LISTLOG - A PROLOG EXTEMSION FOR LIST PROCESSING

Zsuzsa Farkas
Computer Research and Innovation Center - SZKI
H - 1015 Eudapest, Donati utca 35-45, Hungary

Abstract

In this paper an alternative 1 ist representation for logac programs is imeroduced, based on so-called segment variables. These variables represent a whole mublist (segment) of a liste that isy when substituting such a variatie by a list. not fhe ifst itself, but its elemente are concidered the elemente of the original list. The notion of Eegment vamabies was fipet introduced in the lisp7o pattern matwher [i]s and was suggested to be used in frolog by Marc Eisenstadt, as a step towards a more human manmachine interface for FFOLGE. The original motivation for uesng these variatales was to simplify the definition of some bewic list procesming predicates. mainly by evoidimg recurmion.

Howevers we have shown that thi lige representation has an even more important advantagen it brings the declarative and the promedural Eemantics of several list handing predicates mearer to each other, Eag. allowing a more complete set of solutiong or avoiding some infinite Ioops.

LISTLOG is a FROLOG extension, handing these list expressionss it is implemented as a front-end to PFOLOG, providing an extended matching algorithm.

1. List expressions with segment variables

A segment variable represents a whole segment (wublist) of a liet. For example, in a FFoLog 1 ist expression

$$
\begin{equation*}
[a, x, b] \tag{*}
\end{equation*}
$$

X <゙-ー. [[. d]

the list will contaim [co g as the second elementu Intuitivelys nowever, one may want to have

$$
[a, c, d, b]
$$

as the result of cumb a substitution. To allow this we introduce a new type of variable, called segment variableg handled in a mpecim way: it man be substituted only by a list expression, and when Euch a variable is substituted by a list, this list becomes s sublist of the original list. For segment variables we will use a "an prefix to distinguigh them from nommad variables. That is.

$$
[a, * x, b] \text { will becone }[a, q, d, b]
$$

when the substitution X ©-- [c.d] is appliad (cf previous example (*)).

This is a quite natural extension of normal pholog lists: in the expression

```
[a;b: < ] ]
```

X also represents a whole ffinaly segment of the list, but here we have the restriction that only the variable after the vertical bar is handled in this way, Dur generalization simply means, that me allow such a vamiable not only at the last position. The above list can be rewritten in LISTLOQ as

$$
[a, b, a \times]
$$

representing the $1 i s t s$ beginning with the elements a and b and continuing with any number of any elements. Similarly,

$$
[a, \cdots x, b]
$$

can be used to represent the lists begimning with as ancing with bn and containing any number of any elements in betweer.

In LISTLOG we allow all the normal FFolog expressions, only the list expremsions are different:

The syntax of expressions:

Sexpression)	: $:=$	clist expressions	\cdots
<14	: : $=$		CIistamem>
<15t enem>	${ }^{3} \mathrm{n}=$	Stegment varioble>	(sexpression>
ssegment variable>	\% $=$	- <variable〉	

2. Defining list handiing predicates in LISTLOG vs PROLOG

The main motivation for introctuctng this list representation was to providemeams for defining list handing predimates in a iess algorithmic way as it is possible in Prologn Though these prolocs definitions might be umderstandable to be read. it may ceusae difficulty for a naive user to formulate eag. the "between" ralation (see below). The main problem with these Fholob detinitions ist the use of recursions and a certain algorithmic approachn An other thing which
 the first and the last elements of a list are handed in a completely different way.

However, when these problems do exist for the neive users, we are aware that this is not a central topis in logic programming and theretore it is not worthwhile to dietract the umers attantion from the main points guch as declarative approach, backerackings etc. Definimg an alternative list representation and providing a suttable unifying aboorithm; we achieve such an extension to promog which might be used easier, though only in the special area of 14 wt processimg.

