrate our representa t ion on the familiar append function. In figure 3-I , we a s s u m e

tha t the s t r ic tness s igna ture of append is (d, d) --> d, indicating tha t append is a funct ion of two
a rguments , both of which will be prior evaluated to either a n a tom or a {possibly suspended) tuple.
Similarly, the resul t of append is to be delivered already evaluated as a n a tom or tuple.

(fun append (x .y)
(expr (if (expr (null (var x d d)) a)

(var y d d)
(expr (cons

(expr (hd (var x [i, I] [I, I])) ±)
(susp (append1 x y) d))

[±, ±]))
d))

Figure 3-1: Textual representat ion of annota ted append.

Notes:

• The definition for appendX iS a p p e n d l x y = append (t l x) y, and its s t r ic tness s ignature
isappendl: ([i,±] d) -~ d,

* With the s t r ic tness information available for x, it is not necessary to create a su spens ion for
the expression (hd x) .

4. Compi la t ion Rules
In [13], h a n d generated code for figure 2-1 is given to suggest the quality of code tha t might be

generated us ing the s t r ic tness information our method gathers . Our prototype compiler is being
written in Prolog [2] mainly for the power of pa t te rn match ing provided by unification, and the ease of
adding opdmisa t ions a s new c lauses to the compiler. We now formalize the G-code generat ion as a
set of Prolog clauses .

148

4. I . Major Rule Groups
The m a j o r c l a u s e s a re def ined below,

f (AST, G_.CODE) G e n e r a t e s GCODE for a function definition f rom t h e i n t e r m e d i a t e form, AST, The
c l a u s e a s s u m e s t h a t ac tua l p a r a m e t e r s will have b e e n p r e - e v a l u a t e d to t he
degree p red ic ted by o u r a n a l y s i s before a call to t h e f u n c t i o n is m a d e .

t(AST, MAP, SDEPTH, G CODE)
T h i s c l a u s e a t t e m p t s to pe r fo rm tail r e c u r s i o n op t imisa t ion , for t he e x p r e s s i o n
r e p r e s e n t e d in AST. MAP a n d SDEPTH are t h e m a p p i n g of p a r a m e t e r s a n d local
va r i ab l e s to pos i t ions on t h e s t ack , a n d t he c u r r e n t dep th of t he eva lua t ion s t a c k
respect ively.

e(AST, MAP, SDEPTH, G CODE)
T h i s c l a u s e will eva lua te t h e e x p r e s s i o n r e p r e s e n t e d by AST a n d leave a po in te r
to t h e r e s u l t o n top of t h e eva lua t ion s t a c k - t he s_s tack .

b(AST, MAP, SDEPTH, G CODE)
G e n e r a t e s code for a r i t hme t i c opera t ions . T h i s s c h e m e i s a n op t imiza t ion to
c o n s e r v e o n t h e u t i l iza t ion of h e a p s p a c e d u r i n g t he g e n e r a t i o n of i n t e rmed ia t e
r e s u l t s . T h e r e s u l t of eva lua t ing AST is left o n top of a n a r i t hme t i c s t a c k - t he
a-stack.

susp(AST, MAP, SDEPTH, a CODE)
Crea te a g r a p h . AST r e p r e s e n t s a n i n s t a n c e of ou r susp i n t e rmed ia t e form.

s(PATI, PAT2, G_CODE)
G e n e r a t e s code to ra i se t h e s t r i c t n e s s p a t t e r n of a r e su l t f rom PAT1 to be PAT2.
This is typically required when the result produced by a function application is
weaker than that required.

4.2. Language Subse t
For expos i tory r e a s o n s a n d to d e m o n s t r a t e t h e u s e of s t r i c t n e s s i n f o r m a t i o n d u r i n g code

gene ra t ion , we sha l l res t r ic t o u r s e l v e s to a very s m a l l l a n g u a g e def ined below.

D {Defelitions) ::= Fun x l . . x n = E
E (Expressions) ::= C o n s t a n t s i In tOp E E f RelOp E E

c o n s E E I L i s t O p E I F u n E . . E I f f E E E
C o n s t a n t s ::= In tegers I Boo leans I nfl
In tOp ::= a d d I s u b I m u l t J div
RelOp ::= gt [ge I It I le I eq I ne
ListOp ::= h d I tl I nu l l
F u n ::= Identif ier

F u n c t i o n s a re appl ied wi th all a r g u m e n t s p resen t , We now p r e s e n t each of t h e ru le g r o u p s in tu rn .
All t h e c l a u s e s h a v e b e e n ex t r ac t ed f rom o u r exis t ing compiler . However t h e y are p r e s e n t e d he re in a
s implif ied fo rm omi t t ing p a r a m e t e r s requ i red for la te r p h a s e s of t h e code genera t ion . Also, m o s t of
t h e er ror c h e c k i n g c l a u s e s a n d c l a u s e s to t e r m i n a t e r e c u r s i o n have b e e n omi t ted for brevity. The
c l a u s e s below are w r i t t e n i n t h e D E C 1 0 Prolog s y n t a x [2]. ± is deno ted by ? i n t he c l a u s e s ,

4.3 . F - scheme: F u n c t i o n C o m p i l a t i o n

F-1. f([fun, Fname, Parm, Body], GCode) :-
length(Parm, Lp), Lpl is L + I, /* Compute stack depth */
args map(Parm, PMap, Lpl), /* mapping of params onto stack */
t(Body, PMap, LpI, GCode). /* try Tail Recursion Optimisation */

Given a f u n c t i o n def ini t ion we a t t e m p t to pe r fo rm tail r e c u r s i o n op t im i sa t i on v ia t he
t-scheme, args map r e t u r n s t h e m a p p i n g of fo rmal p a r a m e t e r s to pos i t ions on t he s t ack . The defaul t
is h a n d l e d b y ru le T-3.

4.4 . T - scheme: Tai l R e c u r s i o n O p t i m i z a t i o n

T-I. t([expr, [F[Args], Sr], Map, Depth, GCode) :-
type(F, FormalPrm, Sf), /* database lookup */
length(Args, L), length(FormalPrm, L), /* sufficient args? */
reverse(Args, RArgs), /* not relevant here */
eArgs(RArgs, Map, Depth, EArgs), /* evaluate args */
s(Sf, St, Strict), /* refine result pattern*/

149

(Strict = [] ->
append(EArgs, [[move, M], ~un, F]], GCode) ;
flattenl ([EArgs, [[move, M], If call, F]], Strict], GCode))

T-2. t([expr, [if, El, E2, E3], Sr], Map, Depth, GCode) :-
b(El, Map, Depth, ElCode), /* result on a-stack*/
t(E2, Map, Depth, E2Code), /* then part */
t(E3, Map, Depth, E3Code), /* else part */
(flattenl ([EICode, [[jtrue, LI]], E3Code,

[[label, LI]], E2Code],
GCode)) .

T-3. t(E, Map, Depth, GCode) :- /* default case */
e(E, Map, Depth, ECode), /* evaluate and update */
flatenl ([ECode, [[update], [ret]]], GCode) .

T-4. eArgs([A[Args], Map, Depth, GCode) :-
e(A, Map, Depth, EICode), /* evaluate arg */
Depthl is Depth + I, /* position for next arg*/
eArgs(Args, Map, Depthl, ArgsCode), /* rest of args */
append(EiCode, ArgsCode, GCode).

When a user defined function culminates in a call to another user defined function, taft
recursion optimlsation is possible. In Rule T. 1 we check that the function has been supplied with
sufficient arguments, and evaluate them via the e~ rgs clause. The eArgs evaluates each of the
arguments using the e - s c h ~ . Note that the degree to which each of the arguments is to be
evaluated is contained in our abstract representation. The s - s c h ~ is used to raise the pattern
produced by the function, namely Sf, to the level s t . Tall recursion optimisation (via the j fun
instruction) is only possible ff this refinement code is absent. The newly created arguments are
moved in place of the old via the [move, M] instruction. Rule T.2 propagates the recursion scheme
into the branches of the conditional, with the default rule being T.3. The t - s c h ~ - ~ is extended
naturally to the l e t construct by evaluating the common subexpressions to the degree required, and
propagating the t - s c h ~ into the expression to be evaluated. The default rule evaluates the
expression and updates the result application node.

4.5. E-scheme" Evaluate Expression

E-1. e(I, _, _, [[pushint, I"]]) :- integer(I). /* no evaluation required*/
likewise for boolean constants and nil.