In the following you can compare the definition of some basic 1 ist handling predicates:
in PROLOG
mamber (X,[X ; LJ].
member $(X,[Y$: LJ) : menber (X, L).

```
appers([C],L.,L).
append([A|L1],L2,[A!LD) :-
    append(Lt,L2,L).
firgt, elem([x|L|y, (%
last elem([x], X).
```



```
    last_elem(LnX).
```

sublist(5L.L):-
append (FREV:SL. LL),
append (Lls, LATER,L).

```
between(X,Y,B,EX{LJ):--
```


umeil (L, Y, B) -

between $\left(X_{y} Y_{y} E_{y} L\right)$.

until (EZiLay, Y, [ZABI) : -
until $(L, Y, B)=$
reverse(tugro).

feverse (Lsth)
append ($\mathrm{LL}, \mathrm{CA}, \mathrm{FL}$).
Pelinctrome (c7).
palindrone(chlly) :-
Palidntome (L1),
append (LI, [A], L. .

in LISTLDG

sublist(SL, \&FREV, SL, LATER]).
reverse $[\mathrm{c}],[\mathrm{c}]$).
reverse(cA, May $[$ ©LL, A]) :reverge(L, Lis).

Palindrome([J).
palindrome([A ; A, A]): … palindrome (L).

3. Advantages of LISTLOG to PROLDG

an Solutions in a more concise form

A differmee between the FFOLOE and LISTLOG Ifst representation is that some object sets which in pholog may be described only by infinitely many axpressionts, in LISTLOE can bew represented by a single expresaion. Fot esemple, thome lists containing the constant "1" ese element cen be described in prolug by the following empressions:

```
E1 : T.
[XI, [: T]
EXI, X2% 1 ; T]
```

whi. 1 em LJSTLOG by
[. $\times x, 1, ~ \times T]$

As a consequence of thisy some geals having an intinitg sequente of wolutions in prolog, will have only a single one in listloes af courses having the same meanirg -- representing the same set of objects.

The minplest example ijhustrating this difference is:

```
                                    ? mamber(1, _.).
```

in FFOLGG:

```
L=[1,T]
    =[x1, 1 : T]
    =[X1, X2, 1 ; T]
        ***
```

b. Froducing a more complete set of solutions

 of the aspecta of this is that mome of the bogionily valid solutiont Ere mot produced by the Froloc evecution membatsm. The following
 of molutions is gajned:
? member $\{1, L\}$ and member $(2, L)$.
in FROLDG
$L=41,217]$
$L=\left[\cdots x_{1} 1, \cdots \gamma, 2, \cdots Z\right]$
$=\left[1, X_{1,2}: T\right]$
$=[\cdots \mathrm{X}, 2, \cdots \mathrm{Y}, 1, \cdots \mathrm{Z}]$
$=\left[1, X_{1}, x_{2}, 21 T\right]$
**"

The solution set produced in FROLDC is rether restricted. we can never find a list in which "2" precems " 1 " moreover" " 1 "is always mtuck in the first position. In LuSTLOG there are only two solutions: but they describe all the logicelly possible solutions. Note that this difference $i s$ a consequence of the property dealt with in the previous section; that i s. of the possibility of describing a larger set of otjects by an expression in listlog than in frolag. The reason why PROLOE gives only theme solutions is that the second wubgoal has infinitely many solutions already for the first solution of the first subgoal, and the interpreter would return to the first Eutgoel omly after exheunting all the poseible solutions of the gecond subgoal. In LISTLOG the more concise form of the solutions makes posejble to avoid this.

C. Avaiding infinite loops

A third problem wath the prol oe execution mechanism is that in mone cases it produces an infimite loop imetead of megativa anewary as in the following examplem:

```
7 member (1,L) and not member (1,L).
7 next _to(X,Y,L) and not preceeds( }X,Y,L)
? sublust([1],[2]).
? first_elem(L_1) and last_elem(L,2) and palindrom(L).
```

The structure of the infinite loop is that a first subgoal has infinitely many solutions, all of them refused by a second subgoel. Theme type of goals are answered with "No" in LISTLOQ, again due to the more concise form of the solutions.

4. Unification in LISTLOG

As we have extended the notion of exprestions an extended unification algorithm muste be provided as well. Before prementing mueh an algorithmy first revisit the general definitions for unificetion and then those propertises differemt in prolog and LTETLOE. (A Bummary of general unificmtion is found im ESJ.
a. General notions of unification
instantiating an expression means substituting simultaneously some of its variables by other expressions and performimg the pomeible simplifications. The expression proctuced by ingtantiating is called an inetance of the original one.
simplifying an expression means replacing those wubexpreswions whose argumente become known by the value of the function at the given argumente
an expression E is the unifier of two expressions En and E2 if it is an instance of both of themg belonging to the same substitutions.
if Ul and U2 are unitiers of two expressions. then ul is more general than $u 2$ if $u 2$ is an inctance of 41 .

b. Simplification in LISTLOG

In the above definition only the notion of simplification depends on the given formel system: eng in frolog no simplification is needed since in Herbrend interpretations functions are defined having the function expreswions themselves as values.

Gimplification in LIETLOG means to fletten the elementes of the list substitituted for a segment yariable into the elements of the list containing this variable. E.g. the expression

$$
\text { La, } X, \cdots[c, Y], b] \quad \text { assimplifled to }[a, X, C, Y b]
$$

The following expressions eng. can be unified in LISTLGE :

c. Maximally general unifiers

As we know, in PROLOG there always wists a most generel unifier for any two undfiable expressionss and the Prolog unification algorithon is a deterministic procedures givimg this unifier. In LIETLDG this is not trues there may be expressions having not comparable unifiems: as it is illustrated by the following examplea

that is, Ui and U2 are both unifiem of Ei and E2, and non of them is an inctance of the ether.

There may be infinitely many incompamable unifiemsu these two expressions have the following unifiers:

```
E1=[1, <X]
```


$$
\begin{aligned}
& U 1=[\square \\
& U 2=[1] \\
& U 3=[1,1]
\end{aligned}
$$

It followe from the above that here we mey have only makimally general unfiers instead of most general ones.

5. A unification algorithm

Acrording to the above, our unificetion algorithm will be nondeterministic. producimg each of the madimally general undfiers.

The algorithm premented here is a netural extension of the untication used in protog. The difference is that in photog the only constructors are "nit" and **" while in LTGTLOG also the "eppend" furction is considered as construmtor. (This corresponds to the Inst of form [. $x, \ldots \ldots]$. We denote the list that results by appending ther 1ists pRE and guf together by

```
PRE . . SUF
```

The unfication algorithm is based on the toliowing properties of

(2) $H 1, T 1=H 2, T 2<H_{2}=H 2$ and $\mathrm{Tl}_{2}=\mathrm{T} 2$

Froperties (1) and (2) are umed in FROLOS, further properties, (3) and (4), are added for LISTLOG unification:

$F_{2}=P_{1}=5$ and $51=5 .=82$.