E-2. e([var, X, Sr, Sx], Map, Depth, [[push, OFFSET][STRICT]) :-
assoc(X, Map, IX, OFFSET]),
s(Sx, Sr, STRICT). /* refinement possible*/

E-3. e([expr, [add, Ei,E2],Sr], Map, Depth, GCode) :- /* arithmetic */
(Sr==d; Sr==a; Sr==de),
b([expr, [add, EI,E2] ,a], Map, Depth, BCode) ,
append(BCode, [[mkint]], GCode) .

likewise for sub, div, mull

E-4. e([expr,[eq, Ei,Ei],Sr], Map, Depth, C-Code) :- /* relational */
(Sr==d; Sr==a; Sr==de),
b([expr, [eq, EI,E2],Sr], Map, Depth, BCode),
append(BCode, [[mkbool]], GCode) .

E-5. e([expr, [if,EI,E2,E3],Sr], Map, Depth, GCode) :- /* conditional */
b(El, Map, Depth, EiCode),
e(E2, Map, Depth, E2Code) ,
e(E3, Map, Depth, E3Code) ,
flattenl([EiCode, [~true, Ll]], E3Code, [~mp, L2]],

[[/abel, Ll]], E2Code, [[label, L2]]],
GCode) .

E-6. e([expr,[null,E],Sr], Map, Depth, GCode) :- /* null operator */
e(E, Map, Depth, ECode),
append (ECode, [[null]], GCode) .

150

E-7. e([expr, [hd, [var,X,_, [B,_]]],A], Map, Depth, /* (hd x) */
[[push, OFF],[hd][STRICT]) :-

assoc(X, M, [X, OFF]),
s(B, A, STRICT). /* refinement possible */

Likew~efortlfunct~n /* after direct access */

E-8. e([expr, [hd, [var,X,_,d]],A], Map, Depth,
[[push, oFF],[hd_check][STRICT]) :-

assoc(X, M, IX, OFF]), /* test required */
s(?, A, STRICT). /* refinement possible */

Likew~efor~

E-9. e([expr, [hd, [var, X,_,de]],A], Map, Depth,
[[push, OFF],[hd_check]] STRICT]) :-

assoc(X, M, [X, OFF]), /* test required */
s(de, A, STRICT). /* further tests possible */

L~ew~efortl

E-10. e([expr, [hd, [expr, [F[Args],_]],A], Map, Depth, GCode) :-
type(F, P, [B,_]),
length(P, L), length(Args, L), /* sufficient args */
e([expr, [FIArgs], [B,?]], Map, Depth, FCode), /* call function */
s(B, A, STRICT), /* refine result */
flattenl([FCode, [hd], STRICT], GCode).

L~ew~efortl

E-If. Rule 8 is extended to handle function application in a fashion similar
to rule I0.

E-12. Rule 9 extended to handle function application in a fashion similar to
rule I0.

E-13. e([expr,[hd, E],_], Map, Depth, GCode) : -
e(E, Map, Depth, ECode),
append(ECode, [[hd_check]], GCode).

/* default case*/

E-14. e ([expr, [cons,El,E2],_], Map, Depth, GCode) :-
e(E1, Map, Sd, Vd, EICode), /* head part */
Sdl is Sd +i,
e(E2, Map, Sdl, Vd, E2Code), /* tail part */
flattenl([EiCode, E2Code, [[CO~S]]], Code).

E-15. e([suspIS], Map, Depth, GCode) :-
susp([susplS], Map, Depth, GCode).

/* graph creation */

E-16. e ([expr, [F[Args],Sr], Map, Depth, GCode) : /* function application */
type(F, P, Sf),
length(P, M), length(Args, M), /* sufficient args */
reverse(Args, RArgs),
Depthl is Depth + I,
eArgs(RArgs, Map, Depthl, EArgs), /* evaluate args*/
s(Sf, Sr, STRICT), /* refine result */
flattenl([[[mkhole]], EArgs, [[[call, F]], STRICT], GCode).

E-17. e(E [[error]]) :-
error ("Cannot compile expression") .