 $F=H$. Fi. and $F 1=S=T$

The unification defined in PROLGG

```
    operator(*, fx, 700).
    unify(X,V):-
        elem(X), !s X=Y *
    unify(x,y):-
        mem(Y): !; X=Y .
    umify(X,Y) :-
        is_list(X), !: unify_1ists(X,Y);
        is__list(Y), !, unify,_1ists(X,Y) ,
unify (X,Y) :-
    decomp(X,[N:ALI]), comp([N:ALZ],Y),unify_args(Ali,Al2).
unifymargs([],[]).
unify_args([A:LI],[E!L2]) :-
    unify(A,B); unify_args(L1,L2)=
(ut) unify_unsts([],[3) .
(u2) unify_lists([S!T],L) :-
```



```
        unify(L.1,\ldots) *
(uS) unify_lists(L,[SIT]) "-
        bound_5egment(S,SY), !, simplify(SY,SI), app(SI,T,LI),
        unify(L,Li).
(u4) unify_limte([5],L) : -
    unbound segment (5,91), !, S1=L .
(us) unify 1itts{L,[EJ) :-
    unbound segment (5,51), !, 51=L .
(u6) unify,1ists([silTi],csemT2]) m-
    unbound segment(SI,X), unbound.Esegment(S2,Y), !:
        (X === Y; ! ; unify(T1,Tz):
        X=[^ Y,^z], unify(0^ z|Ti],T2):
```



```
(u7) unafy.listm([HITI],[SIT2]) :-
    unbound segment ( }B,X), ?
        (unify(X, []), unify([HIT1],T2);
            unify(X,[H:* Z]), unify(Tt, [* Z\T2])) .
(48) unify,1ists([5:Ti],[H:T2]):-
    unbound segment (S,X), !
            (umify(X,[y), und fy(T1,[H:T2]),
            unify(X,rHs* z3)* unity([^ 2\T1],T2)) *
```

```
(u9) unify.li=tg[[siT],G], - -
    unbound segment (S, X), !: umify(x,[]), unify(T, []) "
(u10) unafym11sts(E., [S|TJ) : - - 
```



```
(uid) unify_-msts(EHt;TIJ,[H2!T2J):-
    unify(H1,H2), !, unify(TA,Tz).
    elem(x) :--
```



```
        Var (x), !!
        constant (x); !.
    i= JL=tu(L) :--
        Vem(X); ! " failm
        L=m+1, 1; !%
        L=[_, ! ] .
    bound
        Var(S), ! faily
        S=(*X), (var(x); !, taidy
        !) .
    umbound,..segment (s, X) :--
        Var(S), !s fadla
        S=(\thereforex); Var(x).
    Simplify(x,x) a - 
        Elam(x); !
    simplify(Li,L2):--
        is_list(Li), !n simplify_hist(Li,LQ).
    simplify(X,
```



```
    gamplity_mmga{[],[]) n
    Eimplify, args([AlLID,[BHLO]):-
        gamplify(A,B): simplify,mogs(Li,LZ)*
    simplify,mist([],[J) ,-
        ! .
    simplify,mist(CE:LJ,[E|:LIJ):-
```



```
    bound, segment (E, X), I, Eimplify(X,X1),
            simplify_1ist(L,L|), app(xi,LI,EL).
simpljfy_1ist([E1HLI],[E2!L2J):-
        simplify(El,Ez), 5implify_1imt(L1,LZ) "
app([],L,L)"
mpp([A|LIJ,L2,[A|LJ):-
        app(L.L,L2,L)*
```


An example unification

6. Transforming LISTLOG statements into PROLOG

As the ondy differmone betwem FROLDG and LISTLOG lies in the data etructures they handle, the only necessary trancformation is to use our unticatiom algomithm instead of the nomme Frolom one. This in done in such a way that the expremsione occurving in the head of a statement are substituted by (new) variables. and the above unification algorithm is telled explicitly before executing the body of the statemert. E.g.

An additional problem is how to call the pROLOG built-in predicates such as "write": In the above execution Echeme simplification is performed curing the unification when antering a definition. However, this caumes a problem in the came of buitu-in predicates, because here we cannot apply this trancformation. This is solved in our sysuem in much a wey: thet a predicete
call (CONDITTON)
is introduced which provides min interface for prolog predicates: before evaluatiry the guven condition it simplifies its arguments. Eng.
appenci([1,2,3],[4,5],L), call (write(L)).
gives the expected outpute $[1,2,3,453$ the mimplifiod form of [. [1:2, $4, \cdots 4,5]$ produced by the "append" definitionn

7. Efficiency questions

In the Gase of the above PFOLOE unification understandability had a higher priarity than efficiency. However, it is worth mentioning that there are cases when even this implementation increases efficiency, compared to froino. For example, a question of the form
in FFOLDG man be anewered negatively only by actually reversing the 3ist, while in LTSTLOG this antwar japroduced by a mjngle

$$
\min f y([\cdots x, \quad 1],[])
$$

unificztion step, indeperidently of the length of the lizt to be r"evermed.

日. Conclusions, further plans

We have shown the actvantages af an alternative list representation for \quad cogic progremming. LISTLOB, the resultect FROLOG extencion is implememted in FFOLOG at the moment, wut we are comsidering a more efficismt direct implementation for itw Furtmer directions are to try to generalize this method from liste to other proluc structures
 Ijst representation [4].

References

The Lisp70 pattern matching system.

An improved man-machime imterface for FGOLoG.
Imperial College -- Opem Hivversity joint projecty lge4n
[3] J. H. H tickmany
Universal unditication*
 Gpringer ver- $\operatorname{sg} 1984$
[4] Zs. Fartas:
Lemuth mestrictad megmemt variablem im FFOLOEn
(ju preparation)