The e - s c h e m e leaves a po in te r to a r e s u l t on top of t h e eva lua t ion s tack . Rule E-2 ref ines a
fo rmal p a r a m e t e r to t h e degree requi red . Ru les E-3 a n d E-4 t r a n s f e r t he code gene ra t i on t a s k to t he
B - s c h e m e w h i c h c o m p u t e s all t e m p o r a r i e s o n the a r i thme t i c s tack , un t i l t h e r e su l t Is to be finally
t r a n s f e r r e d to t h e s - s t a c k via t h e mkbool or mk|nt i n s t r uc t i ons . In Rule E-6, t he i n s t r u c t i o n null
leaves a boo lean r e s u l t on t h e a - s tack . R u l e s E-7 to E-13 are op t im i sa t i ons on t h e h e a d a n d taft
func t ions , w h i c h t a k e a d v a n t a g e of t h e specific s i t u a t i o n to gene ra t e be t t e r code. The defaul t rule is
E-13. T h e i n s t r u c t i o n hd_eheck a c c e s s e s the head c o m p o n e n t of t he list af ter a type check h a s b e e n
per formed. In Rule E-14 we h a n d l e f u n c t i o n appl icat ion. The degree of eva lua t ion requ i red by each of
t h e a r g u m e n t s will be m a n i f e s t in o u r in t e rmed ia t e r ep resen ta t ion . The mkhole i n s t r u c t i o n m a k e s
space for t h e r e s u l t o n t h e h e a p , a n d t h e fcall i n s t r u c t i o n pe r fo rms t he con tex t switch. Th i s rule

151

under fully strict conditions generates code that follow the call-by-value semantics of parameter
passing.

4.6. B-scheme: Compute Basic Value

B-I. b(I [[pushbaslc, I]]) :-integer(I).
Likewise for boolean constants.

B-2. b(

B-3. b(

B-4. b(

[var, X, Sr, a], Map, Depth, [[geW, OFF]])
(Sr==d; Sr==a),
assoc(X, Map, [X, OFF]).

[expr,[add, E1,E2],Sr], Map, Depth, GCode) :-
b(E1, Map, Depth, BICode),
b(E2, Map, Depth, B2Code),
flattenl([BiCode, B2Code,[[add]]], GCode).

Likewiseforsub, mu~ div, eq, ne, gt, ge, lt,

[expr, [if, El, E2, E3], St], Map, Depth, Code) :-
(St == d ; Sr == a),
b(E1, Map, Depth, EiCode),
b(E2, Map, Depth, E2Code),
b(E3, Map, Depth, E3Code),
flattenl([EiCode, [~true, Ll]], E3Code, [~mp, L2],

[label, LI]], E2Code, [[/abe[, L2]]],
Code) .

B-5. b(E, Map, Depth, GCode) :-
e(E, Map, Depth, Vd, ECode),
append(ECode, [[get]], GCode) .

The B-scheme rule does the s tandard bottom up evaluation of entirely strict expressions on
the arithmetic stack. Rule B-5, needs to resort to the e-scheme to compute the value of the
expression E, and get its result on the a-stack.

4.7. Susp-scheme: Create Graph

susp ([susp, [F [Free],_], Map, Depth, [[pushfun, F] [F=eeC]) :-
Depthl is Depth + i,
susp_param(Free, Map, Depthl, FreeC).

susp_param([Xl Free], Map, Depth, [[push, OFF],[mkup]I FreeC]) :-
assoc(X, Map, [X, OFF]),
Depthl is Depth + i,
susp_param(Free, Map, Depth1, FreeC).

This scheme constructs the graph for the susp intermediate form. We merely need to
determine the offset of the free variables required in the graph and connect them together via the
m k a p instruction.

4.8. S-scheme: Strictness Pattern Refinement

s - 1 . s (x , x, [])+

S-2. s (?, d, [[eval]]).

S-3. s(?, a, [[eval],[atomicp]]).

S-4. s(?, [A,B], [[eval], [llstp][GCode]) :-s([?,?], [A,B], GCode)+

S-5. s(d, a, [[atomicp]]).

S-6. s(d, [A,B], [[/~S~]l Code]) :-s([?, ?], [A, B], Code).

152

S-7. s(a, [A, BI, [[error]l) :- error("Atomic value where list expected").

S-8. s (de, a, [[atomicp]]).

S-9. s(de, [A,B], [[/~s~][Code]) :-
s([de, de]r [A,B], Code).

S-10. s([A,B], [C,D], Code) :-
s (A, C, Code1) ,
s_head(Codel, Codel_head),
s (B, D, Code2) ,
s_tail (Code2, Code2 tail),
append(Codel_head, Code2_tail, Code).

s - 1 1 . s (_ , _ , []).

S-12. s head(I], []).
S-13. s_head(Code, Code head) :-

flattenl ([[[push_top], [hd]], Code, [[popl]], Codehead) .

S-14. s tail([], []).
S-15. s_tail(Code, Code tail) :-

flattenl ([[[p~_top], [tl]], Code, [[pop]]], Code_tail) .

s (Patl, Pat2, GCode) generates code to ref~e Patl to be Pat2.

4.9. Peephole Optlmlsations
Direct shor t cuts are made when updat ing the application node with the result. Instead of

forming the resul t s t ruc ture on top of the s tack and then copying the resul t into the application node
to be updated, we directly create the result on the application node. Thus the following optimisations
result:

[cons] [update] -9 [update_cons]
[mkint] [update] --) [update_int]
[mkbool] [update] -) [update bool]
[mkap] [update] -) [update_appl]

In t h e s a m e spi r i t t h e r e ls n o n e e d to c rea te a boo lean va lue on t he a - s t a c k ff it is going to be
immed ia t e ly t e s t e d a n d r emoved in the n e x t ins t ruc t ion . Therefore we get t he following opt imisa t ion:

[eq] [jtrue,Label] -9 [jeq, Label]
[Itl [jtrue,Label] -) [jlt, Label]
[null] [jtrue,Label] -~ [jnull, Label] etc.

5. Sample Code Generated
Below we give the code generated for the from function defined below.

from x y = if x > y then nil else cons x (from (x + I) y);

The i n t e r m e d i a t e r e p r e s e n t a t i o n a s s u m i n g a s t r i c t n e s s s i g n a t u r e of (a a) --> de is s h o w n
below. T h i s w a s u s e d to g e n e r a t e t h e f i rs t c o l u m n in f igure 5 - i . T h e s e c o n d c o l u m n in f igure 5- t w a s
g e n e r a t e d a s s u m i n g a s t r i c t n e s s s i g n a t u r e of (k ±) ~ d. T h i s i s a conven i en t example to h a n d t e s t
t h e r u l e s g iven in t h i s paper .

(fun from (x y) (expr (if E1 E2 E3) de))
whe re

E1 = (expr (gt2 (var x a a) (vat y a a)) a)
E2 = nil
E3 = (expr (cons (var x de a)

(expr (from (expr (add2 (var x a a) I) a)
(vary a a))

de)
(de de)))

Several d i f ferences s h o u l d be no ted w h e n c o m p a r i n g t h e code g e n e r a t e d in t he two cases ,
referred to a s t h e s t r i c t v e r s i o n (SV) a n d t h e n o n s t r ic t ve r s ion (NSV).

153

I. getv(3) I* a_stack := x *I
2. getv(2) /* a_stack := y */
3. jgt2(gO001) /* test */

4. push(3) /* s stack := x *I
5. mkhole /* r~sult node */
6. push(2) /* s_stack := y */
7. getv(3) /* a_stack ;= x */
8. pushbasic(1) /* a_stack := 1 */
9. add2
I0. mkint /* s stack := x+l */
II. fcall(from) /* ca~l from */
12. update_cons /* make result */
13. ret

14. label(gO001)
15. pushnil
16. update
17. ret

I. push (3)
2. eval
3. atomicp
4. get
5. push (2)
6. eval
7. at omicp
8. get
9. jgt2 (gO002)

/* s stack := x */
/* evaluate */
/* atom test */
/* a stack := x */
/* s stack := y */
/* e~a!uate */
/* atom test */
/* a stack := y */
/* t ~ s t */

/* s stack := nil */

i0. push(3) /*
11. pushfun(froml)/*
12. push(3) /*
13. mkap /*
14. push /*
15. mkap /*
16. update cons /*
17. ret

param x */
new function*/
s stack:= x */
~ke graph */
s stack:= y */
~ke graph */
make result */

18. label(gO002)
19. pushnil
20. update
21. ret

F i g u r e 5 - 1 : S a m p l e C o d e F o r F u n c t i o n from

• In the SV, the parameters are directly accessed and moved to the arithmetic stack whereas in
the NSV, evaluation and type checking is performed.

• The SV implements call-by-value parameter passing semantics whereas the NSV creates a
suspended result to be later evaluated upon demand.

One would expect that in a fully strict version of a function, the G-code generated would be
comparable to that produced by any LISP compiler. Indeed our preliminary timing tests seem to
confirm this notion.

Our analysis method is currently under development. To be able to test our compiler we have
developed an annotated user language, with type declarations, where the type information is
propagated into the subexpressions of a function definition. The resulting intermediate form is not as
rich as the one we expect from the analysis due to the simple nature of the pattern propagation, The
resulting G-code is macro expanded to form a C program [9]. This has enabled us to perform some
valuable comparisons, the results of which are summarized below. All timings were measured on a
VAX 8600 running UNIX TM.

SV NSV 2 ML 3 Miranda PSL 4 C Pascal
fib 20 0.7 1.4 1 26.3 0.7 0,1 0.1
tak 18 12 6 2.1 7.2 11 87.0 1.4 0.3 0.8
sieve 2,.500 (10 times) 3.2 7.0 13 43.0 3.2
insertion sort 5 4.3 13.0 23 51.06 2.8

R e f e r e n c e s

Ill

[21

Bum, G. L., C. L. Hankin, and S. Abramsky.
Theory and practice of str ictness analysis for higher order functions.
Aprll 1985.
Dept. of Computing, Imperial College of Science and Technology.

Clocksin, W.F. and Mellish, C,S.
Programming in Prolog.
Springer-Verlag, 1984.
2rid Edition.

~A small amount of strictness information was used in defining some of the functions to avoid the tedium invoba~d in our annotated source language

~Standard ML, "timing Resolutlon = I sec

~Compl}ed Portable Standard LISP v~thout fast integers

~Sorted a list of 500 elements in reverse order

eSorted a ltst of 250 elements in reverse order

154

[31

[41

[5]

[6]

[7I

[81

[9]

[lOl

[11]

[I21

[13]

[14]

I15]

Fairbalm, Jon, and Stuar t C. Wray.
Code generat ion techniques for functional languages.
In Proc. Symp. onLisp and~mc, Pgmming., pages 94-104. ACM, 1986.

Hudak, P., and J . Young.
A set-theoretic characterizat ion of function str ictness in the lambda calculus.
In Proc. Workshop on Implementations of Functional Languages. Chalmers Univ., Aspenas,

Sweden, February, 1985.

Hughes, R. J . M.
Super Combinators.
In Lisp and F~mctional Programming Conference, pages 1- I0. ACM, 1982.

Hughes, J .
Str ic tness detection in non-flat domains.
Programming Research Group, Oxford.

Johns son , T.
Efficient compilat ion of lazy evaluation.
In Proc. Symp. on Compiler Const. ACM SIGPLAN, Montreal, 1984.

Kieburtz, R. B., and M. Napierala,
A studied laziness -- s t r ic tness analysis with s t ruc tured data types.
1985.
Extended abstract , Oregon Graduate Center.

Kernlghan, B.W. and Ritchle, D.M.
Software Series: The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1978.

Kieburtz, R_ B.
Abstract interpretat ions over infinite domains cannot terminate uniformly.
February 17, 1986.
Unpubl ished note, Dept. of Computer Science, Oregon Graduate Center.

Kuo, T.-M., and P. Mishra,
On Str ic tness and its Analysis.
In Proc, Symp. onPrinc, of Pgmming. Lang.. ACM, Munich, West Germany, March, 1987.
To appear.

Lindstrom, Gary.
Static evaluat'.'on of functional programs.
In Proc. Symposium on Compiler Construction, pages 196-206. ACM SIGPLAN, Palo Alto, CA,

June , 1986.

Lindstrom, Gary, Lal George and Dowming Yeh.
Optimized compilation of functional programs through str ictness analysls.
August 4, 1986.
Technical summary.

Mycroft, A.
The theory and practice of t ransforming call-by-need into call-by-value.
In Int. Symp. on Prgmming. Springer, April, 1980.
Lecture Notes in Computer Science, vol. 83.

Sheeran, Mary.
Designing regular array archi tectures us ing higher order functions.
In Proc. Conf. on Functional Programming Languages and Computer Architectures, pages

220-237, SpringerVerlag, 1985.
Lecture Notes in Computer Science, vol. 201.

[161 Wadler, Phil.
Str ic tness analysis on non-fiat domains (by abs t rac t interpretat ion over finite domains}.
November 10, 1985.
Unpubl ished note, Programming Research Group, Oxford Univ.

[t71 Warren, David H. D.
Applied logic: its use and implementation as a programming tool.
Technical Report, SRI, Inc., 1983.
Note 290.

